It’s a simple menu, but smoking hot. The black hole at the center of the Milky Way galaxy is sucking in ultra-hot molecular gas, as seen through the eyes of the Herschel space telescope.
“The biggest surprise was quite how hot the molecular gas in the innermost central region of the galaxy gets. At least some of it is around 1000ºC [1832º F], much hotter than typical interstellar clouds, which are usually only a few tens of degrees above the –273ºC [-460ºF] of absolute zero,” stated the European Space Agency.
Herschel, which is out of coolant and winding down its scientific operations, will continue producing results in the next few years as scientists crunch the results. The telescope has found a bunch of basic molecules in the Milky Way that include water vapour and carbon monoxide, and has been engaged in looking to learn more about the gas that surrounds the massive black hole at our galaxy’s center.
In a region called Sagittarius* (Sgr A*), this huge black hole — four million times the mass of the sun — is thankfully a safe distance from Earth. It’s 26,000 light years away from the solar system.
Trouble is, there’s a heckuva lot of dust blocking our view to the center of the galaxy. Herschel got around that problem by taking pictures in the far-infrared, seeking heat signatures that can bely intense activity in and around the black hole.
“Herschel has resolved the far-infrared emission within just 1 light-year of the black hole, making it possible for the first time at these wavelengths to separate emission due to the central cavity from that of the surrounding dense molecular disc,” stated Javier Goicoechea of the Centro de Astrobiología, Spain, lead author of a paper reporting the results.
The science team supposes that there are strong shocks within the gas (which is magnetized) that help turn up the heat. The shocks could occur when gas clouds butt up against each other, or material shoots out Fast and Furious-style between stars and protostars (young stars.)
“The observations are also consistent with streamers of hot gas speeding towards Sgr A*, falling towards the very center of the galaxy,” stated Goicoechea. “Our galaxy’s black hole may be cooking its dinner right in front of Herschel’s eyes.”
How fast is Greenland’s ice sheet melting in response to climate change, and how is it recovering? A new NASA rover with the friendly name of GROVER (Greeland Rover and Goddard Remotely Operated Vehicle for Exploration and Research) is going to try to figure that out.
GROVER will rove across a small area of the massive ice sheet at a location called Summit Camp, which is a National Science Foundation outpost. On board it has ground-penetrating radar that is intended to figure out how the snow builds up in layers through time.
“Robots like GROVER will give us a new tool for glaciology studies,” stated Lora Koenig, a glaciologist at Goddard and science advisor on the project.
The student-designed project came to be during development phases in 2010 and 2011, principally at Boise State University in Idaho. At six feet tall, it’s way more massive than its Sesame Street namesake: it tips the scale at 800 pounds, including solar panels, and has two snowmobile tracks built in to move around.
“GROVER is just like a spacecraft but it has to operate on the ground,” stated Michael Comberiate, a retired NASA engineer and manager of Goddard’s Engineering Boot Camp.
“It has to survive unattended for months in a hostile environment, with just a few commands to interrogate it and find out its status and give it some directions for how to accommodate situations it finds itself in.”
Studies began on May 3 and will continue through June 8.
The second flight of ESA’s newest launch vehicle has successfully sent three different satellites to space. Launching at 02:06 GMT on 7 May from Europe’s Spaceport in Kourou, French Guiana, the Vega rocket carried two Earth observation satellites — ESA’s Proba-V, Vietnam’s VNREDSat-1A — and Estonia’s first satellite, the ESTCube-1 technology demonstrator were released into different orbits. The complex mission required five upper-stage boosts, with the flight lasting about twice as long as its first launch, in February 2012.
ESA officials said the success demonstrates the Vega rocket’s versatility.
Watch the launch video below.
“It is another great day for ESA, for its Member States and for Europe,” said Jean-Jacques Dordain, Director General of ESA. “Thanks to decisions taken by Member States, ESA and European industry are demonstrating once again their capabilities of innovation. Among the Member States, special mention goes to Italy which has led the Vega Programme, Belgium which has led the Proba projects at ESA, and France which has led the development and maintenance of the European spaceport here in Kourou. We are also proud to have made possible the launch of the first satellite from Estonia.”
The three solid-propellant stages performed flawlessly and after two burns of the liquid-propellant upper stage, the Proba?V was released into a circular orbit at an altitude of 820 km, over the western coast of Australia, some 55 minutes into flight.
After releasing Proba-V, the upper stage performed a third burn and the top half of the egg-shaped Vega Secondary Payload Adapter was ejected. After a fourth burn to circularize the orbit at an altitude of 704 km, VNREDSat-1A was released 1 hour 57 minutes into flight. ESTCube?1 was ejected from its dispenser three minutes later.
The fifth and last burn put the spent upper stage on a trajectory that ensures a safe reentry that complies with new debris mitigation regulations.
“What is that constellation up there – it is right on the tip of my tongue,” is not something you will be saying if you win one of 10 free copies of this app for your iOS device. We are so excited to be working with Fifth Star Labs to bring this promotion to Universe Today.
Simply aim your iPhone or iPad at the sky to identify stars, planets, galaxies and more. Sky Guide lets you experience the wonders of the night in ways you’ve only dreamed of. Now available as a universal app for iPhone and iPad.
In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Tuesday, May 14, 2013. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing.
Price – In case you don’t want to wait to see if you win!!
Features
– Elegant and simple: Unobtrusive controls and gestures free up the screen for the best sky view yet.
– Realistic: Composed of over 37,000 real photographs, Sky Guide shows millions of stars, not just a few thousand simulated points.
– Rich content: Loads of stunning Retina-quality graphics and original artwork.
– Soudscape: Designed by Mat Jarvis, an electronic composer featured in the award-winning soundtrack for the game Osmos. Stars have sounds based on their temperature and size.
– Useful anywhere: Works even without a GPS or data signal. Built in access to hundreds of cross linked articles no matter where you are.
– HDR brightness gestures: Dynamically control how bright the sky is to match your surroundings.
About Nick Risinger
Nick Risinger is a photographer and designer living in Seattle, Washington. His work has received honors from the Advanced Imaging Conference, the Cartography and Geographic Information Society, and will be featured at the top of the Royal Hotel Clock Tower in Mecca, Saudi Arabia. He has made appearances on Wired, BBC Horizon, and Public Radio International’s The World.
About Chris Laurel
Chris Laurel is a software developer from Seattle specializing in interactive 3D graphics. He is the creator of Celestia, a popular open source application for astronomical visualization. Chris has worked at Microsoft and NVIDIA, and has consulted for NASA and the the European Space Agency.
About Fifth Star Labs
Fifth Star Labs is a software development company that creates apps for science education and discovery. We blend design with technical expertise to fashion software that is beautiful, intuitive, and illuminating.
If you couldn’t tell, we love time-lapse videos… whether they’re made of photos looking up at the sky from Earth or looking down at Earth from the sky! This latest assembly by photographer Bruce W. Berry takes us on a tour around the planet from orbit, created from images taken by astronauts aboard the International Space Station and expertly de-noised, stabilized and smoothed to 24 frames per second. The result is — like several others before — simply stunning, a wonderful reminder of our place in space and the beauty of our living world.
This beautiful new timelapse video might have folks heading in droves for northern Michigan. Shawn Malone of Lake Superior Photo put together this incredible video — her first attempt at a timelapse compilation, believe it or not — using over 10,000 photo frames showing 33 different scenes of various night sky events from northern Michigan over the past year. “It took a year to shoot and a bit of tenacity and persistence to get this into a form of coherent electrified cosmic goodness,” Malone wrote on Vimeo. And did she ever capture cosmic goodness: auroras, the Milky Way rising and setting, meteor showers, a comet, and even aurora and lightning together in one scene. Just gorgeous….
Add IBM to the list of entities eagerly counting down to Star Trek: Into Darkness, the next installment of the famed franchise, which opens up in theaters May 17. Researchers at the computing giant are so excited that they created atomic images of Star Trek symbols.
Users of the Star Trek: Into Darkness app available on iOS and Android can see images of the USS Enterprise, a Vulcan hand salute and, of course, the logo for the movie itself — spelled out in individual atoms.
“These images were made by precisely moving hundreds of atoms with a two-ton microscope, operating at a temperature of -268 Celsius and magnified 100 million times,” IBM stated.
To show off just how good they think they are at this, IBM also released “the world’s smallest movie”, called A Boy and His Atom, where they play a stop-motion movie using the same moving-atoms technique. Check out the results below:
“Moving atoms is one thing; you can do that with the wave of your hand. Capturing, positioning and shaping atoms to create an original motion picture on the atomic-level is a precise science and entirely novel,” stated Andreas Heinrich, IBM Research’s principal investigator.
“This movie is a fun way to share the atomic-scale world and show everyday people the challenges and fun science can create.”
As a quick science reminder, an atom is a unit of matter with a nucleus that is surrounded by electrons. That’s the simple explanation, but there’s a lot to explore even within that basic concept: electron transitions, subatomic particles and what happens if a piece of matter encounters a piece of antimatter.
Atomic physics is important to help astronomers understand how the sun shines, for example. Engineers also are trying to figure out how to develop antimatter engines for future space exploration.
OTTAWA, CANADA – Last time Chris Hadfield went up in space in 2001, most of them were infants. In 1995, during his first mission, none of them were even born. Hundreds of elementary school students at an Ottawa school, however, sang enthusiastically along with his music — and along with thousands of other students throughout Canada — during a nationwide performance May 6.
See the video of the event below:
The 860 children at St. Emily Catholic School added their voices to the throng as Hadfield led a rendition of “Is Somebody Singing” from the International Space Station.
Ranging in ages between 4 and 12, the students at this school spent six weeks practicing in their individual classrooms before performing together for the first time.
Music is a big part of the school’s life. There are regular masses and liturgies. Some of the older students have their own bands and do performances. Saint Emily also hosts local bands in Ottawa, including Junkyard Symphony.
But this performance was something different. Hadfield, Barenaked Ladies frontman Ed Robertson and others reprised the January premiere of the song and invited every school in Canada to take part. Some sang directly with the live broadcast. Others assembled on front lawns, or in gyms, to sing at their own pace.
“We all listened to [the song] and thought it as a great way for the school to come together as a community,” said Roisin Philippe, a kindergarten teacher at Saint Emily who co-organized the school’s performance. Several teachers brought their own instruments — guitars, harps, and the like — to the performance. Others handed out tambourines.
Teachers took the opportunity to integrate the performance into the school’s curriculum where possible. Jenny Ng, who teaches Grade 1, would show students some of Hadfield’s videos (such as how to brush one’s teeth in space.) Others downloaded the sheet music to distribute to the class and teach them how to read music.
The performance is an initiative of the Canadian Broadcast Corp.’s Music Monday. It was the last live event with Hadfield, who currently commands Expedition 35, before he returns to Earth.
Hadfield and two of his crewmates — Tom Marshburn and Roman Romanenko — are scheduled to come back May 13.
The first solar eclipse of 2013 is upon us this week, with the May 10thannular eclipse crossing northern Australia and the Pacific.
2013 is an off year for eclipses. There are five eclipses this year, three lunars and two solars. Last month’s very shallow partial lunar eclipse set us up for the annular that occurs this week. In fact, the theoretical mid-point for the first of two eclipse seasons for 2013 occurs on May 7th at 7:00 UT/ 3:00 EDT when the longitude of the Sun equals the descending node where the Moon’s path crosses the ecliptic. This further sets us up for the third and weakest eclipse of the year, a grazing penumbral on May 25th.
An annular eclipse occurs when the Moon eclipses the Sun while near apogee and is hence visually too small to entirely cover the Sun.
The Moon reaches apogee on May 13th at 13:32 UT/9:32AM EDT at 405,826 kilometres from Earth, just 3 days and 13 hours past New.
Annulars are currently more common than total solar eclipses, occurring 33.2% of the time in our current 5,000 year epoch versus 26.7% for total solar eclipses. The remainders are hybrid and partial eclipses. Annulars will become even more common as our Moon recedes from us at a current rate of about 3.8 centimetres a year. In about 1.4 billion years, the final brief total solar eclipse as seen from the Earth will occur. Likewise, somewhere back about 900 million years ago, the very first annular eclipse as seen from the Earth occurred.
Safety is paramount while viewing an annular solar eclipse. As mentioned above, an annular eclipse throughout all phases is much brighter than you’d expect. Thus precautions to protect your eyes MUST be taken throughout ALL phases of the eclipse. Permanent eye damage can result from staring at the Sun without proper protection, and this can be near instantaneous when done through an unfiltered telescope!
We witnessed the 1994 annular eclipse from the shores of Lake Erie, and can tell you that 5% of the Sun is still extremely bright. You wouldn’t even know an annular eclipse was underway at midday unless you were looking for it. Use only filters approved for eclipse viewing that fit snugly over the FRONT of your optics. Throw those old eyepiece screw-on filters away, as they can heat up and crack!
Check filters before use and never leave a telescope aimed at the Sun unattended. Projecting the Sun is another option via a telescope or “Sun Gun,” but again, never leave such a rig unattended, and keep finderscopes covered at all times. Also, telescopes with folded optical paths such as Schmidt-Cassegrains can heat up to dangerous levels and should not be used for projecting the Sun.
This eclipse has a magnitude rating of 0.9544, meaning that 95.44% of the diameter of the Sun will be eclipsed at its maximum. Keep in mind, this leaves about 8.9% percent of the Sun, or about 1/11th of its visual area exposed. This translates to only a 2.5 magnitude drop in brightness. Thus, the brightness of the Sun will drop from magnitude -27 to -24.5, still well over 25,000 times brighter than the Full Moon!
Note that this one crosses the International dateline as well.
The action for this eclipse begins as the partial phases touch down over Western Australia at sunrise at 21:25 UT on May 9th (The morning of May 10th in Australia). The annulus makes its appearance at 22:30 UT over western Australia, with its 172 kilometre wide track racing to the northeast over Tennant Creek in the Northern Territories and crossing the Cape York peninsula as it crisscrosses the path of last November’s total solar eclipse just north of Cairns.
Note that the eclipse will be 80% partial near Alice Springs and Uluru (Ayers Rock), presenting an excellent photo op. Michael Zeiler at Eclipse Maps also points out that the area near the town of Newman in Western Australia will see an amazing sunrise annular eclipse. The path of the annular eclipse will then traverse the Coral Sea crossing over islands in eastern Papua New Guiana, the Solomon Islands and Kiribati before reaching greatest annularity with a duration of 6 minutes and 3 seconds at latitude 2° 13’ north and longitude 175° 28’ east. The path of annularity crosses over Bairiki Atoll and makes last landfall over Fanning Island north of Kiribati. Note that most of Australia, New Zealand, Indonesia and the Philippines will see partial phases of the eclipse. The islands of Hawaii across the dateline will also see a 40-50% partial eclipse on May 9th before the event ends in the eastern Pacific at 03:25:23 UT.
Weather prospects for the eclipse look to be best along the track through Australia with less than 20% chance of cloud cover then getting progressively worse as the eclipse path tracks northeastward out to sea. The Solomon Islands region can expect cloud cover in the 60% range, while in Hawaii prospects are about 70%. Eclipser maintains a site dedicated to weather prospects for upcoming eclipses.
Solar activity is currently moderate, with several sunspot groups currently turned Earthward making for a photogenic Sun on eclipse day;
This eclipse belongs to saros series 138 and is number 31 of 70. This saros started with a 2% partial solar eclipse on June 6th, 1472 and will end with a 12% partial on July 11th,2716 AD having produced 3 total, 1 hybrid, 16 partial and 50 annular eclipses.
Fans of this saros may remember the last annular in this series which crossed South America on April 29th, 1995.
Catching a rising annular eclipse can also make for a stunning photograph. To catch the eclipse and the foreground horizon in silhouette, a DSLR with a 400mm lens running at 1/500th of a second shutter speed or faster is a good combination. Remember, you’ll have to aim this via projection. DO NOT look through the camera at the Sun! Exposures slower than 1/200th of a second are also out of the question, as you can damage the camera sensor at slow exposures.
Another cool effect to watch for is the appearance of tiny little “crescent Suns” littering the ground as sunlight streams through gaps in the tree leaves. This occurs because the gaps act like tiny little pinhole cameras. A spaghetti strainer is also a highly scientific apparatus that can be used to mimic this effect!
Several solar observing satellites, including Hinode and the European Space Agency’s Proba-2 are poised to catch multiple partial solar eclipses on May 9th and 10th. We ran simulations of these this weekend:
Finally, if you’re like 99.99% of humanity, you’ll be watching this eclipse online. Slooh will be broadcasting this eclipse live.
Also, the eclipse will be broadcast live via the Coca-Cola Space Science Center starting at 5PM ET.
Amateur astronomer Geoff Sims @beyond_beneath will be tweeting near real time images of the eclipse from the path of annularity. Colin Legg (@colinleggphoto) will also be observing the event. Also check out:
-Australian observer Gerard Lazarus’s live feed of the eclipse.
Got an ad hoc eclipse broadcast planned? Let us know and we’ll include it!
The next and final solar eclipse for 2013 is a hybrid (annular along one section of the path and total along another) on November 3rd across the mid-Atlantic and central Africa. Another annular eclipse doesn’t occur until April 29th 2014, and the next total solar eclipse occurs on March 20th, 2015.
If you’re in the region be sure to catch this rare celestial event in person, or watch the action worldwide online!
A distinctive flash of light emanating from a dying star may make it possible for astronomers to watch a black hole being born, according to new research.
This burst of light, which might last three to 10 days, could be visible in optical light and also in infrared, which shows the heat signature of cosmic objects. While not as bright as a supernova — an exploding star — this signal could occur somewhere in the sky as often as once a year, according to simulations performed at the California Institute of Technology.
“That flash is going to be very bright, and it gives us the best chance for actually observing that this event occurred,” stated Caltech postdoctoral scholar Tony Piro, who led the research that is published in Astrophysical Journal Letters. “This is what you really want to look for.”
A big star essentially turns into a black hole when it falls into itself due to its large mass. The collapse shoots out protons and electrons from the core, creating neutrons and temporarily turning the core into a neutron star (a really, really dense object). This process also makes up neutrinos, which are infinitesimal but also extremely fast, moving nearly as fast as light does and bleeding the star of energy.
A 1980 paper, CalTech stated, showed that “this rapid loss of mass means that the gravitational strength of the dying star’s core would abruptly drop.” Hydrogen-filled layers at the top of the star would then fall outward and create a shock wave moving at more than two million miles an hour.
More recently, astronomers at the University of California, Santa Cruz discovered that the shock wave’s friction against the gas would heat up the plasma and make it glow, potentially for as long as a year. But that would be very faint from Earth-borne telescopes.
This is where the new CalTech research comes in. The university is already involved in black hole research, including the Nuclear Spectroscopic Telescope Array (NuSTAR). You can check out a video about NuSTAR below.
Piro’s simulations focus on when shock waves hit the surface of the star. It’s this process that would produce a burst of light, perhaps 10 to 100 times brighter than the other glow that astronomers foresaw.
The next step will be trying to observe these events as soon as they happen. Caltech advertised several survey possibilities related to its research: the Palomar Transient Factory, the intermediate Palomar Transient Factory that started work in February and the even more advanced Zwicky Transient Facility (ZTF) that is expected to start up in 2015.
Of course, it’s quite possible that other telescopes on the ground or orbit could work to confirm this signal.