Beautiful Timelapse of a Triple Planetary Conjunction

A sequence of 6 consecutive Jupiter-Venus-Mercury conjunction photos taken on May 23 - 28, 2013. Credit and copyright: Joe Shuster.

We’ve shared oodles of great images from the recent planetary conjunction of Jupiter, Mercury and Venus, visible in the evening skies last week. But this video from astrophotographer César Cantú is just plain beautiful. On the evening of May 25, the conjunction of the three planets formed a triangle that moved through the sky, as seen from Big Bear Park in California, USA. César said via Twitter that the “star” effect was create by processing the video or with 4,6 or 8 point star filters.

And we’ve got one more conjunction image to share — actually six.

Joe Shuster from Salem, Missouri had six great evenings of photographing the planetary conjunction, and put them together into one collage. He used a Canon T1i and Nikkon 105mm lens. Lucky guy!

Black Holes Can Get Really Big, And We Have No Idea Why

Artist’s rendering of the environment around the supermassive black hole at the center of Mrk 231. The broad outflow seen in the Gemini data is shown as the fan-shaped wedge at the top of the accretion disk around the black hole, in side view. A similar outflow is probably present under the disk as well. The total amount of material entrained in the broad flow is at least 400 times the mass of the sun per year. Credit: Gemini Observatory/AURA, artwork by Lynette Cook

Right now, as you read this article, it’s quite possible that the ultra-huge black hole at the center of our galaxy is feasting on asteroids or supercooked gas.

We’ve seen these supermassive black holes in other spots in the universe, too: merging together, for example. They’re huge heavyweights, typically ranging between hundreds of thousands to billions of times the mass of the Sun. But we also know, paradoxically, that mini supermassive black holes exist.

So while we’ve observed the gravitational effects of these monsters, a University of Alberta researcher today (May 30) is going to outline the big question: how the heck some of them got so massive. For now, no one knows for sure, but scientists are naturally taking a stab at trying to figure this out.

Maybe they were your ordinary stellar black holes, just three to 100 times the mass of the sun, that underwent a growth spurt. There’s a sticking point with that theory, though:  “To do this, the black holes would have to gorge excessively, at rates that require new physics,” stated the Canadian Astronomical Society.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)
Illustration of Cygnus X-1, a stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)

“We might also expect to see some black holes that are intermediate in mass between stellar-mass and supermassive black holes in our nearby universe,” the society added, “like a band that is consistently releasing albums, but never making it truly big.”

Anyway, Jeanette Gladstone (a postdoctoral researcher) will make a presentation at CASCA’s annual meeting in Vancouver today outlining some ideas. Gladstone, by the way, focuses on X-rays (from black holes) in her work. Here’s what she said on her research page:

HLX-1 in the periphery of the edge-on spiral galaxy ESO 243-49. Credit: Heidi Sagerud.
HLX-1 in the periphery of the edge-on spiral galaxy ESO 243-49. Credit: Heidi Sagerud.

“I am currently trying to understand a strange group of curiously bright X-ray binaries. These ultraluminous X-ray sources emit too much X-ray radiation to be explained by standard accretion [of] only a regular stellar mass black hole,” she wrote.

“So I use various parts of the electromagnetic spectrum to try and understand what makes them appear so bright. More recently I have started looking at the very brightest of these sources, a group of objects that have recently become a class in their own right. These are the hyperluminous X-ray sources.”

For context, here’s more info on a hyperluminous X-ray source (and its black hole) in spiral galaxy ESO 234-9, as studied by the Hubble Space Telescope and the Swift X-Ray Telescope.

Astronomers were pretty excited with this 2012 work: “For the first time, we have evidence on the environment, and thus the origin, of this middle-weight black hole,” said Mathieu Servillat, a member of the Harvard-Smithsonian Center for Astrophysics research team, at the time.

Credit: CASCA

Surprise! Earth Passing Asteroid 1998 QE2 Has a Moon

Radar images from May 30, 2012 of Asteroid 1998 QE2, showing its binary companion. Credit: NASA.

Late yesterday, NASA turned the 230-foot (70-meter) Deep Space Network antenna at Goldstone, California towards Asteroid 1998 QE2 as it was heading towards its closest approach to Earth, and they got a big surprise: the asteroid is a binary system. 1998 QE2 itself is 1.7 miles (2.7 kilometers) in diameter, and the newly found orbiting moon is about 600 meters in diameter.

The radar images were taken were taken on May 29, 2013, when the asteroid was about 3.75 million miles (6 million kilometers) from Earth.

“Radar really helps to pin down the orbit of an asteroid as well as the size of it,” said Paul Chodas of NASA’s Near-Earth Object Program office, speaking during a JPL webcast about this asteroid on May 30. “We now know our size estimates were pretty good, but finding it was a binary was surprising.”

NASA said that about 16 percent of asteroids are binary or even triple systems.

Each of the images above are snippets of about 5 minutes of radar data. You can watch a movie of the data, below:

Other surprises were several radar-dark features, which may be cavities or impact craters, said Marina Brozovic, a scientist at JPL. The asteroid is also rotating more slowly than originally thought.

Near Earth Asteroid (NEA) 285263 (1998 QE2) will pass 5.86 million km from the Earth on Friday, May 31st at 20:59 Universal Time (UT) or 4:59PM EDT. This is the closest approach of 1998 QE2 for this century, and it poses no threat – and there’s not any threat in the future – as it is passing over 15 times as distant as the Earth’s Moon. But the rather large size of this space rock makes it an object of interest for astronomers.

Chodas added that they will continue to take radar data of this asteroid while they can to improve its orbital parameters, and that the presence of the moonlet means they can get an even more precise mass estimate of the asteroid.

Want to try and see this asteroid for yourself? Our very own David Dickinson has written a great “how-to” for this object, but you are going to need a fairly large backyard telescope, since it will be about 100 times fainter than what can be seen with the naked eye, even at closest approach.

The Slooh online telescope will have views of online tomorrow, which you can watch at their website. The webcast will start at 20:30 UTC (4:30 p.m. EDT) on Friday, May 31.

Also, starting at 20:00 UTC (4:00 p.m. EDT), astrophysicist Gianluca Masi will have a webcast from the Virtual Telescope Project in Italy.

Additionally, if you want to have a Bruce Willis-type view of this asteroid, check out NASA’s Eyes on the Solar System. They have a special feature on this asteroid, and you can “ride along with it for the next few days,” said Doug Ellison, Visualization Producer at JPL, speaking during the webcast.

This amazing tool creates realistic simulated views based on real data, and allows you to travel to any planet, moon or spacecraft across time and space, in 3D and in real time — or speed up to see the future.

Just go to the Eyes on the Solar System website, and when the window opens, click on “Tours and Features” in the upper right hand corner, then click on “1998 QE2” in the dropdown box, and away you go. If you click on the “Live” button the left, you’ll see the current location; click on “Ride Along” and find yourself sitting on the asteroid heading towards Earth.

At the bottom control panel “dock” (click on the bottom box on the lower right side if the panel isn’t showing), you can speed up time and see how far from Earth this asteroid will get and where it will go in the future.

Ellison added that right now the imagery on Eyes on the Solar System doesn’t have the moonlet orbiting 1998 QE2, but they will be adding it soon to make the visualization as realistic as possible.

NASA’s @AsteroidWatch Twitter account shared the news about the moon:

Also, if you want more asteroids, on Friday May 31, the White House is hosting an asteroid-themed “We the Geeks” Google+ Hangout starting at 2 p.m. EDT.

The live video conference will feature Bill Nye the Science Guy, former astronaut Ed Lu, NASA Deputy Administrator Lori Garver, and Peter Diamandis, co-founder of asteroid mining company Planetary Resources. They will discuss identification, resource potential and threat of asteroids. Here’s the link the White House’s Google+ page.

New Images of Comet ISON Hurtling Towards the Sun

Images of Comet ISON obtained using the Gemini Multi-Object Spectrograph at Gemini North on February 4, March 4, April 3, and May 4, 2013 (left to right, respectively; Comet ISON at center in all images). Color composite produced by Travis Rector, University of Alaska Anchorage. Credit: Gemini Observatory/AURA

As Comet C/2012 S1 (ISON) heads closer to Earth, we’re getting a better view of what has been billed by some as the “Comet of the Century.” Astronomers say these new photos from the Gemini North telescope on Mauna Kea, Hawai‘i provide hints of how well this comet might survive one of the closest comet encounters with the Sun ever recorded, on November 28, 2013.

With astronomy enthusiasts hopeful and optimistic about having a spectacular comet visible in our skies, it’s anyone’s guess if the comet will actually survive its extremely close pass of the Sun to become early morning eye-candy in early December 2013.
The time-sequence images, spanning early February through May 2013, show that the comet is quite active, despite how distant it is from the Sun.

When Gemini obtained these images, the comet ranged between roughly 455-360 million miles (730-580 million kilometers; or 4.9-3.9 astronomical units) from the Sun, or just inside the orbital distance of Jupiter. Each image in the series, taken with the Gemini Multi-Object Spectrograph at the Gemini North telescope on Mauna Kea, Hawai‘i, shows the comet in the far red part of the optical spectrum, which emphasizes the comet’s dusty material already escaping from the nucleus. The final image in the sequence, obtained in early May, consists of three images, including data from other parts of the optical spectrum, to produce a color composite image.

Gemini astronomers say the images show the comet sporting a well-defined parabolic hood in the sunward direction that tapers into a short and stubby tail pointing away from the Sun. These features form when dust and gas escape from the comet’s icy nucleus and surround that main body to form a relatively extensive atmosphere called a coma. Solar wind and radiation pressure push the coma’s material away from the Sun to form the comet’s tail, which we see here at a slight angle (thus its stubby appearance).

“Early analysis of our models shows that ISON’s brightness through April can be reproduced by outgassing from either carbon monoxide or carbon dioxide,” said Karen Meech, at the University of Hawaii’s Institute for Astronomy (IfA) in Honolulu. “The current decrease may be because this comet is coming close to the Sun for the first time, and a “volatile frosting” of ice may be coming off revealing a less active layer beneath. It is just now getting close enough to the Sun where water will erupt from the nucleus revealing ISON’s inner secret.”

Comet ISON will come within 800,000 miles (1.3 million km) of the Sun’s surface on November 28. Shortly before that critical passage, the comet may appear bright enough for expert observers using proper care to see it close to the Sun in daylight.

“Comets may not be completely uniform in their makeup and there may be outbursts of activity as fresh material is uncovered,” added IfA astronomer Jacqueline Keane. “Our team, as well as astronomers from around the world, will be anxiously observing the development of this comet into next year, especially if it gets torn asunder, and reveals its icy interior during its exceptionally close passage to the Sun in late November.”

NASA’s Hubble Space Telescope provides a close-up look of Comet ISON (C/2012 S1), as photographed on April 10, when the comet was slightly closer than Jupiter’s orbit at a distance of 386 million miles from the sun. Credit:NASA, ESA, J.-Y. Li (Planetary Science Institute), and the Hubble Comet ISON Imaging Science Team.
NASA’s Hubble Space Telescope provides a close-up look of Comet ISON (C/2012 S1), as photographed on April 10, when the comet was slightly closer than Jupiter’s orbit at a distance of 386 million miles from the sun. Credit:NASA, ESA, J.-Y. Li (Planetary Science Institute), and the Hubble Comet ISON Imaging Science Team.

NASA’s Swift satellite and the Hubble Space Telescope (HST) have also imaged Comet ISON recently in this region of space. Swift’s ultraviolet observations determined that the comet’s main body was spewing some 850 tons of dust per second at the beginning of the year, leading astronomers to estimate the comet’s nucleus diameter is some 3-4 miles (5-6 kilometers). HST scientists concurred with that size estimate, adding that the comet’s coma measures about 3100 miles (5000 km) across.

The comet gets brighter as the outgassing increases and pushes more dust from the surface of the comet. Scientists are using the comet’s brightness, along with information about the size of the nucleus and measurements of the production of gas and dust, to understand the composition of the ices that control the activity. Most comets brighten significantly and develop a noticeable tail at about the distance of the asteroid belt (about 3 times the Earth-Sun distance –– between the orbits of Mars and Jupiter) because this is when the warming rays of the Sun can convert the water ice inside the comet into a gas. This comet was bright and active outside the orbit of Jupiter — when it was twice as far from the Sun. This meant that some gas other than water was controlling the activity.

Meech said that Comet ISON “…could still become spectacularly bright as it gets very close to the Sun” but also added caution. “I’d be remiss, if I didn’t add that it’s still too early to predict what’s going to happen with ISON since comets are notoriously unpredictable,” she said.

Source: Gemini Observatory

NASA’s Particle-Hunting ISS-CREAM Will Be Anything But Vanilla

The CREAM instrument prior to launch aboard a long-duration balloon. (NASA)

Balloon-based research on cosmic particles that began over a century ago will get a big boost next year — all the way up to low-Earth orbit, when NASA’s Cosmic Ray Energetics and Mass (CREAM) will be sent to the Space Station thus becoming (are you ready for this?) ISS-CREAM, specifically designed to detect super-high-energy cosmic rays and help scientists determine what their mysterious source(s) may be.

“The answer is one the world’s been waiting on for 100 years,” said program scientist Vernon Jones.

Read more about this “cool” experiment below:

Cosmic Ray Energetics and Mass (CREAM) will be the first cosmic ray instrument designed to detect at such higher energy ranges, and over such an extended duration in space. Scientists hope to discover whether cosmic rays are accelerated by a single cause, which is believed to be supernovae. The new research also could determine why there are fewer cosmic rays detected at very high energies than are theorized to exist.

“Cosmic rays are energetic particles from outer space,” said Eun-Suk Seo, principal investigator for the CREAM study. “They provide a direct sample of matter from outside the solar system. Measurements have shown that these particles can have energies as high as 100,000 trillion electron volts. This is an enormous energy, far beyond and above any energy that can be generated with manmade accelerators, even the Large Hadron Collider at CERN.”

Researchers also plan to study the decline in cosmic ray detection, called the spectral “knee” that occurs at about a thousand trillion electron-volts (eV), which is about 2 billion times more powerful than the emissions in a medical nuclear imaging scan. Whatever causes cosmic rays, or filters them as they move through the galaxy, takes a bite out of the population from 1,000 trillion electron-volts upwards. Further, the spectrum for cosmic rays extends much farther beyond what supernovas are believed to be able to produce.

A long-duration balloon carrying CREAM prepares to launch from a location near McMurdo Station (NASA)
A long-duration balloon carrying CREAM prepares to launch from a location near McMurdo Station (NASA)

To tackle these questions, NASA plans to place CREAM aboard the space station, becoming ISS-CREAM. The instrument has flown six times for a total of 161 days on long-duration balloons circling the South Pole, where Earth’s magnetic field lines are essentially vertical.

The idea of energetic particles coming from space was unknown in 1911 when Victor Hess, the 1936 Nobel laureate in physics credited for the discovery of cosmic rays, took to the air to tackle the mystery of why materials became more electrified with altitude, an effect called ionization. The expectation was that the ionization would weaken as one got farther from Earth. Hess developed sensitive instruments and took them as high as 3.3 miles (5.3 kilometers) and he established that ionization increased up to fourfold with altitude, day or night.

A better understanding of cosmic rays will help scientists finish the work started when Hess unexpectedly turned an earthly question into a stellar riddle. Answering that riddle will help us understand a hidden, fundamental facet of how our galaxy, and perhaps the universe, is built and works.

The phenomenon soon gained a popular but confusing name, cosmic rays, from a mistaken theory that they were X-rays or gamma rays, which are electromagnetic radiation, like light. Instead, cosmic rays are high-speed, high-energy particles of matter.

As particles, cosmic rays cannot be focused like light in a telescope. Instead, researchers detect cosmic rays by the light and electrical charges produced when the particles slam into matter. The scientists then use detective work to identify the original particle by direct measurement of its electric charge and its energy determination from the avalanche of debris particles creating their own overlapping trails.

CREAM schematic

CREAM does this trace work using an ionization calorimeter designed to make cosmic rays shed their energies. Layers of carbon, tungsten and other materials present well-known nuclear “cross sections” within the stack. Electrical and optical detectors measure the intensity of events as cosmic particles, from hydrogen to iron, crash through the instrument.

Even though CREAM balloon flights reached high altitudes, enough atmosphere remained above to interfere with measurements. The plan to mount the instrument to the exterior of the space station will place it above the obscuring effects of the atmosphere, at an altitude of 250 miles (400 kilometers).

“On what can we now place our hopes of solving the many riddles which still exist as to the origin and composition of cosmic rays?”

– Victor F. Hess, Nobel Lecture, Dec. 1936

Read more here on the NASA article by Dave Dooling of the International Space Station Program Science Office.

Source: NASA

This Machine Could Help Robots Stick The Landing On Other Worlds

The system the European Space Agency is using to aim for pinpoint landings on nearby moons and planets. Credit: ESA

Mission planners really hate it when space robots land off course. We’re certainly improving the odds of success these days (remember Mars Curiosity’s seven minutes of terror?), but one space agency has a fancy simulator up its sleeve that could make landings even more precise.

Shown above, this software and hardware (tested at the European Space Agency) so impressed French aerospace center ONERA that officials recently gave the lead researcher an award for the work.

“If I’m a tourist in Paris, I might look for directions to famous landmarks such as the Eiffel Tower, the Arc de Triomphe or Notre Dame cathedral to help find my position on a map,” stated Jeff Delaune, the Ph.D. student performing the research.

“If the same process is repeated from space with enough surface landmarks seen by a camera, the eye of the spacecraft, it can then pretty accurately identify where it is by automatically comparing the visual information to maps we have onboard in the computer.”

ESA's SMART-1 mission took this collection of lunar pictures around the south pole, a possible landing target for future missions. Credit: ESA
ESA’s SMART-1 mission took this collection of lunar pictures around the south pole, a possible landing target for future missions. Credit: ESA

Because landmarks close-up can look really different from far away, this system has a method to try and get around that problem.

The so-called ‘Landing with Inertial and Optical Navigation’ (LION) system takes the real-time images generated by the spacecraft’s camera and compares it to maps from previous missions, as well as 3-D digital models of the surface.

LION can take into account the relative size of every point it sees, whether it’s a huge crater or a tiny boulder.

At ESA’s control hardware laboratory in Noordwijk, the Netherlands, officials tested the system with a high-res map of the moon.

Though this is just a test and there is still a ways to go before this system is space-ready, ESA said simulated positional accuracy was better than 164 feet at 1.86 miles in altitude (or 50 meters at three kilometers in altitude.)

Oh, and while it’s only been tested with simulated moon terrain so far, it’s possible the same system could help a robot land on an asteroid, or Mars, ESA adds.

No word on when the system will first hitch an interplanetary ride, but Delaune is working to apply the research to terrestrial matters such as unmanned aerial vehicles.

Check out more details on the testing on ESA’s website.

Source: ESA

Saturn’s Moon Dione May Have Been Active Like Enceladus

Saturn's moon Dione, as seen by the Cassini spacecraft. Credit: NASA/JPL-Caltech/Space Science Institute

From a JPL press release:

From a distance, most of the Saturnian moon Dione resembles a bland cueball. Thanks to close-up images of a 500-mile-long (800-kilometer-long) mountain on the moon from NASA’s Cassini spacecraft, scientists have found more evidence for the idea that Dione was likely active in the past. It could still be active now.

“A picture is emerging that suggests Dione could be a fossil of the wondrous activity Cassini discovered spraying from Saturn’s geyser moon Enceladus or perhaps a weaker copycat Enceladus,” said Bonnie Buratti of NASA’s Jet Propulsion Laboratory in Pasadena, Calif., who leads the Cassini science team that studies icy satellites. “There may turn out to be many more active worlds with water out there than we previously thought.”

Janiculum Dorsa, a mountain that appears as the long, raised scar in the middle of this Cassini image, is providing new evidence that the Saturnian moon Dione was recently active. Credit: NASA/JPL-Caltech/Space Science Institute.
Janiculum Dorsa, a mountain that appears as the long, raised scar in the middle of this Cassini image, is providing new evidence that the Saturnian moon Dione was recently active. Credit: NASA/JPL-Caltech/Space Science Institute.

Other bodies in the solar system thought to have a subsurface ocean – including Saturn’s moons Enceladus and Titan and Jupiter’s moon Europa – are among the most geologically active worlds in our solar system. They have been intriguing targets for geologists and scientists looking for the building blocks of life elsewhere in the solar system. The presence of a subsurface ocean at Dione would boost the astrobiological potential of this once-boring iceball.

Hints of Dione’s activity have recently come from Cassini, which has been exploring the Saturn system since 2004. The spacecraft’s magnetometer has detected a faint particle stream coming from the moon, and images showed evidence for a possible liquid or slushy layer under its rock-hard ice crust. Other Cassini images have also revealed ancient, inactive fractures at Dione similar to those seen at Enceladus that currently spray water ice and organic particles.

The mountain examined in the latest paper — published in March in the journal Icarus — is called Janiculum Dorsa and ranges in height from about 0.6 to 1.2 miles (1 to 2 kilometers). The moon’s crust appears to pucker under this mountain as much as about 0.3 mile (0.5 kilometer).

The topography of a mountain known as Janiculum Dorsa on the Saturnian moon Dione. Color denotes elevation, with red as the highest area and blue as the lowest. Credit: NASA/JPL-Caltech/Space Science Institute.
The topography of a mountain known as Janiculum Dorsa on the Saturnian moon Dione. Color denotes elevation, with red as the highest area and blue as the lowest. Credit: NASA/JPL-Caltech/Space Science Institute.

“The bending of the crust under Janiculum Dorsa suggests the icy crust was warm, and the best way to get that heat is if Dione had a subsurface ocean when the ridge formed,” said Noah Hammond, the paper’s lead author, who is based at Brown University, Providence, R.I.

Dione gets heated up by being stretched and squeezed as it gets closer to and farther from Saturn in its orbit. With an icy crust that can slide around independently of the moon’s core, the gravitational pulls of Saturn get exaggerated and create 10 times more heat, Hammond explained. Other possible explanations, such as a local hotspot or a wild orbit, seemed unlikely.

Scientists are still trying to figure out why Enceladus became so active while Dione just seems to have sputtered along. Perhaps the tidal forces were stronger on Enceladus, or maybe the larger fraction of rock in the core of Enceladus provided more radioactive heating from heavy elements. In any case, liquid subsurface oceans seem to be common on these once-boring icy satellites, fueling the hope that other icy worlds soon to be explored – like the dwarf planets Ceres and Pluto – could have oceans underneath their crusts. NASA’s Dawn and New Horizons missions reach those dwarf planets in 2015.

Why Are Dying Stars in 47 Tucanae Cooling Off So Slowly?

White Dwarf Star
White Dwarf Star

The Hubble Space Telescope is going to be used to settle an argument. It’s a conflict between computer models and what astronomers are seeing in a group of stars in 47 Tucanae.

White dwarfs — the dying embers of stars who have burnt off all their fuel — are cooling off slower than expected in this southern globular cluster, according to previous observations with the telescope’s Wide Field Camera and Advanced Camera for Surveys.

Puzzled astronomers are now going to widen that search in 47 Tucanae (which initially focused on a few hundred objects) to 5,000 white dwarfs. They do have some theories as to what might be happening, though.

White dwarfs, stated lead astronomer Ryan Goldsbury from the University of British Columbia, have several factors that chip in to the cooling rate:

The Hubble Space Telescope. Image credit: NASA, tweaked by D. Majaess.

– High-energy particle production from the white dwarfs;

– What their cores are made up of;

– What their atmospheres are made up of;

– Processes that bring energy from the core to the surface.

Somewhere, somehow, perhaps one of those factors is off.

This kind of thing is common in science, as astronomers create these programs according to the best educated guesses they can make with respect to the data in front of them. When the two sides don’t jive, they do more observations to refine the model.

“The cause of this difference is not yet understood, but it is clear that there is a discrepancy between the data and the models,” stated the Canadian Astronomical Society (CASCA) and the University of British Columbia in a press release.

Since the white dwarfs are in a cluster that presumably formed from the same cloud of gas, it allows astronomers to look at a group of stars at a similar distance and to determine the distribution of masses of stars within the cluster.

“Because all of the white dwarfs in their study come from a single well-studied star cluster, both of these bits of information can be independently determined,” the release added.

You can read the entire article on the previous Hubble research on 47 Tucanae at the Astrophysical Journal.

Today’s announcement took place during the annual meeting of CASCA, which is held this year in Vancouver.

Source: CASCA/UBC

Astrophoto: Airplane Meets Sundog

Plane flying by a magnificent sundog on May 27, 2013. Credit and copyright: Sculptor Lil on Flickr.

Who doesn’t love seeing a sundog? This sundog had the added bonus of an airplane flying nearby, deftly captured by photographer Sculptor Lil on Flickr , who wondered if the people on the plane could see it. Too bad the airplane didn’t fly through it, like the sundog encounter the Solar Dynamics Observatory had during launch.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Planetary Resources Looks to Crowdfund a Space Telescope for the Public

Example of an orbital 'selfie' that Planetary Resources' ARKYD telescope could provide to anyone who donates to their new Kickstarter campaign. Credit: Planetary Resources.

How much would you donate to have access to a space telescope … or just to have an orbital “selfie”? Planetary Resources, Inc., the company that wants to mine asteroids, has launched a Kickstarter campaign for the world’s first crowdfunded space telescope. They say their Arkyd-100 telescope will provide unprecedented public access to space and place the most advanced exploration technology into the hands of students, scientists and a new generation of citizen explorers.

To make their campaign successful, they need to raise $1 million in Kickstarter pledges by the end of June 2013. Less than 2 hours into their campaign, they have raised over $100,000.

Last year, Planetary Resources revealed their plans to develop a series of small spacecraft to do a little ‘space prospecting’ which would eventually allow them to mine near Earth asteroids, extracting valuable resources.

Their announcement today of the crowdfunded Arkyd-100 space telescope will allow them to begin the search for asteroid they could mine, while involving the public and providing access to to the space telescope “for inspiration, exploration and research” or have a commemorative photo of those who donate displayed above the Earth, such as the image above.

During a webcast today to announce the Kickstarter campaign, Chris Lewicki, President and Chief Engineer for Planetary Resources said the telescope would have 1 arcsecond resolution, with the benefit of being above atmosphere.

A wide array of scientists, space enthusiasts and even Bill Nye the Science Guy have voiced their support for Planetary Resources’ new public space telescope.

Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.
Artist concept of the Arkyd telescope in space. Credit: Planetary Resources Inc.

“The ARKYD crowdfunding campaign is extraordinary,” said Sara Seager, Ph.D., Professor of Physics and Planetary Science at the Massachusetts Institute of Technology. “Not only does the telescope have the technical capability to increase our understanding of space, but it can be placed in orbit for an incredibly low cost. That is an economic breakthrough that will accelerate space-based research now and in the future.”

The space telescope is being built by Planetary Resources’ technical team, who worked on every recent U.S. Mars lander and rover.

“I’ve operated rovers and landers on Mars, and now I can share that incredible experience with everyone,” said Lewicki. “People of any age and background will be able to point the telescope outward to investigate our Solar System, deep space, or join us in our study of near-Earth asteroids.”

Planetary Resources will use the proceeds from the Kickstarter campaign to launch the telescope, fund the creation of the public interface, cover the fulfillment costs for all of the products and services listed in the pledge levels, and fund the immersive educational curriculum for students everywhere. Any proceeds raised beyond the goal will allow for more access to classrooms, museums and science centers, and additional use by individual Kickstarter backers.

However, if they fail to reach the $1 million goal, they receive none of the money. According to Jeff Foust at the NewSpace Journal quoted Lewicki as saying, if that happens, they’ll proceed with their current plans, including development of a small prototype satellite, called Arkyd 3, that is planned for launch next year.

Here are a few of the donation levels:

• Your Face in Space – the #SpaceSelfie: For US$25, the team will upload an image of the campaign backer’s choice to display on the ARKYD, snap a photo of it with the Earth in the background, and transmit it to the backer. This space ‘photo booth’ allows anyone to take (or gift) a unique Space Selfie image that connects a personal moment with the cosmos in an unprecedented, yet tangible way.

• Explore the Cosmos: Higher pledge levels provide students, astronomers and researchers with access to the ARKYD main optic for detailed observations of the cosmos, galaxies, asteroids and our Solar System.

• Support Education Worldwide: At the highest levels, pledgers can offer the K-12 school, science center, university, or any interested group of their choice access to the ARKYD for use in interactive educational programming to strengthen STEM education worldwide. The full pledge list and ARKYD technical specifications can be found here.

See all the levels at Planetary Resources’ Kickstarter Page.

“When we launched Planetary Resources last year, we had an extraordinary response from the general public,” said Peter Diamandis, Co-Founder and Co-Chairman of Planetary Resources, Inc.. “Tens of thousands of people contacted us and wanted to be involved. We are using this Kickstarter campaign as a mechanism to engage the community in a productive way.”

During a webcast today to make their Kickstarter announcement Diamandis said, “In the last 50 years, space exploration has been led by national governmental agencies with their own set of priorities. Imagine not having to wait for Congress to decide what missions will fly!”

ARKYD Infographic