The joke about home renovation projects is it takes at least three trips to the hardware store to finish the work. In space, of course, spare parts are a lot harder to come by, meaning astronauts might have to wait for a spacecraft shipment, if, say, the toilet breaks. (Yes, this yucky situation has happened before.)
Some spare parts could be manufactured in space as early as next year, though, providing a 3-D printer passes all the preliminary steps. It recently got a big boost in that direction after passing its microgravity tests successfully, but there are still environmental tests to come, said the company that was behind the work.
“The 3-D printer we’re developing for the ISS is all about enabling astronauts today to be less dependent on Earth,” stated Noah Paul-Gin, the lead for the microgravity experiment.
“The version that will arrive on the ISS next year has the capability of building an estimated 30% of the spare parts on the station, as well as various objects such as specialty tools and experiment upgrades.”
The firm tested the printer during four flights that, in part, simulated microgravity. They were on a specially designed airplane that flies parabolas, meaning it climbs and then briefly simulates, roller-coaster style, microgravity during the plunge before climbing again. (Each microgravity test is only about 30 seconds long.)
“The unique challenges posed by off-Earth 3-D printing require technology and hardware specifically adapted for space. In these microgravity tests, Made in Space assessed layer adhesion, resolution and part strength in the microgravity environment,” the company added.
After Made in Space received a contract for the 3D printer a couple of years ago, it flew three prototype versions that collectively were in microgravity 32 times.
If this printer makes it to space and performs well, it will add to the excitement of 3-D printing that has been swirling around the space community lately.
A study led by NASA recently investigated the possibility of using 3-D printing in association with creating robots to work on asteroids. Astronauts on the station could also have a food replicator of sorts on board the station, too, if a grant awarded to Systems & Materials Research Corperation this May pans out.
We’ve oohed and ahhed many times over the handiwork of Randy Halverson and his Dakotalapse timelapse videos and imagery of the night sky. He may have outdone himself with his latest timelapse, called “Horizons.” Randy shot the footage from April – October 2012, mostly in South Dakota, but also some at Devils Tower in Wyoming.
“Growing up in South Dakota the landscape itself can be beautiful at times,” Randy says, “but that doesn’t compare to what the sky can do, especially at night.” Not only is the imagery absolutely breathtaking, but the accompanying music is an original called “I Forever” by Bear McCreary (The Walking Dead, Defiance, Battlestar Galactica, etc) his brother Brendan McCreary and his band Young Beautiful in a Hurry.
There’s a four-minute version below, but also available on Vimeo On Demand is a full 30-minute feature . Enjoy!!
The lead image and this one below are recent images from Randy that he has posted on Flickr.
The above video should satisfy your daily need for rocket foom. Morpheus — a NASA testbed for vertical landing systems — did two firing tests this week that produced a fair amount of the usual fire and smoke, as you can see above.
You’ll actually see two separate firings in that video. In the first one, the lander strayed out of its safety zone and did a soft abort. The second test, NASA stated, “was a complete success.”
The first lander of the program crashed and burned in a test failure in August 2012, but officials recently praised the program for the progress it has made since then.
“Although a hardware failure led to the loss of the original vehicle last August, the failure and our internal investigation gave us valuable insight into areas that needed improvement,” a Project Morpheus blog post from May stated.
“The vehicle may look largely the same as the previous version, but there are numerous changes that have been incorporated. We have now implemented 70 different upgrades to the vehicle and ground systems to both address potential contributors to the test failure, and also to improve operability and maintainability.”
In the long run, NASA aims to use Morpheus as a “vertical test bed” for environmentally friendly propellants, as well as for automatic advances in landing and hazard detection.
The vehicle is advertised as big enough to land 1,100 pounds of cargo on the moon if it was placed nearby.
We love a good space debris mystery. Hey, who doesn’t, right? Regular readers of Universe Today know that it’s a shooting gallery out there, from meteor fireballs caught on dashboard cams to rogue space junk reentries lighting up our skies.
But an unusual story that made its rounds across the internet this past weekend caught our attention. What at first glance was a simple “Man finds space rock” story morphed into an extraordinary claim, which, in the words of the late great Carl Sagan, “demand extraordinary evidence.”
The find was made by Phil Green of Amesbury, Massachusetts. Mr. Green was searching the local riverbed for arrowheads when he came across the unusual find. The black pitted rock immediately struck him as something bizarre. It didn’t register as metallic to his metal detector, but Mr. Green kept it in his backyard for about five years until it was noticed by a friend.
“I didn’t really think much of it, and then a fellow came over, saw it and said that’s a meteor,” Green told local reporters.
From here, the story takes a strange turn. Green told local reporters that the rock was sent off for analysis, only to be returned to him just a few weeks ago. The analysis confirmed that the rock was indeed from space… sort of. It also stated that the vitreous material “shows a composition similar to that used in ballast by the Soviet space program starting in the mid-1980s.”
There are just a few problems with the tale. Mir reentered in 2001, six years before the 2007. A few articles do bother to note this, mentioning that Mir ended its career in the “so-called spacecraft cemetery of the southern Pacific Ocean,” about as far away from Massachusetts as you can get.
A few articles do also mention the possibility of a reentry of a Progress resupply vehicle being a potential source, or perhaps an unrelated Russian space vehicle.
But there seems to be a potential problem of the certification. Several articles state that the piece of debris coming from Mir was “confirmed by NASA.” However, Universe Today contacted NASA Chief Scientist for Orbital Debris Nicholas L. Johnson and NASA Headquarters official Joshua Buck, who both told us that no such NASA validation exists. Mr. Johnson went on to tell Universe Today that, “The NASA Orbital Debris Program Office has not been presented with any claim regarding debris from the Mir space station,” adding “I can tell you that it is not possible for debris from the Mir reentry to have landed in the U.S.”
A name that occasionally turns up in reports online as validating the find (withheld by request) also tells Universe Today that they had nothing to do with the discovery. Mr. Green or the original validation source have thus far been unavailable for comment.
We did uncover two documented reentries that occurred over the general region over the last few decades. One is the reentry of Mir-R 1986-017B (The rocket booster that launched the core module of Mir) seen from a trans-Atlantic airliner on February 24th 1986 about 500 kilometres off of the east coast of Newfoundland. Another possible suspect is the June 26/27th 2004 reentry of a SL-12 auxiliary rocket motor with the NORAD ID 1992-088E, seen to the west from New Jersey to Ontario.
Like the International Space Station, Mir was placed in a 51.6° inclined orbit. This made it accessible from the Baikonur Cosmodrome as well as visits from the U.S. Space Shuttle. Payloads going to and from the station would cover an identical ground track ranging from 51.6° north to south latitude.
The story is also reminiscent of the reentry of debris from Sputnik 4, which struck a small town in Wisconsin in 1962. This was analyzed by mineralogist Ursula Marvin and confirmed to be of Russian origin.
Probably the biggest question in our minds is: what links the object back to an errant Russian spacecraft? What do they use for ballast, anyhow? How did they arrive at the often quoted “85% certainty?” of the object’s origin?
Still, the find does look like something interesting. The pitting and the melted fusion crust are all reminiscent of reentry. We’ll keep researching this story, and for the time being we’ll leave it up to you, the diligent and insightful readers of Universe Today, to make up your own minds on this strange and interesting tale.
Citizens of Earth, get ready for your Cassini close-up: once again the spacecraft is preparing to capture images of Saturn positioned between it and the Sun, allowing for incredible views of the ring system and its atmosphere — and also a tiny “pale blue dot” in the distance we call home.
The mosaic above was composed of images captured during such an eclipse event in September 2006, and quickly became an astronomical sensation. It’s not often we get an idea of what we look like from so far away, and seeing our entire world represented as a small speck of light nestled between Saturn’s rings is, to me anyway, both impressive and humbling.
Humbling because of how small we look, but impressive because as a species we have found a way to do it.
And next month, on Friday, July 19 between 21:27 and 21:42 UTC (5:27 – 5:42 p.m. EDT) Cassini will do it again.
“Ever since we caught sight of the Earth among the rings of Saturn in September 2006 in a mosaic that has become one of Cassini’s most beloved images, I have wanted to do it all over again, only better,” said Cassini imaging team leader, Carolyn Porco. “And this time, I wanted to turn the entire event into an opportunity for everyone around the globe, at the same time, to savor the uniqueness of our beautiful blue-ocean planet and the preciousness of the life on it.”
Porco was involved in co-initiating and executing the famous “Pale Blue Dot” image of Earth taken by NASA’s Voyager 1 from beyond the orbit of Neptune in 1990.
“It will be a day for all the world to celebrate,” she said.
The intent for the upcoming mosaic is to capture the whole scene, Earth and Saturn’s rings from one end to the other, in Cassini’s red, green and blue filters that can be composited to form a natural color view of what our eyes might see at Saturn. Earth and the Moon will also be imaged with a high resolution camera — something not yet done by Cassini.
We can all consider ourselves pretty lucky, too… this is the first time in history that we humans will know in advance that our picture is going to be taken from nearly a billion miles away.
“While Earth will be only about a pixel in size from Cassini’s vantage point 898 million miles [1.44 billion kilometers] away, the Cassini team is looking forward to giving the world a chance to see what their home looks like from Saturn,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory. “With this advance notice, we hope you’ll join us in waving at Saturn from Earth, so we can commemorate this special opportunity.”
So on July 19, remember to look up and wave… Cassini will be watching!
Read more on the CICLOPS news release here and on the NASA/JPL Cassini mission site here.
“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives… There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”
The text of William H. Waller, an astronomer and author, was in the midst of a discussion of a kind of organic molecule called PAHs, or polycyclic aromatic hydrocarbons. As I was reading about the Spitzer Space Telescope’s discoveries in this field, the last sentence in the paragraph struck me:
“On Earth, PAHs are as familiar to us as the mouth-watering aromas of a barbecued hamburger, the sweetly acrid odors of burning tobacco, and the choking fumes behind a diesel bus,” Waller wrote. “If we had big enough nostrils, what would our home galaxy smell like?”
I’m never going to read about PAHs again without wanting to run to that greasy joint nearby my place. Or, I guess, run in the opposite direction from the nearest bus stop.
Waller’s book is designed as a reference guide for those with a serious interest in astronomy, but who perhaps are just starting to think about taking it in school. Another audience could be the serious amateur astronomer wanting to understand more about telescopic targets.
While not light cottage reading, Waller isn’t afraid to throw in references to popular culture or to drop in humor now and then, much like a kindly Astronomy 101 professor trying to snap your attention back when it might be wandering.
On that note, this illustration in the book (with some important context) may be my favorite astronomy textbook image of all time. It’s another example of how science can, kinda sorta, meet science fiction.
The breadth of material Waller covers is astonishing. One 43-page chapter is essentially a history of how we looked at the sky mythologically, philosophically and of course scientifically — a feat that is more interesting when you realize a goodly number of those pages are actually in-context, interesting illustrations.
The book’s bulk, though, looks to summarize astronomical phenomena. It’s definitely not for the beginning reader; for example, the term “nebula” is referred to several times before finally being defined some pages into the book. But if you know what Waller is aiming at, you’ll learn quite a bit.
The book purports to be about galaxies, but much of it is also devoted to what I think of as hacking the Hertzsprung-Russell diagram showing the types of stars in relation to each other.
Three full chapters are devoted to star birth, the lives of stars and stellar afterlives (y’know, supernovae and the like.) This makes perfect sense as galaxies are collections of stars, so it is only by studying these individual members that we can truly appreciate what a galaxy is about.
The more serious reader will be pleased to see equations included (such as calculating parallax) and a detailed explanation of Drake’s Equation showing the factors behind the probability of finding extraterrestrial life.
So to sum up: definitely not for the person with a nascent interest in astronomy, but a valuable reference for those looking to learn about it seriously. As a space journalist, I’ll definitely keep this book on my shelf.
High-altitude winds on neighboring Venus have long been known to be quite speedy, whipping sulfuric-acid-laden clouds around the superheated planet at speeds well over 300 km/h (180 mph). And after over six years collecting data from orbit, ESA’s Venus Express has found that the winds there are steadily getting faster… and scientists really don’t know why.
By tracking the movements of distinct features in Venus’ cloud tops at an altitude of 70 km (43 miles) over a period of six years — which is 10 of Venus’ years — scientists have been able to monitor patterns in long-term global wind speeds.
What two separate studies have found is a rising trend in high-altitude wind speeds in a broad swath south of Venus’ equator, from around 300 km/h when Venus Express first entered orbit in 2006 to 400 km/h (250 mph) in 2012. That’s nearly double the wind speeds found in a category 4 hurricane here on Earth!
“This is an enormous increase in the already high wind speeds known in the atmosphere. Such a large variation has never before been observed on Venus, and we do not yet understand why this occurred,” said Igor Khatuntsev from the Space Research Institute in Moscow and lead author of a paper to be published in the journal Icarus.
A complementary Japanese-led study used a different tracking method to determine cloud motions, which arrived at similar results… as well as found other wind variations at lower altitudes in Venus’ southern hemisphere.
“Our analysis of cloud motions at low latitudes in the southern hemisphere showed that over the six years of study the velocity of the winds changed by up 70 km/h over a time scale of 255 Earth days – slightly longer than a year on Venus,” said Toru Kouyama from Japan’s Information Technology Research Institute. (Their results are to be published in the Journal of Geophysical Research.)
Both teams also identified daily wind speed variations on Venus, along with shifting wave patterns that suggest “upwelling motions in the morning at low latitudes and downwelling flow in the afternoon.” (via Cloud level winds from the Venus Express Monitoring Camera imaging, Khatuntsev et al.)
A day on Venus is longer than its year, as the planet takes 243 Earth days to complete a single rotation on its axis. Its atmosphere spins around it much more quickly than its surface rotates — a curious feature known as super-rotation.
“The atmospheric super-rotation of Venus is one of the great unexplained mysteries of the Solar System,” said ESA’s Venus Express Project Scientist Håkan Svedhem. “These results add more mystery to it, as Venus Express continues to surprise us with its ongoing observations of this dynamic, changing planet.”
Comets are the big “question marks” of observational astronomy. Some, such as Comet Hyakutake and the Great Daylight Comet of 1910 present themselves seemingly without warning and put on memorable displays. Others, such as the infamous Comet Kohoutek or Comet Elenin, fizzle and fail to perform up to expectations after a much anticipated round of media hype.
And then there’s the case of Comet C/2012 S1 ISON. Discovered on September 21st, 2012 by Artyom Novichonok and Vitali Nevski while conducting the International Scientific Optical Network (ISON) survey, Comet ISON has captivated public interest. The media loves a good comet, or at least the promise of one.
But will Comet ISON perform up to expectations? Recently, veteran comet hunter and observer John Bortle weighed in on a Sky & Telescope post and an email interview with Universe Today on what we might expect to see this fall.
Dozens of comets are discovered every year. Most amount to nothing – a handful, like this year’s comet 2011 L4 PanSTARRS or 2012 F6 Lemmon, may become interesting binocular objects.
Part of what alerted astronomers that Comet ISON may become something special was its extreme discovery distance of 6.7 astronomical units (A.U.s) meaning it should be an intrinsically bright object, coupled with its close approach of 0.012 A.U.s (1.1 million kilometres, accounting for the solar radius) from the surface of the Sun at perihelion.
Universe Today recently caught up with Mr. Bortle, who had the following to say above tentative prospects for Comet ISON in late 2013:
“Comets coming into the near-solar neighborhood from the Oort Cloud for the very first time tend to behave rather differently from most of their other icy brethren. They often will show considerable early activity while still far from the Sun, giving a false sense of their significance. Only when they have ventured to within about 1.5-2.0 astronomical units of the Sun do they begin to reveal their true intrinsic nature in the way of brightness and development. When discovered far from the Sun, this situation has misled astronomers time and again into announcing that a grandiose display is in the offing, only to have the comet ultimately turn out to be a general disappointment. There have been exception to this, but they are rare indeed.”
Comet ISON bears similar characteristics to many of the great sungrazing comets of the past. In the last few months, word has made rounds that Comet ISON may be underperforming, stagnating around magnitude +16 (10,000 times fainter than naked eye visibility) as it crosses the expanse of the asteroid belt between Jupiter and Mars.
Bortle, however, cautioned against writing off ISON just yet in a recent message board post. “With this comet’s exceedingly small perihelion distance, the ultimate situation is less clear.” He also continues to note that the prospects for ISON are “really difficult to predict at the moment,” but estimates that Comet ISON “will not actually attain naked eye brightness until just a week or two before perihelion passage.”
Regarding naked eye visibility of Comet ISON, Mr. Bortle also told Universe Today:
“In all probability this will not occur until around early to mid-November. It will not become any sort of impressive sight before disappearing into the morning twilight only a couple of weeks thereafter.”
And that’s the big question that may make the difference between a fine binocular comet and the touted “Comet of the Century…” Will this comet survive its perihelion passage on November 28th?
Concerning the comet’s perihelion passage, Mr. Bortle told Universe Today:
“This is currently a matter of some concern to me. Basing my answer on ISON’s apparent brightness when it was last seen before disappearing into the evening twilight recently suggests that it might be close in intrinsic brightness to the survival/non-survival level for such an extremely close encounter with the Sun. We will know much better once we can view ISON again in September.”
Comet Ikeya-Seki was another sungrazing comet that went on to become a splendid naked eye comet in 1965. The late 1880’s hosted a slew of memorable comets, including two long-tailed sungrazers, one each in 1880 and 1887.
In more recent times, Comet C/2011 W3 Lovejoy survived its December 16th, 2011 perihelion passage 140,000 kilometres from the surface of the Sun to become the surprise hit for southern hemisphere observers.
“IF” comet ISON breaks a negative magnitude, it’ll join the ranks on the top brightest comets since 1935. If it tops -10th magnitude, it’ll best Comet Ikeya-Seki at its maximum in 1965. The magic “brighter than a Full Moon” threshold sits right about at magnitude -12.5, but Bortle cautions that this peak brightness will only persist during the hours surrounding perihelion, when the comet will be very close to the Sun and difficult to see.
Mr. Bortle also voiced a concern to Universe Today that “the initial announcements by professional astronomers concerning ISON’s potential future brightness (“Brighter than the Full Moon”, etc.) were wildly excessive, as was the idea that the comet would be obvious to the general public in the daytime sky as it rounded the Sun in late November. This claim was totally unjustified from the word go.” Mr Bortle also warns that this may be “headed us down the exact same road as the Kohoutek fisaco of 1973/74.”
We’re currently losing Comet ISON behind the Sun as it crosses through the constellation Gemini, not return to morning skies until late August. The comet will cross the orbit of Mars in early October and should also cross the +10th magnitude threshold and become visible in binoculars and small telescopes around this date.
From October on in, things should get really interesting. Mr. Bortle predicts that the comet will “develop more slowly in the autumn sky than initially thought,” and won’t become a naked eye object until around November 10th or so. What this sort of lag might do to the internet pundits and prognosticators might be equally interesting to watch.
ISON will also track near some interesting morning objects as seen from Earth, including Mars (October 18th), Spica (November 18th), and Mercury & Saturn low in the dawn on November 26th. It will also have another famous comet nearby on November 25th (photo op!) short period Comet 2P Encke.
If Comet ISON survives perihelion, the true show could begin in early December. Comet ISON will re-emerge in the dawn skies, passing a pairing of Mercury and the very old crescent Moon on December 1st. Comet tails are even less predictable than comet magnitudes, but if Comet ISON is to unfurl a long photogenic tail, the weeks leading up to Christmas may be when it does it.
Mr. Bortle predicts a 10 to 15 degree long tail for a post-perihelion ISON as it passes through the constellation Ophiuchus into morning skies. It may become a “headless wonder” similar to the fan-shaped display put on by Comet 2011 L4 PanSTARRS earlier this spring. We’ve even seen models projecting a great fan-shaped dust tail seeming to “loop” around the Sun as seen from our Earthly vantage point!
All interesting conjecture to watch unfold as Comet ISON approaches perihelion this November. Hopefully, the hysteria that follows great cometary apparitions won’t reach a fevered pitch, though we’ve already had to put some early conspiracies to bed surrounding comet ISON.
Will ISON be the “Comet of the Century?” Watch this space… we’ll have more on the play-by-play action as it approaches!
-Read John Bortle’s predictions for Comet ISON in his recent Sky & Telescope post.
As Uranus speeds in its orbit in the solar system, there are three large space rocks that are in lockstep with the gas giant, according to new simulations. Two of them are wobbling in unstable “horseshoe” orbits near Uranus, while the third is in a more reliable Trojan orbit that is always 60 degrees in front of the planet.
The largest of this small group is the asteroid Crantor, which is 44 miles (70 kilometers) wide. Its horseshoe orbit, and that of companion 2010 EU65, means the space rocks seesaw between being close to Uranus and further away. They should stay in that configuration for a few million years.
The last of the group is 2011 QF99, in a Trojan orbit near one of Uranus’ Lagrangian points — sort of like a celestial parking spot where an object can hang out without undue influence from the balanced gravitational forces.
The results illustrate the importance of space rocks that are outside of the main asteroid belt between Mars and Jupiter.
There are several kinds of these asteroids (classified by their orbits) that follow around planets in the solar system. Earth itself, for example, has at least one Trojan asteroid.
“Crantor currently moves inside Uranus’ co-orbital region on a complex horseshoe orbit. The motion of this object
is primarily driven by the influence of the Sun and Uranus, although Saturn plays a significant role in destabilizing its orbit,” the authors wrote in their new study.
“Although this object follows a temporary horseshoe orbit, more stable trajectories are possible and we present 2010 EU65 as a long-term horseshoe librator candidate in urgent need of follow-up observations.”
This lovely image of the Moon with fireworks exploding nearby in the sky was taken by astrophotgrapher Giuseppe Petricca over the weekend. “In Pisa, it was the Patron Saint’s Day, and I managed to catch fireworks, launched from the middle of the river Arno, exploding near the first quarter Moon!” This is an actual shot — not a mosaic — and Guiseppe said he only used Photoshop to make the Moon’s surface detail more clear and reduced the overall noise in the picture.
The event must have been awe-inspiring in person!
This image taken with a Nikon P90 Bridge Digital Camera on tripod.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.