Suddenly Slowing Star Could Give Hints Of Its Interior

Artist's conception of a neutron star flare. Credit: University of California Santa Cruz

Why would a spinning star suddenly slow down? Even after writing a scientific paper about the phenomenon, astronomers still appear to be in shock-and-awe mode about what they saw.

“I looked at the data and was shocked — the … star had suddenly slowed down,” stated Rob Archibald, a graduate student at McGill University in Montreal. “These stars are not supposed to behave this way.”

Archibald led a group that was observing a neutron star, a type of really, really dense object created after huge stars run out of gas and collapse. The studied star (called 1E 2259+586, if you’re curious) has a massive magnetic field that places it in a subcategory of neutron stars called magnetars.

Anyway, the astronomers were watching over the magnetar with the NASA Swift X-ray telescope, just to get a sense of the star’s rotation and also to keep an eye out for the odd X-ray explosion commonly seen in stars of this type. But to see its spin rate reduce — that was definitely something unexpected.

An artistic impression of a magnetar with a very complicated magnetic field at its interior and a simple small dipolar field outside. Credits: ESA - Author: Christophe Carreau
An artistic impression of a magnetar with a very complicated magnetic field at its interior and a simple small dipolar field outside. Credits: ESA – Author: Christophe Carreau

Previous neutron star observations have showed them suddenly rotating faster (as if spinning up to several hundred times a second wasn’t enough.) This maneuver is called a glitch, and is thought to happen because the neutron has some sort of fluid (sometimes called a “superfluid”) inside that drives the rotation.

So now, the astronomers had evidence of an “anti-glitch”, a star slowing down instead of speeding up. It wasn’t by much (just a third of a part per million in the seven-second rotation rate), but while it happened they also saw X-rays substantially increase from the magnetar. Astronomers believe that something major happened either inside, or near the surface of the star.

The magnetic field surrounding the mysterious magnetar (NASA)
The magnetic field surrounding a magnetar (NASA)

And, astronomers added, if they can figure out what is happening, it could shed some light on what exactly is going on in that dense interior. Maybe the fluid is rotating at different rates, or something else is going on.

“Such behaviour is not predicted by models of neutron star spin-down and, if of internal origin, is suggestive of differential rotation in the magnetar, supporting the need for a rethinking of glitch theory for all neutron stars,” read a paper on the results.

The work was released today (May 29) at the Canadian Astronomical Society (CASCA)’s annual meeting, held this year in Vancouver.

You can read the entire paper in Nature.

Credit: CASCA/McGill University

How to Make Your New Space Roomate Feel at Home: Shave Your Head

Italian astronaut Luca Parmitano, right, reacts to NASA astronaut Chris Cassidy's shaved head, a welcome present for the bald Parmitano. Via NASA TV.

International Space Station astronaut Chris Cassidy surprised the new crew arriving at the station earlier today, welcoming them aboard with a new look: he shaved his head to match his new crewmate, Luca Parmitano, who always sports a bald noggin. You can watch the video below to see Parmitano’s reaction.

During a televised video conference with family after the crew came aboard, Parmitano said Cassidy looked awesome.

Parmitano, Russian Fyodor Yurchikhin, and NASA’s Karen Nyberg docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

During the video conference, Nyberg’s husband and fellow astronaut Doug Hurley said the crew looked good, but “there are way too many bald guys on space station right now. Have a great time up there.”

Now with a full crew compliment of six, Expedition 36 will operate full throttle the next five and a half months, and perform up to six spacewalks, and welcome four cargo ships, including the exciting maiden visit of the Cygnus commercial cargo craft built by Orbital Sciences Corporation (tentatively scheduled for sometime in June), as well as ESA’s “Albert Einstein” Automated Transfer Vehicle-4 in June, a Russian Progress cargo craft in July and the Japan Aerospace Exploration Agency’s H-II Transfer Vehicle-4 in August.

Five of the spacewalks will prepare for the installation of the Russian Multipurpose Laboratory Module in December, and a spacewalk scheduled for November 9, 2013 will bring an Olympic torch outside the ISS.

Among the scientific research the crew has on tap are the Hip Quantitative Computed Tomography (QCT) experiment, which will evaluate countermeasures to prevent the loss of bone density seen during long-duration space missions. The experiment, which uses 3-D analysis to collect detailed information on the quality of astronauts’ hip bones, also will increase understanding of osteoporosis on Earth.

The station’s crew will continue research into how plants grow, leading to more efficient crops on Earth and improving understanding of how future crews could grow their own food in space. The crew also will test a new portable gas monitor designed to help analyze the environment inside the spacecraft and continue fuel and combustion experiments that past crews have undertaken. Studying how fire behaves in space will have a direct impact on future spaceflight and could lead to cleaner, more efficient combustion engines on Earth.

The trio of Cassidy, Pavel Vinogradov and Alexander Misurkin will return to Earth aboard their Soyuz TMA-08M spacecraft in September. Their departure will mark the beginning of Expedition 37 under the command of Yurchikhin, who along with crewmates Nyberg and Parmitano will maintain the station as a three-person crew until the arrival of three additional flight engineers in late September. Yurchikhin, Nyberg and Parmitano are scheduled to return to Earth in November.

Soyuz Crew Sets Record for Fastest Trip to Space Station

Screenshot from NASA TV of the Soyuz TMA-09M spacecraft arriving at the International Space Station.

The crew of Expedition 36 aboard the Soyuz TMA-09M set a record for the fastest trip ever to the International Space Station. From launch to docking, the trip took 5 hours and 39 minutes. That’s six minutes faster than the previous Soyuz that used the new “fast track” four-orbit rendezvous.

Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano docked their Soyuz to the station’s Rassvet module at 02:16 UTC on May 29 (10:16 p.m. EDT on May 28).

“Thank you for the best spacecraft, finer than the best pocket watch!” Yurchikhin radioed to Mission Control in Moscow after docking.

Docking and hatch opening videos below:

Launch took place at 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time).

The new abbreviated rendezvous with the ISS uses a modified launch and docking profile for the Russian ships. It has been tried successfully with three Progress resupply vehicles, and this is the second Soyuz crew ship that has used it.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

After the hatches open at 11:55 p.m. EDT, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who have been on board since March 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

An Amazing Deep-Field View of Centaurus A

The Centaurus A Extreme Deep Field. (Image Courtesy of Astrophotography byRolf Oslen. Used with Permision).

Sometimes, you just have to say “Wow!”

The view you’re looking at above is of Centaurus A (NGC 5128), a galaxy about 10-16 million light years distant in the southern hemisphere sky. It’s a favorite of astrophotographers and professional observatories alike.

But what makes this image so special is that it was taken by an amateur astrophotographer.

To construct this amazing image, New Zealand-based astrophotographer Rolf Wahl Olsen exposed the field of view for 120 hours over 43 nights spanning February to May of this year.

Rolf recently shared his motivation to construct this image;

“Over the past few months I have been on a mission to achieve a long time dream of mine: taking a deep sky image with more than 100 hours of exposure.”

Rolf also noted that the stars in the frame are visible down to magnitude +25.45, which “appears to go deeper than the recent ESO release” and believes that it may well be “the deepest view ever obtained of Centaurus A,” As well as “the deepest image ever taken with amateur equipment.”

Not only is the beauty and splendor of the galaxy revealed in this stunning mosaic, but you can see the variations in the populations of stars in the massive regions undergoing an outburst of star formation.

One can also see the numerous globular clusters flocking around the galaxy, as well as the optical counterparts to the radio lobes and the faint trace of the relativistic jets. The extended halo of the outer shell of stars is also visible, along with numerous foreground stars visible in the star rich region of Centaurus.

Finally, we see the dusty lane bisecting the core of this massive galaxy as seen from our Earthly vantage point.

To our knowledge, many of these features have never been captured visually by backyard observers before, much less imaged. Congrats to Rolf Wahl Olsen on a spectacular capture and sharing his view of the universe with us!

Read more on the Centaurus A deep field on Google+.

-Check out the comparison images of the Centaurus A deep field showing the relativistic jet (!) background galaxies and clusters.

-Explore more of Rolf’s outstanding work at his website.

Watch Live: Soyuz Fast-Track Launch to the Space Station

Expedition 36/37 Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), top, Flight Engineers: Luca Parmitano of the European Space Agency, center, and Karen Nyberg of NASA, bottom, wave farewell as they board the Soyuz rocket ahead of their launch to the International Space Station, Wednesday, May 29, 2013, Baikonur, Kazakhstan. Credit: NASA/Bill Ingalls.

Three new International Space Station crew members are set to launch aboard the Soyuz TMA-09M spacecraft from the Baikonur Cosmodrome in Kazakhstan. Launch is scheduled for is 20:31 UTC (4:31 p.m. EDT) Tuesday (2:31 a.m. May 29, Baikonur time). The new Expedition 36 crew will take an accelerated four-orbit, 6-hour journey to Space Station. They will be docking at 02:17 UTC on May 29 (10:17 pm. EDT May 28). You can watch Live NASA TV coverage below, which begins an hour before launch (19:30 UTC, 3:30 p.m. EDT), and live coverage will return about 45 minutes before docking.

The new crew includes Soyuz Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos), NASA astronaut Karen Nyberg and European Space Agency (ESA) astronaut Luca Parmitano.
UPDATE: If you missed the launch live, you can watch a replay, below.



Live Video streaming by Ustream

The crew will dock their Soyuz to the station’s Rassvet module. After the hatches open, the new trio will join Flight Engineer Chris Cassidy of NASA and Commander Pavel Vinogradov and Flight Engineer Alexander Misurkin of Roscosmos who docked with the orbital complex May 28. All six crew members will then participate in a welcome ceremony with family members and mission officials gathered at the Russian Mission Control Center in Korolev near Moscow.

In the past, Soyuz manned capsules and Progress supply ships were launched on trajectories that required about two days, or 34 orbits, to reach the ISS. The new fast-track trajectory has the rocket launching shortly after the ISS passes overhead. Then, additional firings of the vehicle’s thrusters early in its mission expedites the time required for a Russian vehicle to reach the Station.

This is the second Soyuz crew vehicle to make the accelerated trip, and three Progress resupply ships have also taken the fast track to the ISS.

The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.
The Service arms are raised into position around the Soyuz rocket, with the TMA-09M spacecraft, after arriving at the Baikonur Cosmodrome launch pad by train, Sunday, May 26, 2013, in Kazakhstan. Credit: NASA/Bill Ingalls.

You can see more images from the Expedition 36 launch and pre-launch activities at NASA HQ’s Flickr page.

Early Galaxies Churned Out Stars Like Crazy

The Southern Cross, the Milky Way, and the Large Magellanic Cloud shine above the Atacama Large Millimeter/submillimeter Array (ALMA) as it observes on a clear night sky during its Early Science phase. Image credit: C. Padilla, NRAO/AUI/NSF

Talk about an assembly line! Some early-stage galaxies created stars thousands of times faster than our Milky Way does today, according to new research. And it’s puzzling astronomers.

“We want to understand how and why these galaxies are forming stars at such incredibly fast rates, so soon after the Big Bang,” stated Scott Chapman of Dalhousie University, one of the researchers behind the discovery. “This could partially answer how our own galaxy, the Milky Way, was born billions of years ago.”

This is just a hint of the high-definition view we’ll receive from Chile’s Atacama Large Millimeter/submillimeter Array (ALMA), its astronomers promise, since the array of dozens of telescopes was officially inaugurated this spring. (ALMA has been working for years, but slowly adding telescopes and definition as it goes.)

There were actually three papers released today about ALMA. So what did the observatory find out this time? Here’s the nut graf:

Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass.
Gravitational microlensing method requires that you have two stars that lie on a straight line in relation to us here on Earth. Then the light from the background star is amplified by the gravity of the foreground star, which thus acts as a magnifying glass.

The observed galaxies are “gravitationally lensed”. Galaxies are so massive that they can bend light from other galaxies, if put in the right spot with respect to Earth. We’ve seen this effect over and over again with the Hubble Space Telescope, but observations are less well-known in the millimeter spectrum of light in which ALMA observes. “Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation,” stated a Nature paper on the discovery.

These galaxies are further away than we thought. By measuring the time it takes light from carbon monoxide molecules to reach us, the astronomers concluded these galaxies are much further away than previously measured, with some reaching as far back as 12 billion light-years away. (That’s just 1.7 billion years after the Big Bang created the universe.)

– The galaxies put star creation on fast-forward. Looking back that far is like looking in a time machine — we can see things that were happening only 1 billion years after the Big Bang. At the time, those galaxies were as bright as 40 trillion suns and created new stars at an extreme rate of 4,000 suns per year. (That, by the way, is 4,000 times faster than what our own galaxy does.)

You can read more about these results in Nature and the Astrophysical Journal (here and here.)

Source: Canadian Astronomical Society (CASCA)

New Podcast Series: Space Stations

A Star Trek-inspired space station.

Sometimes a trilogy needs four parts! The Astronomy Cast team of Fraser Cain and Pamela Gay have taken a look at the history and modern era of space stations, as well as peering into the future at some space station concepts still in the works. You can listen to this four-part series at the Astronomy Cast website, or at the links below:

Ep. 296: Space Stations, Part 1 — Salyut and Skylab

Ep. 297: Space Stations, Part 2 — Mir

Ep. 298: Space Stations, Part 3 — International Space Station

Ep. 299: Space Stations, Part 4 — Future Space Stations

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

And the podcast is also available as a video, as Fraser and Pamela now record Astronomy Cast as part of a Google+ Hangout. You can see their latest Hangouts at the Astronomy Cast YouTube page. They record most Mondays at 18:00 UTC (3:00 PM EDT, 12:00 PDT) at Google+.

Carnival of Space #303

This week’s Carnival of Space is hosted by Pamela Hoffman at the Everyday Spacer blog.

Click here to read Carnival of Space #303.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Mysterious and Well-Preserved Oort Cloud Object Heading Into Our Solar System

An artist's conception of two tidally locked objects orbiting the Sun from afar. The system: 2010 WG9 may likely look like this. Credit: zmescience

What if we could journey to the outer edge of the Solar System – beyond the familiar rocky planets and the gas giants, past the orbits of asteroids and comets – one thousand times further still – to the spherical shell of icy particles that enshrouds the Solar System. This shell, more commonly known as the Oort cloud, is believed to be a remnant of the early Solar System.

Imagine what astronomers could learn about the early Solar System by sending a probe to the Oort cloud! Unfortunately 1-2 light years is more than a little beyond our reach. But we’re not entirely out of luck. 2010 WG9 – a trans-Neptunian object — is actually an Oort Cloud object in disguise. It has been kicked out of its orbit, and is heading closer towards us so we can get an unprecedented look.

But it gets even better! 2010 WG9 won’t get close to the Sun, meaning that its icy surface will remain well-preserved. Dr. David Rabinowitz, lead author of a paper about the ongoing observations of this object told Universe Today, “This is one of the Holy Grails of Planetary Science – to observe an unaltered planetesimal left over from the time of Solar System formation.”

Now you might be thinking: wait, don’t comets come from the Oort Cloud? It’s true; most comets were pulled out of the Oort cloud by a gravitational disturbance. But observing comets is extremely difficult, as they are surrounded by bright clouds of dust and gas. They also come much closer to the Sun, meaning that their ices evaporate and their original surface is not preserved.

So while there is a surprisingly high number of Oort cloud objects hanging out within the inner solar system, we needed to find one that is easy to observe and whose surface is well preserved. 2010 WG9 is just the object for the job! It is not covered by dust or gas, and is believed to have spent most of its lifetime at distances greater than 1000 AU. In fact, it will never approach closer than Uranus.

Astronomers at Yale University have observed 2010 WG9 for over two years, taking images in different filters. Just as coffee filters allow ground coffee to pass through but will block larger coffee beans, astronomical filters allow certain wavelengths of light to pass through, while blocking all others.

Recall that the wavelength of visible light relates to color. The color red, for example, has a wavelength of approximately 650 nm. An object that is very red will therefore be brighter in a filter of this wavelength, as opposed to a filter of, say, 475 nm, or blue. The use of filters allow astronomers to study specific colors of light.

Astronomers observed 2010 WG9 with four filters: B, V, R, and I, also known as blue, visible, red, and infrared wavelengths. What did they see? Variation – a change in color over the course of just days.

The likely source is a patchy surface. Imagine looking at the Earth (pretend there’s no atmosphere) with a blue filter. It would brighten when an ocean came into view, and dim when that ocean left the field of view. There would be a variation in color, dependent on the different elements located on the surface of the planet.

The dwarf planet Pluto has patches of methane ice, which also show up as color variations on its surface. Unlike Pluto, 2010 WG9 is relatively small (100 km in diameter) and cannot hold on to its methane ice. It’s possible that part of the surface is newly exposed after an impact. According to Rabinowitz, astronomers are still unsure what the color variations mean.

Rabinowitz was very keen to explain that 2010 WG9 has an unusually slow rotation. Most trans-Neptunian objects rotate every few hours. 2010 WG9 rotates on the order of 11 days! The best reason for this discrepancy is that it exists in a binary system. If 2010 WG9 is tidally locked to another body — meaning that the spin of each body is locked to the rate of rotation — then 2010 WG9 will be slowed down in its rotation.

According to Rabinowitz, the next step will be to observe 2010 WG9 with larger telescopes — perhaps the Hubble Space Telescope — in order to better measure the color variation. We may even be able to determine if this object is in a binary system after all, and observe the secondary object as well.

Any future observations will help us further understand the Oort cloud. “Very little is known about the Oort cloud – how many objects are in it, what are its dimensions, and how it formed,” Rabinowitz explained.  “By studying the detailed properties of a newly arrived member of the Oort cloud, we may learn about its constituents.”

2010 WG9 will likely hint at the origin of the Solar System in helping us further understand its own origin: the mysterious Oort cloud.

Source: Rabinowitz, et al. AJ, 2013

How Many Planets are in the Solar System?

How Many Planets Are in the Solar System?
How Many Planets Are in the Solar System?

I’m just going to warn you, this is a controversial topic. Some people get pretty grumpy when you ask: how many planets are in the Solar System? Is it eight, ten, or more?

I promise you this, though, we’re never going back to nine planets… ever.

When many of us grew up, there were nine planets in the Solar System. It was like a fixed point in our brains.

As kids, memorizing this list was an early right of passage of nerd pride: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto.

But then in 2005, Mike Brown discovered Eris, an icy object thought to be about the same size as Pluto, out beyond its orbit.

That would bring the total number of planets to ten. Right? There’s no turning back, textbooks would need to be changed.
In order to settle the dispute, the International Astronomical Union met in 2006, and argued for, and against Pluto’s planethood. Some astronomers advocated widening the number of planets to twelve, including Pluto, its moon Charon, the Asteroid Ceres, and the newly discovered Eris.

In the end, they changed the definition of what makes a planet, and sadly, Pluto doesn’t make the cut:

Here are the new requirements of planethood status:

  1. A planet has to orbit the Sun. Okay fine, Pluto does that.
  2. A planet needs enough gravity to pull itself into a sphere. Okay, spherical. Pluto’s fine there too.
  3. A planet needs to have cleared out its orbit of other objects. Uh oh, Pluto hasn’t done that.

For example, planet Earth accounts for a million times the rest of the material in its orbit, while Pluto is just a fraction of the icy objects in its realm.

The final decision was to demote Pluto from planet to dwarf planet.

But don’t despair, Pluto is in good company.

Ceres. Image credit: NASA
Ceres. Image credit: NASA
There’s Ceres, the first asteroid ever discovered, and the smallest of the dwarf planets. The surface of Ceres is made of ice and rock, and it might even have a liquid ocean under its surface. NASA’s Dawn mission is flying there right now to give us close up pictures for the first time.

Haumea, named after the Hawaiian goddess of fertility, is about a third the mass of Pluto, and has just enough gravity to pull itself into an ellipsoid, or egg shape. Even though it’s smaller, it’s got moons of its own.

Makemake. Credit: NASA
Makemake. Credit: NASA
Makemake, a much larger Kuiper belt object, has a diameter about two-thirds the size of Pluto. It was discovered in 2005 by Mike Brown and his team. So far, Makemake doesn’t seem to have any moons.

Eris is the most massive known dwarf planet, and the one that helped turn our definition of a planet upside-down. It’s 27% more massive than Pluto and the ninth most massive body that orbits the Sun. It even has a moon: Dysnomia.

Pluto. Credit: ESO
Pluto. Credit: ESO
And of course, Pluto. The founding member of the dwarf family.

Want an easy way to remember the eight planets, in order? Just remember this mnemonic: my very excellent mother just served us noodles.

For all you currently writing angry tweets to Mike Brown, hold on a sec. Changing Pluto’s categorization is an important step that really needed to happen.

The more we discover about our Universe, the more we realize just how strange and wonderful it is. When Pluto was discovered 80 years ago, we never could have expected the variety of objects in the Solar System. Categorizing Pluto as a dwarf planet helps us better describe our celestial home.

So, our Solar System now has eight planets, and five dwarf planets.