At first glance, the planet Mercury may bear a striking resemblance to our own Moon. True, both are heavily-cratered, airless worlds that hide pockets of ice inside polar shadows… but there the similarities end. In addition to being compositionally different than the Moon, Mercury also has surface features that you won’t find on the lunar surface — or anywhere else in the Solar System.
The picture above, part of an 11-color targeted image acquired by MESSENGER on April 25, 2013, shows the varied terrain found within the 97-kilometer-wide Tyagaraja crater located near Mercury’s equator. The reds, blues, greens, and oranges, much more saturated than anything we’d see with our own eyes, correspond to surface materials of different compositions… and the brightest spots within the crater are features called “hollows” that are truly unique to Mercury, possibly resulting from the planet’s close interaction with the solar wind.
First noted in September of 2011, hollows have been identified across many areas of Mercury. One hypothesis is that they’re formed by the sublimation of subsurface material exposed inside larger craters. Being so close to the Sun and lacking a protective atmosphere, Mercury is constantly being scoured by the solar wind — a relentless stream of charged particles that’s actively “sandblasting” exposed volatiles from the planet’s surface!
The reddish spot at the center of the crater in the top image is likely material surrounding a pyroclastic vent, which appear red and orange in MDIS images. The dark material that appears bluish is something called “low reflectance material” (LRM).
The image was acquired as a targeted high-resolution 11-color image set. Acquiring 11-color targets is a new MESSENGER campaign that began in March and utilizes all of the Wide-Angle Camera’s 11 narrow-band color filters. Because of the large data volume involved, only features of special scientific interest are targeted for imaging in all 11 colors.
Full of geologically interesting features the crater was named for Kakarla Tyagabrahmam, an 18th century composer of classical South Indian music.
The first spacecraft to establish orbit around Mercury in summer 2011, MESSENGER is capable of continuing orbital operations until early 2015.
Read more on the Johns Hopkins University APL MESSENGER site here.
Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Last night, as Commander Hadfield and the Expedition 35 crew were returning to Earth in their Soyuz spacecraft, the Sun unleashed yet another X-class flare from active region 1748, the third and most powerful eruption yet from the sunspot region in the past 24 hours — in fact, at a level of X3.2, it was the most intense flare observed all year.
And with this dynamic sunspot region just now coming around the Sun’s limb and into view, we can likely expect much more of this sort of activity… along with a steadily increasing chance of an Earth-directed CME.
According to SpaceWeather.com AR1748 has produced “the strongest flares of the year so far, and they signal a significant increase in solar activity. NOAA forecasters estimate a 40% chance of more X-flares during the next 24 hours.”
(Find out more about the classification of solar flares here.)
The sunspot region just became fully visible to Earth during the early hours of May 13 (UT).
Sunspots are regions where the Sun’s internal magnetic fields rise up through its surface layers, preventing convection from taking place and creating cooler, optically darker areas. They often occur in pairs or clusters, with individual spots corresponding to the opposite polar ends of magnetic lines.
Sunspots may appear dark because they are relatively cooler than the surrounding area on the Sun’s photosphere, but in ultraviolet and x-ray wavelengths they are brilliantly white-hot. And although sunspots look small compared to the Sun, they are often many times larger than Earth.
According to SDO project scientists Dean Pesnell on the SDO is Go! blog, AR1748 is not only rapidly unleashing flares but also changing shape.
“The movies show that the sunspot is changing, the two small groups on the right merging and the elongated spot on the lower left expanding out to join them,” Pesnell wrote earlier today.
Of course, as a solar scientist Pesnell is likely much more excited about the chance to observe further high-intensity activity than he is concerned about any dramatically negative impacts of a solar storm here on Earth, which, although possible, are still statistically unlikely.
“Great times ahead for this active region!” he added enthusiastically.
For updated information on AR1748’s activity visit SpaceWeather.com and NASA’s SDO site, and also check out TheSunToday.org run by solar physicist C. Alex Young, Ph.D.
Images courtesy of NASA/SDO and the AIA, EVE, and HMI science teams.
Coming home to clear blue skies, green grass and warm weather, the Expedition 35 crew of Canadian astronaut Chris Hadfield, NASA’s Tom Marshburn and Russia’s Roman Romanenko has returned after spending just over five months on the International Space Station. “It’s beautiful!” one of the crew radioed in Russian just before landing. “It’s morning here.”
The Soyuz TMA-07M spacecraft landed right on target on the steppe of Kazakhstan, southeast of Dzhezkazgan at 10:31 pm EDT on May 13 (02:31 UTC and 8:31 am local time, May 14, 2013.) The crew undocked from the ISS on Monday.
Keeping with his Expedition-long constant updates via Twitter (updated by his son Evan during the return flight and landing) Hadfield’s location changed appropriately to “In a Soyuz” to “In a field in Kazahkstan.”
A few hours later, Hadfield tweeted, “Safely home – back on Earth, happily readapting to the heavy pull of gravity. Wonderful to smell and feel Spring.”
The crew smiled and gave thumbs up after being extracted from the Soyuz craft, which appeared to land upright and then tipped on its side. Hadfield and Marshburn will soon head back to Johnson Space Center in Houston, with Romanenko going to Star City, Russia.
The Expedition 35 crew has now wrapped up 146 days in space, 144 days on the ISS. While on board they completed 2,336 orbits around the planet and clocked almost 100 million kilometers (62 million miles) In total, Marshburn has spent 162 days in space, 166 days for Hadfield, and 334 days for Romanenko.
This video shows the crews saying goodbye; then later the undocking, followed by the landing and crew extraction:
The Sun gets active! On May 12, 2013, the Sun emitted what NASA called a “significant” solar flare, classified as an X1.7, making it the first X-class flare of 2013. Then earlier today, May 13, 2013, the Sun let loose with an even stronger flare, an X2.8-class. Both flares took place just beyond the limb of the Sun, and were also associated with another solar phenomenon, a coronal mass ejection (CME) which sent solar material out into space.
Neither CME was Earth-directed, and according to SpaceWeather.com, no planets were in the line of fire. However, the CMEs appear to be on course to hit NASA’s Epoxi, STEREO-B and Spitzer spacecraft on May 15-16. NASA said their mission operators have been notified, and if warranted, operators can put spacecraft into safe mode to protect the instruments. Experimental NASA research models show that the CMEs were traveling at about 1,930 km/second (1,200 miles per second) when they left the Sun.
The sunspot associated with these flares is just coming into view, and the next 24 to 48 hours should reveal much about the sunspot, including its size, magnetic complexity, and potential for future flares.
See more images and video below:
Both the X1.7 and the X2.8-class solar flare, plus a prominence eruption, all in one video:
NASA’s Solar Dynamics Observatory (SDO) captured this X1 flare (largest of the year so far) in extreme UV light:
The image above could go down as an iconic shot of space exploration. Taken during the ’emergency’ spacewalk last Saturday to fix the leaking ammonia coolant in the pump and flow control system for the International Space Station’s power-supplying solar arrays, visible is astronaut Tom Marshburn taking a look at planet Earth. He shared the picture today on Twitter, saying, “Leaving is bittersweet. It’s been an unbelievable ride. Can’t wait to see what’s next!”
Marshburn is scheduled to return back to Earth later today along with ISS commander Chris Hadfield and cosmonaut Roman Romanenko.
Below are more great shots from Saturday’s EVA that were just released by NASA today. See here for earlier images of the spacewalk from Chris Hadfield via Twitter.
A new method of detecting alien worlds is full of awesome, as it combines Einstein’s Theory of Relativity along with BEER. No, not the weekend beverage of choice, but the relativistic BEaming, Ellipsoidal, and Reflection/emission modulations algorithm. This new way of finding exoplanets was developed by Professor Tsevi Mazeh and his student, Simchon Faigler, at Tel Aviv University, Israel, and it has been used for the first time to find a distant exoplanet, Kepler-76b, informally named Einstein’s planet.
“This is the first time that this aspect of Einstein’s theory of relativity has been used to discover a planet,” said Mazeh.
The two most-most used and prolific techniques for finding exoplanets are radial velocity (looking for wobbling stars) and transits (looking for dimming stars).
The new method looks for three small effects that occur simultaneously as a planet orbits the star. A “beaming” effect causes the star to brighten as it moves toward us, tugged by the planet, and dim as it moves away. The brightening results from photons “piling up” in energy, as well as light getting focused in the direction of the star’s motion due to relativistic effects.
The team also looked for signs that the star was stretched into a football shape by gravitational tides from the orbiting planet. The star would appear brighter when we observe the “football” from the side, due to more visible surface area, and fainter when viewed end-on. The third small effect is due to starlight reflected by the planet itself.
“This was only possible because of the exquisite data NASA is collecting with the Kepler spacecraft,” said Faigler.
Although scientists say this new method can’t find Earth-sized worlds using current technology, it offers astronomers a unique discovery opportunity. Unlike radial velocity searches, it doesn’t require high-precision spectra. Unlike transits, it doesn’t require a precise alignment of planet and star as seen from Earth.
“Each planet-hunting technique has its strengths and weaknesses. And each novel technique we add to the arsenal allows us to probe planets in new regimes,” said Avi Loeb from the Harvard-Smithsonian Center for Astrophysics, who first proposed the idea of this planet-hunting method back in 2003.
Kepler-76b is a “hot Jupiter” that orbits its star every 1.5 days. Its diameter is about 25 percent larger than Jupiter and it weighs twice as much. It orbits a type F star located about 2,000 light-years from Earth in the constellation Cygnus.
The planet is tidally locked to its star, always showing the same face to it, just as the Moon is tidally locked to Earth. As a result, Kepler-76b broils at a temperature of about 3,600 degrees Fahrenheit.
Interestingly, the team found strong evidence that the planet has extremely fast jet-stream winds that carry the heat around it. As a result, the hottest point on Kepler-76b isn’t the substellar point (“high noon”) but a location offset by about 10,000 miles. This effect has only been observed once before, on HD 189733b, and only in infrared light with the Spitzer Space Telescope. This is the first time optical observations have shown evidence of alien jet stream winds at work.
The planet has been confirmed using radial velocity observations gathered by the TRES spectrograph at Whipple Observatory in Arizona, and by Lev Tal-Or (Tel Aviv University) using the SOPHIE spectrograph at the Haute-Provence Observatory in France. A closer look at the Kepler data also showed that the planet transits its star, providing additional confirmation.
The paper announcing this discovery has been accepted for publication in The Astrophysical Journal and is available on arXiv.
View of NASA’s Skylab Orbital Workshop in Earth orbit as photographed during departure of its last astronaut crew on Slylab 4 mission for the return home in Apollo capsule.
Credit: NASA
See photo gallery below
Watch the recorded NASA Skylab 40th Anniversary discussion on YouTube – below[/caption]
Skylab was America’s first space station. The massive orbital workshop was launched unmanned to Earth orbit 40 years ago on May 14, 1973 atop the last of NASA’s Saturn V rockets that successfully lofted American’s astronauts on the historic lunar landings of the Apollo-era.
Three manned Apollo crews comprising three astronauts each ultimately lived and worked and conducted groundbreaking science experiments aboard Skylab for a total of 171 days from May 1973 to February 1974. Skylab paved the way for long duration human spaceflight and the ISS (International Space Station)
On May 13, NASA commemorated the 40th anniversary of Skylab’s liftoff with a special roundtable discussion broadcast live on NASA TV. The event started at 2:30 PM EDT and originated from NASA Headquarters in Washington, DC. Participants included Skylab and current ISS astronauts and NASA human spaceflight managers.
Watch the recorded NASA Skylab 40th Anniversary briefing on YouTube – below.
The Skylab project was hugely successful in accomplishing some 300 science experiments despite suffering a near death crisis in its first moments.
Shortly after blastoff of the Saturn V from Launch Complex 39A the station was severely crippled when launch vibrations completely ripped off one of the stations two side mounted power generating solar panels.
The micrometeoroid shield that protected the orbiting lab from intense solar heating was also torn away and lost. This caused the workshop’s internal temperatures to skyrocket to an uninhabitable temperature of 52 degrees Celsius (126 degrees F).
Furthermore, a piece of the shield had wrapped around the other solar panel which prevented its deployment, starving the station of desperately required electrical power.
All nine astronauts that worked on Skylab were launched on the smaller Saturn 1B rocket from Pad 39B at the Kennedy Space Center.
The launch of the first crew was delayed by 10 days while teams of engineers at NASA devised a rescue plan to save the station. Engineers also ‘rolled’ Skylab to an attitude that minimized the unrelenting solar baking.
The first crew aboard Skylab 2 launched on May 25, 1973 and successfully carried out three emergency spacewalks that salvaged the station and proved the value of humans in space. They freed the one remaining stuck solar panel and deployed a large fold out parasol sun shade through a science airlock that cooled the lab to a livable temperature of 23.8 degrees C (75 degrees F).
The Skylab 2 crew of Apollo 12 moon walker Charles Conrad, Jr., Paul J. Weitz, and Joseph P. Kerwin spent 28 days and 50 minutes aboard the complex.
The outpost became fully operational on June 4, 1973 allowing all three crews to fully carry out hundreds of wide ranging science experiments involving Earth observations and resources studies, solar astronomy and biomedical studies on human adaption to zero gravity.
The second crew launched on the Skylab 3 mission on July 28, 1973. They comprised Apollo 12 moon walker Alan L. Bean, Jack R. Lousma and Owen K. Garriott and spent 59 days and 11 hours aboard the orbiting outpost. They conducted three EVAs totaling 13 hours, 43 minutes and deployed a larger and more stable sun shade.
The 3rd and last crew launched on Skylab 4 on Nov. 16, 1973. Astronauts Gerald P. Carr, William R. Pogue, Edward G. Gibson spent 84 days in space. Their science observations included Comet Kohoutek. They conducted four EVAs totaling 22 hours, 13 minutes.
Skylab was the size of a 3 bedroom house and far more spacious then the tiny Apollo capsules. The complex was 86.3 ft (26.3 m) long and 24.3 ft (7.4 m) in diameter. It weighed 169,950 pounds.
“Skylab took the first step of Americans living in space and doing useful science above the atmosphere at wavelengths not possible on the ground and for long duration periods,” said astronaut Owen Garriot, science pilot, Skylab 3.
Skylab was also the first time student experiments flew into space – for example the spiders ‘Anita and Arabella’ – and later led to a many educational initiatives and programs and innovative ideas.
The Skylab project taught NASA many lessons in designing and operating the ISS, said NASA astronaut Kevin Ford who was the Commander of the recently completed Expedition 34.
NASA had hoped to revisit Skylab with Space Shuttle crews in the late 1970’s. But the massive lab’s orbit degraded faster than expected and Skylab prematurely plummeted back to Earth and disintegrated on July 11, 1979.
See a photo gallery of views from the Skylab missions herein.
Be sure to follow today’s (May 13) undocking of the ISS Expedition 35 crew (Commander ‘extraordinaire’ Chris Hadfield, Tom Marshburn and Roman Romanenko) and return to Earth tonight aboard a Russian Soyuz capsule.
The ISS is a fantastic measure of just have far we have come in space since Skylab – with the US and Russia peacefully cooperating to accomplish far more than each can do alone.
During the past five months, Canadian astronaut Chris Hadfield has been providing a steady flow of strikingly beautiful images, as well as concisely sharing his experiences via social media sites like Twitter. Hadfield has become an internet sensation, and with his eloquence, wit, and ebullience he can certainly turn a phrase, as well as educate and elucidate.
During his Expedition, Hadfield has performed experiments with schoolchildren, chatted with people via amateur radio, and serenaded us with songs, including singing along with nearly 1 million students via webcast. He’s also exchanged tweets with Star Trek captains, first officers and engineers, as well as several averages Joe who asked a question. Hadfield has set a new standard of incredible.
Here are a few of our favorite quotes and Tweets from Hadfield during his mission. Feel free to add your own favorites in the comments.
Over the weekend, the ISS crew needed to do an emergency EVA, which could have been a tense situation. Instead, Hadfield tweeted about how fun this was going to be:
What a fun day! This type of event is what the years of training were for. A happy, busy crew, working hard, loving life in space.
As the air was let out of the Quest airlock to allow Tom Marshburn and Chris Cassidy to step outside to do their EVA, Hadfield radioed to Mission Control that the depressurization was underway by saying, “We’re now doing our best to pressurize the rest of the Universe.”
On May 4, widely considered Star Wars Day around the world, Hadfield posted this fun picture, demonstrating some ‘Jedi skills’ on the ISS (and yes, we know its not an exactly correct quote from Yoda):
Being in space is such a great experience, Hadfield said, that he didn’t want to miss a minute, even to sleep:
“This is a marvelous, marvelous human experience,” Hadfield said in his first news conference after assuming command of the ISS in March. “The only thing that gets me mad is I have to sleep. My resolution has been to make the absolute most of it — to spend as little time sleeping as I can.”
During that same news conference, he expressed his excitement at taking command: “Thank you very much for giving me the keys to the family car… we’re going to put some miles on it, but we’ll bring it back in good shape.”
Hadfield talked to students several times from space – and performed some great show and tell, including the infamous ‘wringing out a washcloth in space’ video. He also coined some gems during these talks, such as:
“The cool things about space is when you put your pants on here, you can put them on two legs at a time.”
But he also gave some great advice. During a Q&A on Reddit, one student asked if Hadfield had any advice for an aspiring astronaut. Hadfeild replied:
“Decide in your heart what really excites and challenges you, and start moving your life in that direction. Every decision you make, from what you eat to what you do with your time tonight, turns you into who you are tomorrow and the day after that.” “Look at who you want to be, and start sculpting yourself into that person. You may not get exactly where you thought you’d be, but you will be doing things that suit you in a profession you believe in. “Don’t let life randomly kick you into the adult you don’t want to become.”
Gavin Aung Than, who pens Zen Pencils website, created a wonderful comic strip, “An astronaut’s advice” based on Hadfield’s response. See it here.
Hadfield quipped on the challenges and special clothing needed for their Soyuz landing – taking place tonight: “On landing we wear the Centaur G-suit, squeezes our calves, thighs and gut so that our blood stays in our heads. Space Spanx 🙂 “
Good to know that after 5 months, my Sokhol pressure suit still fits. It’s what we wear in the Soyuz. High fashion. twitter.com/Cmdr_Hadfield/…
It is sort of like being inside your mother’s womb where your body is floating, your knees come up your arms go out, your head comes down. You are completely relaxed, it’s a wonderful way to sleep.
His description of how he felt during the Soyuz launch back in December:
“It is spectacular. From about five minutes in, when we knew for sure that we were going to have the weather to go, the smile on my face just got bigger and bigger, and I was just beaming through the whole launch. I mean, it is just an amazing ride.”
Then later during a press conference:
“Going to space and going from acceleration to weightlessness is like you’re being beaten and pummeled by a big gorilla on your chest and suddenly he throws you off a cliff.”
Then there were all the images of Earth from space, providing such a unique perspective of our humanity. For example, just this morning:
You can see how high we are when you see how close this jet trail is to the ground. twitter.com/Cmdr_Hadfield/…
Here Hadfield summed up his thoughts on getting ready to head for home:
The amount of images Hadfield has taken during his mission is incredible and impressive. Here you can see an interactive graphic of all the images taken or tweeted by Chris Hadfield during his Expedition.
With over 833,000 followers on Twitter, will Hadfield keep up his social media presence once he returns back to Earth?
His son Evan, who has been Hadfield’s social media manager since Hadfield was chosen for this mission, assured that his father will keep the conversation going.
“A lot of people think that when he comes back he’ll stop, but I don’t really understand why because it’s not an end to something,” Evan said in an interview with the CBC. “It’s going to be so much greater when he comes home and people can interact with him face to face now that they know what he’s achieved and what it’s possible to achieve.”
Just when we’d thought that we’ve seen every possible type of eclipse image, we’re happily surprised by the Universe.
If you’re like me, you watch the original Star Wars film and wonder what kind of eclipses could be seen from the surface of Tatooine. Maybe you even wonder what things would look like if an extra sun and moon were to be thrown into the mix. How often, if ever, would such a bizarre alignment sync up?
Astrophotographer Geoff Sims provided us with just such a bizarre view this past weekend.
Geoff was one of a handful of intrepid photographers that braved the wilds of the Australian Outback to deliver us some stunning views of last week’s rising annular eclipse. We wrote of how to observe this celestial wonder late last month on Universe Today, and documented the efforts of photographers, both Earthbound and otherwise, the day of the eclipse this past Friday.
For this amazing image, Geoff positioned himself along the track of annularity in the Great Sandy Desert in Western Australia. Even the name of the site, the Plutonic Gold Mine outside of Newman, Australia couldn’t be beat!
The series is a composite of three exposures which were taken about three minutes apart. Mr. Simms relates how he accomplished this unforgettable image on his Facebook page:
“The lower image shows a flattened and distorted Sun perched right on the horizon, just seconds before the annular eclipse began. The middle image shows the annular phase, while the upper image shows the Sun some minutes after annularity.”
Mr. Sims used a Canon Mark III DSLR camera with a 500mm lens shooting at 1/1,000th of a second exposures at a focal ratio of f/8 and an ISO setting of 100.
Amazingly, other photographers positioned very near the eclipse graze line caught sight of what are known as Bailey’s Beads as well. More commonly seen during a total solar eclipse, these are caused by sunlight streaming through ridges and valleys on the limb of the Moon. This can also cause the brilliant diamond ring effect seen during a total solar eclipse. In the case of an annular eclipse, this manifests as a ragged broken edge where the disk of the Sun meets the Moon:
An annular eclipse occurs when the Moon eclipses the Sun near apogee, or its most distant point in its orbit and is hence visually too small to cover the Sun as seen from the Earth. A similar eclipse occurred over the Pacific and the western U.S. last year on May 20th, leading to a series of “horned sunset” photos taken across Texas and New Mexico.
But what is the most astonishing aspect of the eclipse sequence is the extreme distortion occurring across the very bottom image sitting on the horizon. When you’re looking low to the horizon, you’re viewing objects through a thicker cross-section of the atmosphere. This is what is termed as a higher air mass, and most astro-imagers avoid it entirely, preferring to catch objects with as little distortion as possible as they transit across the local meridian. This distortion can be extreme enough to result in atmospheric refraction of rising and setting objects like the Sun, Moon or planets, causing them to appear moments before or after they actually rose or set over the local horizon. In the case of the bottom image, the lower limb of the solar annulus (the technical name for what folks call the “ring of fire” seen during an annular eclipse) is actually distorted enough to appear along the rim of the local horizon!
To our knowledge, such an extremely distorted eclipse has never been documented before. One also wonders if a “green flash” could be captured by a properly positioned observer on a mountaintop or out to sea during a sunset or sunrise annular or total solar eclipse.
Newsflash: the green flash was indeed captured during last week’s annular eclipse… check out this amazing animation:
2013 will offer one more chance to try to repeat this feat. On November 3rd, a hybrid solar eclipse will race across the Atlantic Ocean and central Africa. This is an eclipse that is literally an annular across a portion of its track and a total across another. The eclipse will begin at sunrise just south of Bermuda and end at sunset in eastern Africa. The maximum period of totality is 1 minute and 40 seconds off of the coast of Liberia, and the southern regions of Ethiopia offer the best shot at a sunset eclipse. Tantalizingly, the Florida Space Coast will get a rising partial eclipse only a few percent in magnitude.
Kudos to Mr. Sims for providing us with an unforgettable view of this rare cosmic spectacle. Australia won’t see another total solar eclipse until July 22nd, 2028, and another purely annular eclipse won’t occur until April 29th, 2014 across a very small section of the Antarctic.
And next week, we’ll have a very shallow penumbral eclipse on May 25th, and event is so subtle that few if any will notice it. Still, it is from such humble beginnings that great things are made, as we witness the birth of a new lunar saros… stay tuned!
This very creative self-portrait by astrophotographer Miguel Claro shows what appears to be the photographer taking a ‘macro’ closeup of the crescent Moon! But there is a lot more going on in this image. The crescent Moon has just 3% of the disc illuminated by the Sun, but there is a stunningly bright Earthshine effect visible. This image was taken on May 11, 2013, so there is a conjunction between the Moon and Jupiter (the brightest star in the image). Venus was also in conjunction, but at the time this image was taken, it was covered by the cloudy band low on the horizon.
Another shot below:
Images taken from Capuchos, Almada, Portugal with a Canon 50D – ISO400; Exp. 2sec. F/4; 35mm, on May 11, 2013 at 21:41 and 21:43. Enjoy more of Claro’s images at his website.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.