For the past two weeks puffy clumps of seeds have been riding the air in my town. You can’t avoid them. Open a door and they’ll breeze right in. Take a deep breath and you’d better be careful you don’t take a few down the windpipe.
Every June the many aspen trees that call northern Minnesota home release their booty of tiny seeds that parachute through the air on tiny clusters of hairs. And while they all have no particular place to go, their combined and unintentional effect is to create a series of beautiful colored rings about the Sun called a corona.
Reach your hand up to block the Sun and if your eyes can stand the glare of blue-white sky, you’ll see bazillions of tiny flecks a-flying. If you were to capture one and study it up close, you’d see it diffractlight in tiny glimmers of chrome green and purple.
Light is always getting messed with by tiny things. When it comes to aspen seeds, as rays of light – made of every color of the rainbow – bend around the hairy obstacles they interfere with one another like overlapping, expanding wave circles in a pond. Some of the waves reinforce each another and others cancel out. Our eyes see a series of colored fringes that flash about the tiny hairs.
The exact same thing happens when light has to step around minute water droplets, pollen grains and our hairy aspen fluffs when they’re drift through the air overhead. Overlapping wavelets of light “interfere” with one another to form a series of colorful concentric circles called a solar corona. While the same in name, this corona is an earthly one unrelated to the huge, hot coronal atmosphere that surrounds our star.
The ones created by seed hairs and pollen require clear skies and a safe way to block the Sun’s overwhelming light. My filter of choice is the power pole mostly because they’re handy. Sunglasses help to reduce the glare and eye-watering wincing.
While I can’t be 100% certain the chromatic bullseye was painted by poplar hair deflections – there’s always a chance pollen played a part – I’ve seen similar displays when the seeds have passed this way before.
Coronas created by water droplets in mid-level clouds are much more common, and the familiar “ring around the sun” or solar halo is an entirely different creature. Here, light is bent or refracted through billions of microscopic six-sided ice crystals.
I figure that if the night is cloudy, the play of light and clouds in the daytime sky often makes for an enjoyable substitute.
Once upon a time, when the Universe was just about three billion years old, galaxies started to form. Now astronomers using a CSIRO radio telescope have captured evidence of the raw materials these galaxies used to fashion their first stars… cold molecular hydrogen gas, H2. Even though we can’t see it directly, we know it is there by using another gas that reveals its presence – carbon monoxide (CO) – a radio wave emitter.
The telescope is CSIRO’s Australia Telescope Compact Array telescope near Narrabri, NSW. “It one of very few telescopes in the world that can do such difficult work, because it is both extremely sensitive and can receive radio waves of the right wavelengths,” says CSIRO astronomer Professor Ron Ekers.
One of the studies of these “raw” galaxies was performed by astronomer Dr. Bjorn Emonts of CSIRO Astronomy and Space Science. He and fellow researchers employed the Compact Array to observe and record a gigantic and distant amalgamation of “star forming clumps or proto-galaxies” which are congealing together to create a single massive galaxy. This framework is known as the “Spiderweb” and is theorized to be at least ten thousand million light years distant. The Compact Array radio telescope is capable of picking up the signature of star formation, giving astronomers vital clues about how early galaxies began star formation.
The “Spiderweb” was loaded. Here Dr. Emont and his colleagues found the molecular hydrogen gas fuel they were seeking. It covered an area of space almost a quarter of a million light-years across and contained at least sixty thousand million times the mass of the Sun! Surely this had to be the material responsible for the new stars seen sprinkled across the region. “Indeed, it is enough to keep stars forming for at least another 40 million years,” says Emonts.
In another research project headed by Dr. Manuel Aravena of the European Southern Observatory, the scientists measured the CO – the indicator of H2 – in two very distant galaxies. The signal of the faint radio waves was amped up by the gravitational fields of the additional galaxies – the “line of sight” members – which created gravitational lensing. Says Dr. Aravena, “This acts like a magnifying lens and allows us to see even more distant objects than the Spiderweb.”
Dr. Aravena’s team went to work measuring the amount of H2 in both of their study galaxies. One of these, SPT-S 053816-5030.8, produced enough radio emissions to allow them to infer how quickly it was forming stars – “an estimate independent of the other ways astronomers measure this rate.”
The Compact Array was tuned in. Thanks to an upgrade which increased its bandwidth – the amount of the radio spectrum which can be observed at any particular time – it is now sixteen times stronger and capable of reaching a range from 256 MHz to 4 GHz. That makes it a very sensitive ear!
“The Compact Array complements the new ALMA telescope in Chile, which looks for the higher-frequency transitions of CO,” says Ron Ekers.
We all love space here and we’re sure, given that thousands of people applied for a one-way trip to Mars, that at least some of you want to spend a long time in a spacecraft. But have you thought about the bacteria that will be going along with you?
If you don’t feel too squirmy to read on, understand this: one type of bacteria grown aboard two shuttle missions ended up being bigger and thicker than control colonies on Earth, new NASA research shows.
Two astronaut crews aboard space shuttle Atlantis grew colonies of bacteria (more properly speaking, biofilms) on behalf of researchers on Earth. Most biofilms are harmless, but a small number could be associated with disease.
Biofilms were all over the Mir space station, and managing them is also a “challenge” (according to NASA) on the International Space Station. Well, here’s how they appeared in this study:
“The space-grown communities of bacteria, called biofilms, formed a ‘column-and-canopy’ structure not previously observed on Earth,” NASA stated. “Biofilms grown during spaceflight had a greater number of live cells, more biomass, and were thicker than control biofilms grown under normal gravity conditions.”
The type of microorganism examined was Pseudomonas aeruginosa, which was grown for three days each on STS-132 and STS-135 in artificial urine. That was chosen because, a press release stated, “it is a physiologically relevant environment for the study of biofilms formed both inside and outside the human body, and due to the importance of waste and water recycling systems to long-term spaceflight.”
Each shuttle mission had several vials of this … stuff … in which to introduce the bacteria in orbit. The viles included cellulose membranes on which the bacteria could grow. Researchers also tested bacteria growth on Earth with similar vials. Then, all the samples were rounded up in the lab after the shuttle missions where the biofilms’ thickness, number of cells and volume was examined, as well as their structure.
This is still early-stage work, of course, requiring follow-up studies to find out how the low-gravity environment affects these microorganisms’ growth, according to lead researcher Cynthia Collins from the Rensselaer Polytechnic Institute. Metabolism and virulence are what the scientists are hoping to learn more about in the future.
“Before we start sending astronauts to Mars or embarking on other long-term spaceflight missions, we need to be as certain as possible that we have eliminated or significantly reduced the risk that biofilms pose to the human crew and their equipment,” stated Collins, an assistant professor in the department of chemical and biological engineering.
While this research has more immediate implications for astronaut health, the researchers added that better understanding the biofilms could lead to better treatment and prevention for Earth diseases.
“Examining the effects of spaceflight on biofilm formation can provide new insights into how different factors, such as gravity, fluid dynamics, and nutrient availability affect biofilm formation on Earth. Additionally, the research findings could one day help inform new, innovative approaches for curbing the spread of infections in hospitals,” a NASA press release stated.
If you’re not feeling too itchy by now, you can read the entire study in an April issue of PLOS ONE.
A closer look at the previously-studied nearby star Gliese 667C has revealed a treasure trove of planets – at least six – with three super-Earths in the habitable zone around the star. Gliese 667C is part of a triple star system (Gliese 667) and is just over one third of the mass of our Sun. Now that we know there are multiple planets in the so-called Goldilocks zone – a region where liquid water could exist — Gliese 667C might be the best candidate for harboring habitable exo-worlds.
“We knew that the star had three planets from previous studies, so we wanted to see whether there were any more,” said Mikko Tuomi from the University of Hertfordshire in the UK, one of the astronomers who led the new study of Gliese 667C. “By adding some new observations and revisiting existing data we were able to confirm these three and confidently reveal several more. Finding three low-mass planets in the star’s habitable zone is very exciting!”
Tuomi, along with Guillem Anglada-Escudé of the University of Göttingen, Germany looked at existing radial velocity data from the HARPS spectrograph at ESO’s 3.6-metre telescope in Chile. The team said they are extremely confident on the data on the first five planets, while the sixth is tentative, and a potential seventh planet even more tentative.
The team writes in their paper:
Up to seven periodic signals are detected in the Doppler measurements of GJ 667C data, being the last (seventh) signal very close to our detection threshold.
The significance of the signals is not affected by correlations with activity indices and we could not identify any strong wavelength dependence with any of them.
The first six signals are strongly present in subsamples of the data. Only the seventh signal is unconfirmed using half of the data only. Our analysis indicates that any of the six stronger signals would had been robustly spotted with half the available data if each had been orbiting alone around the host star.
If all seven planets are confirmed, the system would consist of three habitable-zone super-Earths, two hot planets further in, and two cooler planets further out.
But the team said the three in the habitable zone are confirmed to be super-Earths. These are planets more massive than Earth, but less massive than planets like Uranus or Neptune. This is the first time that three such planets have been spotted orbiting in this zone in the same system.
“The number of potentially habitable planets in our galaxy is much greater if we can expect to find several of them around each low-mass star,” said co-author Rory Barnes from the University of Washington, “instead of looking at ten stars to look for a single potentially habitable planet, we now know we can look at just one star and find several of them.”
Gliese 667 (a.k.a GJ 667) is 22 light-years away from Earth in the constellation of Scorpius.
The planets in the habitable zone and those closer to the star are expected to always have the same side facing the star, so that their day and year will be the same lengths, with one side in perpetual sunshine and the other always night.
The researchers say that the ‘f’ planet is “a prime candidate for habitability.”
“It likely absorbs less energy than the Earth, and hence habitability requires more greenhouse gases, like CO2 or CH4,” the team wrote in their paper. “Therefore a habitable version of this planet has to have a thicker atmosphere than the Earth, and we can assume a relatively uniform surface temperature.”
The other stars in the triple system would provide a unique sunset: the two other suns would look like a pair of very bright stars visible in the daytime and at night they would provide as much illumination as the full Moon.
Are there more planets to be found in this abundant system? Perhaps, but not in the habitable zone. The team said the new planets completely fill up the habitable zone of Gliese 667C, as there are no more stable orbits in which a planet could exist at the right distance to it.
An artist’s impression of the orbits of the planets in the Gliese 667C system:
On Monday, two Russian cosmonauts conducted a 6-hour, 34-minute spacewalk to prepare for a new Russian module that will be launched later this year. Expedition 36 Flight Engineers Fyodor Yurchikhin and Alexander Misurkin also work on the first module ever launched for the ISS – the Zarya module which has been in space since 1998 – replacing an aging control panels located on the exterior.
The new lab will be a combination research facility, airlock and docking port, and is planned to launch late this year on a Proton rocket.
Watch video highlights of the EVA below:
This was the second of up to six Russian spacewalks planned for this year to prepare for the lab. Two U.S. spacewalks by NASA’s Chris Cassidy and Luca Parmitano of the European Space Agency are scheduled in July.
While Yurchikhin and Misurkin worked outside the ISS, the crew inside the ISS were separated and isolated from each other. Cassidy and station commander Pavel Vinogradov were sequestered in their Soyuz TMA-08M spacecraft that is attached to the Poisk module on the Russian segment due to the closure of hatches to the other passageways on the Russian side of the station which would have made the Soyuz inaccessible if there was an emergency. Parmitano and US astronaut Karen Nyberg were inside the U.S. segment of the station, and were free to move around since entry to their Soyuz vehicle (TMA-09M) was not blocked by hatch closures, since it is docked to the Rassvet module that is attached to the Zarya module.
NASA said the spacewalk was the 169th in support of space station assembly and maintenance, the sixth for Yurchikhin and the first for Misurkin.
Even the ancient astronomers knew there was something different about the planets. Unlike the rest of the stars, the planets move across the sky, backwards and forwards, round and round. It wasn’t until Copernicus that we finally had a modern notion of what exactly is going on.
So you’ve seen all of the classic naked eye planets. Maybe you’ve even seen fleet-footed Mercury as it reached greatest elongation earlier this month. And perhaps you’ve hunted down dim Uranus and Neptune with a telescope as they wandered about the stars…
But have you ever seen Pluto?
Regardless of whether or not you think it’s a planet, now is a good time to try. With this past weekend’s perigee Full Moon sliding out of the evening picture, we’re reaching that “dark of the Moon” two week plus stretch where it’s once again possible to go after faint targets.
This year, Pluto reaches opposition on July 1st, 2013 in the constellation Sagittarius. This means that as the Sun sets, Pluto will be rising opposite to it in sky, and transit the meridian around local midnight.
But finding it won’t be easy. Pluto currently shines at magnitude +14, 1,600 times fainter than what can be seen by the naked eye under favorable sky conditions. Compounding the situation is Pluto’s relatively low declination for northern hemisphere observers. You’ll need a telescope, good seeing, dark skies and patience to nab this challenging object.
Don’t expect Pluto to look like much. Like asteroids and quasars, part of the thrill of spotting such a dim speck lies in knowing what you’re seeing. Currently located just over 31 Astronomical Units (AUs) distant, tiny Pluto takes over 246 years to orbit the Sun. In fact, it has yet to do so once since its discovery by Clyde Tombaugh from the Lowell observatory in 1930. Pluto was located in the constellation Gemini near the Eskimo nebula (NGC 2392) during its discovery.
And not all oppositions are created equal. Pluto has a relatively eccentric orbit, with a perihelion of 29.7 AUs and an aphelion of 48.9 AUs. It reached perihelion on September 5th, 1989 and is now beginning its long march back out of the solar system, reaching aphelion on February 19th, 2114.
Pluto last reached aphelion on June 4th, 1866, and won’t approach perihelion again until the far off date of September 15th, 2237.
This means that Pluto is getting fainter as seen from Earth on each successive opposition. Pluto reaches magnitude +13.7 when opposition occurs near perihelion, and fades to +15.9 (over 6 times fainter) when near aphelion. It’s strange to think that had Pluto been near aphelion during the past century rather than the other way around, it may well have eluded detection!
This all means that a telescope will be necessary in your quest, and the more powerful the better. Pluto was just in range of a 6-inch aperture instrument about 2 decades ago. In 2013, we’d recommend at least an 8-inch scope and preferably larger to catch it. Pluto was an easy grab for us tracking it with the Flandrau Science Center’s 16-inch reflector back in 2006.
Pluto is also currently crossing a very challenging star field. With an inclination of 17.2° relative to the ecliptic, Pluto crosses the ecliptic in 2018 for the first time since its discovery in 1930. Pluto won’t cross north of the ecliptic again until 2179.
Pluto also crossed the celestial equator into southern declinations in 1989 and won’t head north again til 2107.
But the primary difficulty in spotting +14th magnitude Pluto lies in its current location towards the center of our galaxy. Pluto just crossed the galactic plane in early 2010 into a very star-rich region. Pluto has passed through some interesting star fields, including transiting the M25 star cluster in 2012 and across the dark nebula Barnard 92 in 2010.
This year finds Pluto approaching the +6.7 magnitude star SAO 187108 (HIP91527). Next year, it will pass close to an even brighter star in the general region, +5.2 magnitude 29 Sagittarii. Mid-July also sees it passing very near the +10.9 magnitude globular cluster Palomar 8 (see above). This is another fine guidepost to aid in your quest.
So, how do you pluck a 14th magnitude object from a rich star field? Very carefully… and by noting the positions of stars at high power on successive nights. A telescope equipped with digital setting circles, a sturdy mount and pin-point tracking will help immeasurably. Pluto is currently located at:
Right Ascension: 18 Hours 44′ 30.1″
Declination: -19° 47′ 31″
Heavens-Above maintains a great updated table of planetary positions. It’s interesting to note that while Pluto’s planet-hood is hotly debated, few almanacs have removed it from their monthly planetary summary roundups!
You can draw the field, or photograph it on successive evenings and watch for Pluto’s motion against the background stars. It’s even possible to make an animation of its movement!
Pluto will once again reach conjunction on the far side of the Sun on January 1st 2014. Interestingly, 2013 is a rare year missing a “Plutonian-solar conjunction.” This happens roughly every quarter millennium, and last occurred in 1767. This is because conjunctions and oppositions of Pluto creep along our Gregorian calendar by about a one-to-two days per year.
An Earthly ambassador also lies in the general direction of Pluto. New Horizons, launched in 2006 is just one degree to the lower left of 29 Sagittarii. Though you won’t see it through even the most powerful of telescopes, it’s fun to note its position as it closes in on Pluto for its July 2015 flyby.
Let us know your tales of triumph and tragedy as you go after this challenging object. Can you image it? See it through the scope? How small an instrument can you still catch it in? Seeing Pluto with your own eyes definitely puts you in a select club of visual observers…
Still not enough of a challenge? Did you know that amateurs have actually managed to nab Pluto’s faint +16.8th magnitude moon Charon? Discovered in 35 years ago this month in 1978, this surely ranks as an ultimate challenge. In fact, discoverer James Christy proposed the name Charon for the moon on June 24th, 1978, as a tribute to his wife Charlene, whose nickname is “Char.” Since it’s discovery, the ranks of Plutonian moons have swollen to 5, including Nix, Hydra and two as of yet unnamed moons.
Be sure to join the hunt for Pluto this coming month. Its an uncharted corner of the solar system that we’re going to get a peek at in just over two years!
Greetings, from the Kitt Peak National Observatory, in Arizona! I’m here on a weeklong observing run, which is arguably the coolest and hardest part of the job.
Kitt Peak rests on the Quinlan Mountains, 6,880 feet above sea level and 55 miles southwest of Tucson. When you begin your drive up the mountain, you first see a beautiful panorama of glittering white domes. There are 26 telescopes on the Mountain.
The Mayall 4-meter telescope quickly catches your eye – the colossal giant that towers over the rest. As you continue your drive, a radio telescope can be seen on the left, followed by various signs stating that cell phone use is strictly prohibited. Observing runs here require radio silence, and a great chance to escape.
At the top of the mountain, two telescopes stand apart from the rest – the McMath-Pierce Solar Telescope and the WIYN observatory. The solar telescope reflects sunlight through a tunnel that leads underground. The WIYN observatory has an octagonal shape for a dome.
This is my third trip to Kitt Peak, but my first chance to observe on the Mayall 4-meter telescope. The first thing to know about the 4-meter is that it is a colossal maze. Literally. There are 16 stories of rooms, now obsolete and out of date, before reaching the base of the telescope itself.
These rooms include old darkrooms, instrument rooms, machine rooms, classrooms, dormitories, game rooms, and other mysteries. We’ve been joking most of this week that Hollywood should rent out the 4-meter for a fantastic horror film. Just think: The Big Bang Theory meets Psycho.
On our first day here, my colleague and I managed to get pretty lost. To reach the telescope you have to take two different gated and locked elevators. But when we finally made it to the control room, we realized that this room alone is much more of maze than the building.
The control room consists of 4 computers, 16 monitors, 3 personal laptops, 4 tv screens, and an array of controls that operate the telescope. Eventually we became very comfortable floating from monitor to monitor.
Here is what a typical day on an observing run looks like.
We typically wake up a little after noon and grumpily head to the dining hall for coffee. Breakfast (or lunch) runs until about 1 pm.
In the late afternoon, we take a few flat field calibrations – images of a white screen, which is uniformly lit up. Any variations in the final image are due to variations in the detector or distortions in the optical path. At the end of the day, you can divide your science images by your flat field images, in order to achieve much cleaner images.
Shortly thereafter, the dewar is filled with liquid nitrogen. This keeps the instrument cool (approximately -100 degrees Fahrenheit), as any thermal current can cause added noise.
After a quick dinner we return to the telescope. At this point sunset is approximately 2 hours away, but it’s already time to open the dome. When you’re standing next to the telescope, an opening dome sounds like a freight train screeching to a stop. It’s slightly terrifying, but it is by far one of my favorite sounds. It signifies that for the rest of the night you’re in control of this phenomenal instrument, which has the power to discover the secrets of the Universe.
After two hours of various preparations – making sure the telescope is pointing correctly, guiding correctly, etc. – we “get on sky.” Throughout the night the telescope operator controls the telescope, moving it to the fields we would like to observe, while we are in charge of taking the images by verifying the exposure time, filters to use, etc.
If everything goes smoothly the night is pretty easy. The telescope operator moves from target to target while we continuously take images. This means that we end up sitting in front of a computer screen, pressing enter every 300 seconds in order to start a new exposure. That’s really all it takes! Of course you should keep checking on your images in order to verify that they look good.
Around midnight it’s time for night lunch, a packed lunch that the dining hall provides. A little extra protein helps make the long nights more bearable. And then you push through, making coffee if necessary. The challenging part is staying awake throughout the night. It’s amazing how hard simple calculations can be when dawn is approaching.
At the end of the night you step outside and save for the flickering glint of Tucson’s city lights, the only noticeable light is found by looking up into the night sky. The stars here are brilliant, and the Milky Way is astonishing. After spending an entire evening stuck in a black box, it’s a wonderful reminder of what it’s all about: the night sky.
I observed with Dr. Mike DiPompeo, who concurred on what I noticed about the observing experience.
“When you first get into astronomy you’re in awe of the beauty of the night sky, compelled and driven by it,” DiPompeo told me. “But it can be easy to forget in the day to day business of being an astronomer – sitting at a computer, writing code, going through the data, reading papers – that your job is to understand that beauty. Observing reconnects you with the night sky.”
My favorite part of an observing run occurs in the morning – on the walk from the telescope to the dorm, when a yellow arch of light first appears above the horizon. Kitt Peak provides fantastic sunrises. And you really have to soak in every last ray of sun, before you crawl into bed in a very dark room.
Observing runs lie at the root of pure research. You spend the long nights collecting data, then the months or years analyzing the data, and finally hope that a cool result comes from all the hard work.
How does the sun’s energy flow? Despite the fact that we live relatively close (93 million miles, or eight light-minutes) to this star, and that we have several spacecraft peering at it, we still know little about how energy transfers through the solar atmosphere.
NASA’s next solar mission will launch Wednesday, June 26 (if all goes to plan) to try to learn a little bit more. It’s called the Interface Region Imaging Spectrograph (IRIS), and it will zero in on a spot in the sun’s lower atmosphere known as the “interface region.” The zone only has a thickness of 3,000 to 6,000 miles and is seen as a key transfer point to the sun’s incredibly hot corona (that you can see during total solar eclipses.)
“IRIS will extend our observations of the sun to a region that has historically been difficult to study,” stated Joe Davila, IRIS project scientist at NASA’s Goddard Space Flight Center. “Understanding the interface region better improves our understanding of the whole corona and, in turn, how it affects the solar system.”
Figuring out more about the interface region, NASA stated, will teach us a lot more about the “space weather” that affects Earth.
Some of the energy in the interface region leaks out and powers the solar wind, which is a sort of rain of particles that leave the star. Some of them hit the Earth’s magnetic field and can produce auroras. Most of the sun’s ultraviolet radiation also flows from the interface region.
IRIS’ images will be able to zero in on about 1 percent of the sun in a single go, with resolution of features of as small as 150 miles. The 400-pound satellite will orbit Earth in an orbit perpetually keeping it above the sunrise line, a spot that lets the satellite look at the sun continuously for eight months without the sun being obscured by Earth.
It’ll also form part of a larger network of sun-staring satellites.
NASA highlighted its Solar Dynamics Observatory and a joint mission it has with Japan, called Hinode, which both take images of the sun in high-definition. These other two observatories, however, look at different solar layers (specifically, the surface and the outer atmosphere).
With IRIS joining the fleet and looking at the interface region, it will provide a more complete picture.
“Relating observations from IRIS to other solar observatories will open the door for crucial research into basic, unanswered questions about the corona,” stated Davila.
The full Moon of June 23, 2013 was the largest Moon of the year. This so-called “Super Moon” was at perigee — or at its closest point in its orbit to Earth, and was 14% bigger and 30% brighter than other full Moons of 2013.
But, if you looked up at the Moon last night and didn’t know about this, you may not have noticed! Some claims circulating on the internet tended to exaggerate how large the Moon would actually appear. However, that doesn’t mean the Moon wasn’t photogenic last night! The Moon is always a great target for photography or just gazing with your own eyes, and these images from Universe Today readers attest to the beauty of our closest companion in the night sky.
This lead image from Raven Yu from the Philippines shows the difference in size between last night’s perigee Moon and the apogee Moon (when it was farthest from Earth during its orbit) last November.
Three different pictures of the Moon from June 23, shared by Guiseppe Petricca from Italy, detailing not only the perigee Super Moon, but the ‘Moon Illusion” — of how the Moon looks bigger when it is close to the horizon.
“The middle one is the Moon at culmination in the local sky and the other two are taken as low as possible my local horizon permitted,” Guiseppe said via email. “Doing this, I managed to obtain two results: the first one is observing the different colours that due to the Rayleigh Scattering, ‘paint’ our satellite, when it’s low on its elevation. The second one is that, keeping a fixed magnification (24x – 110mm) one can easily debunk the optical illusion of the ‘bigger moon when it’s low on the horizon’. Since, if you observe carefully, the lower two ‘Moons’ are smaller than the higher one. However, the total personal experience is surely wonderful!! And the ‘horizon illusion’ makes you really think that the Moon is way bigger that the reality.”
Miguel Claro captured this beautiful image of the huge full Moon rising above a Moorish castle in Sesimbra, Portugal. “The church Nossa Senhora do Castelo stands on the spot where king Sancho I built a Romanesque chapel in the early 13th century,” Miguel said via email. “This image was captured 2 km away from the subject.” Miguel used a Canon 50D – ISO640; 1/80 sec. + ED80 APO refractor Astro Professional 560mm at f/7 taken on 23/06/2013 at 21h22.
You can see more great images of this perigee Super Moon — and lots more great astrophotography at our Flickr group page.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.