The Sun Blasts Out Two X-Class Flares, Strongest of the Year

A close-up of an an X1.7-class solar flare on May 12, 2013 as seen by NASA's Solar Dynamics Observatory. Credit: NASA/SDO/AIA. Click for larger version.

The Sun gets active! On May 12, 2013, the Sun emitted what NASA called a “significant” solar flare, classified as an X1.7, making it the first X-class flare of 2013. Then earlier today, May 13, 2013, the Sun let loose with an even stronger flare, an X2.8-class. Both flares took place just beyond the limb of the Sun, and were also associated with another solar phenomenon, a coronal mass ejection (CME) which sent solar material out into space.

Neither CME was Earth-directed, and according to SpaceWeather.com, no planets were in the line of fire. However, the CMEs appear to be on course to hit NASA’s Epoxi, STEREO-B and Spitzer spacecraft on May 15-16. NASA said their mission operators have been notified, and if warranted, operators can put spacecraft into safe mode to protect the instruments. Experimental NASA research models show that the CMEs were traveling at about 1,930 km/second (1,200 miles per second) when they left the Sun.

The sunspot associated with these flares is just coming into view, and the next 24 to 48 hours should reveal much about the sunspot, including its size, magnetic complexity, and potential for future flares.

See more images and video below:

Both the X1.7 and the X2.8-class solar flare, plus a prominence eruption, all in one video:

SDO image of an X2.8-class flare on May 13, 2013. Credit: NASA/SDO
SDO image of an X2.8-class flare on May 13, 2013. Credit: NASA/SDO

NASA’s Solar Dynamics Observatory (SDO) captured this X1 flare (largest of the year so far) in extreme UV light:

More Incredible Images from the Space Station ‘Emergency’ EVA

Astronaut Tom Marshburn looks toward Earth during a spacewalk on May 11, 2013 to fix a leaking coolant system. Credit: NASA.

The image above could go down as an iconic shot of space exploration. Taken during the ’emergency’ spacewalk last Saturday to fix the leaking ammonia coolant in the pump and flow control system for the International Space Station’s power-supplying solar arrays, visible is astronaut Tom Marshburn taking a look at planet Earth. He shared the picture today on Twitter, saying, “Leaving is bittersweet. It’s been an unbelievable ride. Can’t wait to see what’s next!”

Marshburn is scheduled to return back to Earth later today along with ISS commander Chris Hadfield and cosmonaut Roman Romanenko.

Below are more great shots from Saturday’s EVA that were just released by NASA today. See here for earlier images of the spacewalk from Chris Hadfield via Twitter.

Astronaut Chris Cassidy during the May 11, 2013 spacewalk at the ISS. Credit: NASA
Astronaut Chris Cassidy during the May 11, 2013 spacewalk at the ISS. Credit: NASA

Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn on a spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA.
Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn on a spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA.
Astronaut Chris Cassidy takes a self-portrait during the May 11, 2013 EVA at the ISS. Credit: NASA.
Astronaut Chris Cassidy takes a self-portrait during the May 11, 2013 EVA at the ISS. Credit: NASA.
Chris Cassidy with Earth as a backdrop during the EVA on May 11, 2013. Credit: NASA.
Chris Cassidy with Earth as a backdrop during the EVA on May 11, 2013. Credit: NASA.
 Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn completed a the 5-hour, 30-minute spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA
Expedition 35 Flight Engineers Chris Cassidy (left) and Tom Marshburn completed a the 5-hour, 30-minute spacewalk on May 11 to inspect and replace a pump controller box on the International Space Station’s far port truss (P6) leaking ammonia coolant. Credit: NASA

Click each image for a higher-resolution version, and see more images from NASA’s 2Explore Flickr stream.

Using the Theory of Relativity and BEER to Find Exoplanets

"Einstein's planet," formally known as Kepler-76b, is a "hot Jupiter" that orbits its star every 1.5 days. Its diameter is about 25 percent larger than Jupiter and it weighs twice as much. This artist's conception shows Kepler-76b orbiting its host star, which has been tidally distorted into a slight football shape (exaggerated here for effect). The planet was detected using the BEER algorithm, which looked for brightness changes in the star as the planet orbits due to relativistic BEaming, Ellipsoidal variations, and Reflected light from the planet. Credit: David A. Aguilar (CfA)

A new method of detecting alien worlds is full of awesome, as it combines Einstein’s Theory of Relativity along with BEER. No, not the weekend beverage of choice, but the relativistic BEaming, Ellipsoidal, and Reflection/emission modulations algorithm. This new way of finding exoplanets was developed by Professor Tsevi Mazeh and his student, Simchon Faigler, at Tel Aviv University, Israel, and it has been used for the first time to find a distant exoplanet, Kepler-76b, informally named Einstein’s planet.

“This is the first time that this aspect of Einstein’s theory of relativity has been used to discover a planet,” said Mazeh.

The two most-most used and prolific techniques for finding exoplanets are radial velocity (looking for wobbling stars) and transits (looking for dimming stars).

The new method looks for three small effects that occur simultaneously as a planet orbits the star. A “beaming” effect causes the star to brighten as it moves toward us, tugged by the planet, and dim as it moves away. The brightening results from photons “piling up” in energy, as well as light getting focused in the direction of the star’s motion due to relativistic effects.

The team also looked for signs that the star was stretched into a football shape by gravitational tides from the orbiting planet. The star would appear brighter when we observe the “football” from the side, due to more visible surface area, and fainter when viewed end-on. The third small effect is due to starlight reflected by the planet itself.

“This was only possible because of the exquisite data NASA is collecting with the Kepler spacecraft,” said Faigler.

This graphic shows Kepler-76b's orbit around a yellow-white, type F star located 2,000 light-years from Earth in the constellation Cygnus. Although Kepler-76b was identified using the BEER effect (see above), it was later found to exhibit a grazing transit, crossing the edge of the star's face as seen from Earth. Credit: Dood Evan.
This graphic shows Kepler-76b’s orbit around a yellow-white, type F star located 2,000 light-years from Earth in the constellation Cygnus. Although Kepler-76b was identified using the BEER effect (see above), it was later found to exhibit a grazing transit, crossing the edge of the star’s face as seen from Earth.
Credit: Dood Evan.

Although scientists say this new method can’t find Earth-sized worlds using current technology, it offers astronomers a unique discovery opportunity. Unlike radial velocity searches, it doesn’t require high-precision spectra. Unlike transits, it doesn’t require a precise alignment of planet and star as seen from Earth.

“Each planet-hunting technique has its strengths and weaknesses. And each novel technique we add to the arsenal allows us to probe planets in new regimes,” said Avi Loeb from the Harvard-Smithsonian Center for Astrophysics, who first proposed the idea of this planet-hunting method back in 2003.

Kepler-76b is a “hot Jupiter” that orbits its star every 1.5 days. Its diameter is about 25 percent larger than Jupiter and it weighs twice as much. It orbits a type F star located about 2,000 light-years from Earth in the constellation Cygnus.

The planet is tidally locked to its star, always showing the same face to it, just as the Moon is tidally locked to Earth. As a result, Kepler-76b broils at a temperature of about 3,600 degrees Fahrenheit.

Interestingly, the team found strong evidence that the planet has extremely fast jet-stream winds that carry the heat around it. As a result, the hottest point on Kepler-76b isn’t the substellar point (“high noon”) but a location offset by about 10,000 miles. This effect has only been observed once before, on HD 189733b, and only in infrared light with the Spitzer Space Telescope. This is the first time optical observations have shown evidence of alien jet stream winds at work.

The planet has been confirmed using radial velocity observations gathered by the TRES spectrograph at Whipple Observatory in Arizona, and by Lev Tal-Or (Tel Aviv University) using the SOPHIE spectrograph at the Haute-Provence Observatory in France. A closer look at the Kepler data also showed that the planet transits its star, providing additional confirmation.

The paper announcing this discovery has been accepted for publication in The Astrophysical Journal and is available on arXiv.

Source: CfA

Skylab: NASA Commemorates 40th Anniversary of America’s First Space Station – Photo Gallery/Broadcast

View of the Skylab Orbital Workshop in Earth orbit as photographed during departure of its last astronaut crew on Slylab 4 mission for the return home in Apollo capsule. Credit: NASA

View of NASA’s Skylab Orbital Workshop in Earth orbit as photographed during departure of its last astronaut crew on Slylab 4 mission for the return home in Apollo capsule.
Credit: NASA
See photo gallery below
Watch the recorded NASA Skylab 40th Anniversary discussion on YouTube – below[/caption]

Skylab was America’s first space station. The massive orbital workshop was launched unmanned to Earth orbit 40 years ago on May 14, 1973 atop the last of NASA’s Saturn V rockets that successfully lofted American’s astronauts on the historic lunar landings of the Apollo-era.

Three manned Apollo crews comprising three astronauts each ultimately lived and worked and conducted groundbreaking science experiments aboard Skylab for a total of 171 days from May 1973 to February 1974. Skylab paved the way for long duration human spaceflight and the ISS (International Space Station)

On May 13, NASA commemorated the 40th anniversary of Skylab’s liftoff with a special roundtable discussion broadcast live on NASA TV. The event started at 2:30 PM EDT and originated from NASA Headquarters in Washington, DC. Participants included Skylab and current ISS astronauts and NASA human spaceflight managers.

Watch the recorded NASA Skylab 40th Anniversary briefing on YouTube – below.

The Skylab project was hugely successful in accomplishing some 300 science experiments despite suffering a near death crisis in its first moments.

Shortly after blastoff of the Saturn V from Launch Complex 39A the station was severely crippled when launch vibrations completely ripped off one of the stations two side mounted power generating solar panels.

The micrometeoroid shield that protected the orbiting lab from intense solar heating was also torn away and lost. This caused the workshop’s internal temperatures to skyrocket to an uninhabitable temperature of 52 degrees Celsius (126 degrees F).

Furthermore, a piece of the shield had wrapped around the other solar panel which prevented its deployment, starving the station of desperately required electrical power.

View of crippled Skylab complex during ‘fly around’ by the first crew shows missing  micrometeoroid shield and stuck solar panel which luckily was not ripped off during launch. Credit: NASA
View of crippled Skylab complex during ‘fly around’ by the first crew shows missing micrometeoroid shield and stuck solar panel which luckily was not ripped off during launch. Credit: NASA

All nine astronauts that worked on Skylab were launched on the smaller Saturn 1B rocket from Pad 39B at the Kennedy Space Center.

The launch of the first crew was delayed by 10 days while teams of engineers at NASA devised a rescue plan to save the station. Engineers also ‘rolled’ Skylab to an attitude that minimized the unrelenting solar baking.

Owen Garriott Performs a Spacewalk During Skylab 3 Astronaut Owen Garriott performs a spacewalk at the Apollo Telescope Mount (ATM) of the Skylab space station cluster in Earth orbit, photographed with a hand-held 70mm Hasselblad camera. Garriott had just deployed the Skylab Particle Collection S149 Experiment. The experiment was mounted on one of the ATM solar panels. The purpose of the S149 experiment was to collect material from interplanetary dust particles on prepared surfaces suitable for studying their impact phenomena. Earlier during the spacewalk, Garriott assisted astronaut Jack Lousma, Skylab 3 pilot, in deploying the twin pole solar shield.  Credit: NASA
Owen Garriott Performs a Spacewalk During Skylab 3. Garriott performs a spacewalk at the Apollo Telescope Mount (ATM) of the Skylab space station cluster in Earth orbit, photographed with a hand-held 70mm Hasselblad camera. Garriott had just deployed the Skylab Particle Collection S149 Experiment. The experiment was mounted on one of the ATM solar panels. The purpose of the S149 experiment was to collect material from interplanetary dust particles on prepared surfaces suitable for studying their impact phenomena. Earlier during the spacewalk, Garriott assisted astronaut Jack Lousma, Skylab 3 pilot, in deploying the twin pole solar shield. Credit: NASA

The first crew aboard Skylab 2 launched on May 25, 1973 and successfully carried out three emergency spacewalks that salvaged the station and proved the value of humans in space. They freed the one remaining stuck solar panel and deployed a large fold out parasol sun shade through a science airlock that cooled the lab to a livable temperature of 23.8 degrees C (75 degrees F).

The Skylab 2 crew of Apollo 12 moon walker Charles Conrad, Jr., Paul J. Weitz, and Joseph P. Kerwin spent 28 days and 50 minutes aboard the complex.

The outpost became fully operational on June 4, 1973 allowing all three crews to fully carry out hundreds of wide ranging science experiments involving Earth observations and resources studies, solar astronomy and biomedical studies on human adaption to zero gravity.

The second crew launched on the Skylab 3 mission on July 28, 1973. They comprised Apollo 12 moon walker Alan L. Bean, Jack R. Lousma and Owen K. Garriott and spent 59 days and 11 hours aboard the orbiting outpost. They conducted three EVAs totaling 13 hours, 43 minutes and deployed a larger and more stable sun shade.

The 3rd and last crew launched on Skylab 4 on Nov. 16, 1973. Astronauts Gerald P. Carr, William R. Pogue, Edward G. Gibson spent 84 days in space. Their science observations included Comet Kohoutek. They conducted four EVAs totaling 22 hours, 13 minutes.

Skylab was the size of a 3 bedroom house and far more spacious then the tiny Apollo capsules. The complex was 86.3 ft (26.3 m) long and 24.3 ft (7.4 m) in diameter. It weighed 169,950 pounds.

“Skylab took the first step of Americans living in space and doing useful science above the atmosphere at wavelengths not possible on the ground and for long duration periods,” said astronaut Owen Garriot, science pilot, Skylab 3.

Skylab was also the first time student experiments flew into space – for example the spiders ‘Anita and Arabella’ – and later led to a many educational initiatives and programs and innovative ideas.

The Skylab project taught NASA many lessons in designing and operating the ISS, said NASA astronaut Kevin Ford who was the Commander of the recently completed Expedition 34.

NASA had hoped to revisit Skylab with Space Shuttle crews in the late 1970’s. But the massive lab’s orbit degraded faster than expected and Skylab prematurely plummeted back to Earth and disintegrated on July 11, 1979.

See a photo gallery of views from the Skylab missions herein.

Be sure to follow today’s (May 13) undocking of the ISS Expedition 35 crew (Commander ‘extraordinaire’ Chris Hadfield, Tom Marshburn and Roman Romanenko) and return to Earth tonight aboard a Russian Soyuz capsule.

The ISS is a fantastic measure of just have far we have come in space since Skylab – with the US and Russia peacefully cooperating to accomplish far more than each can do alone.

Ken Kremer

…………….
Learn more about NASA missions, Mars, Antares and Curiosity at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

Skylab 3 crew photographs Skylab space station with dramatic Earth backdrop during rendezvous and docking maneuvers in 1973.  Credit: NASA
Skylab 3 crew photographs Skylab space station with dramatic Earth backdrop during rendezvous and docking maneuvers in 1973. Credit: NASA
Undergoing a Dental Exam in Space Skylab 2 commander Pete Conrad undergoes a dental examination by medical officer Joseph Kerwin in the Skylab Medical Facility. In the absence of an examination chair, Conrad simply rotated his body to an upside down position to facilitate the procedure. Credit: NASA
Undergoing a Dental Exam in Space Skylab 2 commander Pete Conrad undergoes a dental examination by medical officer Joseph Kerwin in the Skylab Medical Facility. In the absence of an examination chair, Conrad simply rotated his body to an upside down position to facilitate the procedure. Credit: NASA
Skylab program patch
Skylab program patch

What is Your Favorite Chris Hadfield-ism?

Just a sample of Chris Hadfield's creativity in sharing his space experience. 'Weightless water. This picture is fun no matter what direction you spin it,' he said via Twitter.

During the past five months, Canadian astronaut Chris Hadfield has been providing a steady flow of strikingly beautiful images, as well as concisely sharing his experiences via social media sites like Twitter. Hadfield has become an internet sensation, and with his eloquence, wit, and ebullience he can certainly turn a phrase, as well as educate and elucidate.

During his Expedition, Hadfield has performed experiments with schoolchildren, chatted with people via amateur radio, and serenaded us with songs, including singing along with nearly 1 million students via webcast. He’s also exchanged tweets with Star Trek captains, first officers and engineers, as well as several averages Joe who asked a question. Hadfield has set a new standard of incredible.

Here are a few of our favorite quotes and Tweets from Hadfield during his mission. Feel free to add your own favorites in the comments.

Over the weekend, the ISS crew needed to do an emergency EVA, which could have been a tense situation. Instead, Hadfield tweeted about how fun this was going to be:

As the air was let out of the Quest airlock to allow Tom Marshburn and Chris Cassidy to step outside to do their EVA, Hadfield radioed to Mission Control that the depressurization was underway by saying, “We’re now doing our best to pressurize the rest of the Universe.”

On May 4, widely considered Star Wars Day around the world, Hadfield posted this fun picture, demonstrating some ‘Jedi skills’ on the ISS (and yes, we know its not an exactly correct quote from Yoda):

Being in space is such a great experience, Hadfield said, that he didn’t want to miss a minute, even to sleep:

“This is a marvelous, marvelous human experience,” Hadfield said in his first news conference after assuming command of the ISS in March. “The only thing that gets me mad is I have to sleep. My resolution has been to make the absolute most of it — to spend as little time sleeping as I can.”

During that same news conference, he expressed his excitement at taking command: “Thank you very much for giving me the keys to the family car… we’re going to put some miles on it, but we’ll bring it back in good shape.”

Hadfield talked to students several times from space – and performed some great show and tell, including the infamous ‘wringing out a washcloth in space’ video. He also coined some gems during these talks, such as:

“The cool things about space is when you put your pants on here, you can put them on two legs at a time.”

But he also gave some great advice. During a Q&A on Reddit, one student asked if Hadfield had any advice for an aspiring astronaut. Hadfeild replied:

“Decide in your heart what really excites and challenges you, and start moving your life in that direction. Every decision you make, from what you eat to what you do with your time tonight, turns you into who you are tomorrow and the day after that.” “Look at who you want to be, and start sculpting yourself into that person. You may not get exactly where you thought you’d be, but you will be doing things that suit you in a profession you believe in. “Don’t let life randomly kick you into the adult you don’t want to become.”

Gavin Aung Than, who pens Zen Pencils website, created a wonderful comic strip, “An astronaut’s advice” based on Hadfield’s response. See it here.

Hadfield quipped on the challenges and special clothing needed for their Soyuz landing – taking place tonight: “On landing we wear the Centaur G-suit, squeezes our calves, thighs and gut so that our blood stays in our heads. Space Spanx 🙂 “

On what it is like to sleep in space:

It is sort of like being inside your mother’s womb where your body is floating, your knees come up your arms go out, your head comes down. You are completely relaxed, it’s a wonderful way to sleep.

His description of how he felt during the Soyuz launch back in December:

“It is spectacular. From about five minutes in, when we knew for sure that we were going to have the weather to go, the smile on my face just got bigger and bigger, and I was just beaming through the whole launch. I mean, it is just an amazing ride.”

Then later during a press conference:

“Going to space and going from acceleration to weightlessness is like you’re being beaten and pummeled by a big gorilla on your chest and suddenly he throws you off a cliff.”

Then there were all the images of Earth from space, providing such a unique perspective of our humanity. For example, just this morning:

Here Hadfield summed up his thoughts on getting ready to head for home:

The amount of images Hadfield has taken during his mission is incredible and impressive. Here you can see an interactive graphic of all the images taken or tweeted by Chris Hadfield during his Expedition.

With over 833,000 followers on Twitter, will Hadfield keep up his social media presence once he returns back to Earth?

His son Evan, who has been Hadfield’s social media manager since Hadfield was chosen for this mission, assured that his father will keep the conversation going.

“A lot of people think that when he comes back he’ll stop, but I don’t really understand why because it’s not an end to something,” Evan said in an interview with the CBC. “It’s going to be so much greater when he comes home and people can interact with him face to face now that they know what he’s achieved and what it’s possible to achieve.”

A Wacky Distorted View of the Recent Solar Eclipse

A three image sequence of the rising annular eclipse. Credit: Geoff Sims. (@beyond_beneath)

Just when we’d thought that we’ve seen every possible type of eclipse image, we’re happily surprised by the Universe.

If you’re like me, you watch the original Star Wars film and wonder what kind of eclipses could be seen from the surface of Tatooine.  Maybe you even wonder what things would look like if an extra sun and moon were to be thrown into the mix. How often, if ever, would such a bizarre alignment sync up?

Astrophotographer Geoff Sims provided us with just such a bizarre view this past weekend.

Geoff was one of a handful of intrepid photographers that braved the wilds of the Australian Outback to deliver us some stunning views of last week’s rising annular eclipse. We wrote of how to observe this celestial wonder late last month on Universe Today, and documented the efforts of photographers, both Earthbound and otherwise, the day of the eclipse this past Friday.

For this amazing image, Geoff positioned himself along the track of annularity in the Great Sandy Desert in Western Australia. Even the name of the site, the Plutonic Gold Mine outside of Newman, Australia couldn’t be beat!

The series is a composite of three exposures which were taken about three minutes apart. Mr. Simms relates how he accomplished this unforgettable image on his Facebook page:

“The lower image shows a flattened and distorted Sun perched right on the horizon, just seconds before the annular eclipse began. The middle image shows the annular phase, while the upper image shows the Sun some minutes after annularity.”

Mr. Sims used a Canon Mark III DSLR camera with a 500mm lens shooting at 1/1,000th of a second exposures at a focal ratio of f/8 and an ISO setting of 100.

Amazingly, other photographers positioned very near the eclipse graze line caught sight of what are known as Bailey’s Beads as well. More commonly seen during a total solar eclipse, these are caused by sunlight streaming through ridges and valleys on the limb of the Moon. This can also cause the brilliant diamond ring effect seen during a total solar eclipse. In the case of an annular eclipse, this manifests as a ragged broken edge where the disk of the Sun meets the Moon:

Bailey's Beads captured very briefly during last week's annular eclipse. (Credit: Geoff Sims).
Bailey’s Beads captured very briefly during last week’s annular eclipse. (Credit: Geoff Sims).

An annular eclipse occurs when the Moon eclipses the Sun near apogee, or its most distant point in its orbit and is hence visually too small to cover the Sun as seen from the Earth. A similar eclipse occurred over the Pacific and the western U.S. last year on May 20th, leading to a series of “horned sunset” photos taken across Texas and New Mexico.

But what is the most astonishing aspect of the eclipse sequence is the extreme distortion occurring across the very bottom image sitting on the horizon. When you’re looking low to the horizon, you’re viewing objects through a thicker cross-section of the atmosphere. This is what is termed as a higher air mass, and most astro-imagers avoid it entirely, preferring to catch objects with as little distortion as possible as they transit across the local meridian. This distortion can be extreme enough to result in atmospheric refraction of rising and setting objects like the Sun, Moon or planets, causing them to appear moments before or after they actually rose or set over the local horizon. In the case of the bottom image, the lower limb of the solar annulus (the technical name for what folks call the “ring of fire” seen during an annular eclipse) is actually distorted enough to appear along the rim of the local horizon!

To our knowledge, such an extremely distorted eclipse has never been documented before. One also wonders if a “green flash” could be captured by a properly positioned observer on a mountaintop or out to sea during a sunset or sunrise annular or total solar eclipse.

Newsflash: the green flash was indeed captured during last week’s annular eclipse… check out this amazing animation:

Ring of Fire – May 10 2013 Annular Solar Eclipse, Pilbara, Western Australia from Colin Legg on Vimeo.

Awesome!

2013 will offer one more chance to try to repeat this feat. On November 3rd, a hybrid solar eclipse will race across the Atlantic Ocean and central Africa. This is an eclipse that is literally an annular across a portion of its track and a total across another. The eclipse will begin at sunrise just south of Bermuda and end at sunset in eastern Africa. The maximum period of totality is 1 minute and 40 seconds off of the coast of Liberia, and the southern regions of Ethiopia offer the best shot at a sunset eclipse. Tantalizingly, the Florida Space Coast will get a rising partial eclipse only a few percent in magnitude.

Kudos to Mr. Sims for providing us with an unforgettable view of this rare cosmic spectacle. Australia won’t see another total solar eclipse until July 22nd, 2028, and another purely annular eclipse won’t occur until April 29th, 2014 across a very small section of the Antarctic.

And next week, we’ll have a very shallow penumbral eclipse on May 25th, and event is so subtle that few if any will notice it. Still, it is from such humble beginnings that great things are made, as we witness the birth of a new lunar saros… stay tuned!

 

Astrophoto: The Macro Moon

A 'macro' shot of the crescent Moon? Photographer Miguel Claro appears to be taking a closeup shot of the crescent Moon, with an added Earthshine effect. Jupiter joins the scene as the brightest 'star' in the sky. Credit and copyright: Miguel Claro.

This very creative self-portrait by astrophotographer Miguel Claro shows what appears to be the photographer taking a ‘macro’ closeup of the crescent Moon! But there is a lot more going on in this image. The crescent Moon has just 3% of the disc illuminated by the Sun, but there is a stunningly bright Earthshine effect visible. This image was taken on May 11, 2013, so there is a conjunction between the Moon and Jupiter (the brightest star in the image). Venus was also in conjunction, but at the time this image was taken, it was covered by the cloudy band low on the horizon.

Another shot below:

A silhouette of photographer Miguel Claro along with the crescent Moon and Jupiter. Credit and copyright: Miguel Claro.
A silhouette of photographer Miguel Claro along with the crescent Moon and Jupiter. Credit and copyright: Miguel Claro.

Images taken from Capuchos, Almada, Portugal with a Canon 50D – ISO400; Exp. 2sec. F/4; 35mm, on May 11, 2013 at 21:41 and 21:43. Enjoy more of Claro’s images at his website.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Space Oddity: Hadfield Records First Music Video from Space

Chris Hadfield in the Cupola of the ISS. Credit: NASA

He’s leaving space on Monday, but not before giving the world a memorable parting gift. ISS Commander Chris Hadfield has captured the attention and imagination of so many during his five-plus months in space via social media and with the many videos he’s recorded while on the International Space Station. This is his final video from the station, and according to his son Evan Hadfield — who has helped orchestrate the Commander’s barrage of tweets and images — it is also, coincidentally, the first real music video ever recorded in space.

“With deference to the genius of David Bowie, here’s Space Oddity, recorded on Station,” Hadfield tweeted. “A last glimpse of the World.”

As someone posted in the comments on this video, Hadfield is the new standard of incredible.

Amazing Photos from Saturday’s Emergency Spacewalk

Chris Cassidy and Tom Marshburn take a minute with visors open to have their picture taken by Chris Hadfield, inside the ISS. Credit: NASA/CSA/Chris Hadfield.

The spacewalk outside the International Space Station was captured on film by the tweeting, Facebooking, social media maven and space station commander Chris Hadfield. “Amazing day,” he said. “EVA went off without a hitch. Great crew, phenomenal ground support and a supportive audience. Who could ask for anything more?”

How ’bout a picturesque view? We’ve got that too! See a collection of great images from the EVA, which — for the moment — appears to have been a success in fixing the leaking ammonia coolant system.

Cassidy and Marshburn work outside the ISS in the 'approaching orbital sunset, the harshest of light, a blackness like endless velvet,' said Hadfield. Credit: NASA/CSA/Chris Hadfield.
Cassidy and Marshburn work outside the ISS in the ‘approaching orbital sunset, the harshest of light, a blackness like endless velvet,’ said Hadfield. Credit: NASA/CSA/Chris Hadfield.
Chris Cassidy and Tom Marshburn turn on their helmet lights 'doing their best to light the universe on the dark side of the Earth,' said Chris Hadfield. Credit: NASA/CSA/Chris Hadfield
Chris Cassidy and Tom Marshburn turn on their helmet lights ‘doing their best to light the universe on the dark side of the Earth,’ said Chris Hadfield. Credit: NASA/CSA/Chris Hadfield
'Climbing out of the airlock, quite the commute to work!' said Chris Hadfield via Twitter.
‘Climbing out of the airlock, quite the commute to work!’ said Chris Hadfield via Twitter.
Chris Cassidy, Navy SEAL and lead spacewalker Saturday. Credit: NASA/CSA/Chris Hadfield.
Chris Cassidy, Navy SEAL and lead spacewalker Saturday. Credit: NASA/CSA/Chris Hadfield.
Dr. Tom Marshburn, well-dressed for a day's work outdoors. Credit: NASA/CSA/Chris Hadfield.
Dr. Tom Marshburn, well-dressed for a day’s work outdoors. Credit: NASA/CSA/Chris Hadfield.

Curiosity Reaches Out with Martian Handshake and Contemplates New Drilling at Habitable Site

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2) and shows her flexing the robotic arm with Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret. Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo

NASA’s Curiosity rover reaches out in ‘handshake’ like gesture to welcome the end of solar conjunction and resumption of contact with Earth. This mosaic of images was snapped by Curiosity on Sol 262 (May 2, 2013) and shows her flexing the robotic arm with dramatic scenery of Mount Sharp in the background. Two drill holes are visible on the surface bedrock below the robotic arm’s turret where she discovered a habitable site.
Credit: NASA/JPL-Caltech/Ken Kremer-(kenkremer.com)/Marco Di Lorenzo[/caption]

NASA’s Curiosity rover has reached out in a Martian ‘handshake’ like gesture welcoming the end of solar conjunction that marks the resumption of contact with her handlers back on Earth – evidenced in a new photo mosaic of images captured as the robot and her human handlers contemplate a short traverse to a 2nd drilling target in the next few days.

“We’ll move a small bit and then drill another hole,” said John Grotzinger to Universe Today. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.

The rover science team and Grotzinger have selected that 2nd drill location and are itching to send the rover on her way to the bumpy spot called “Cumberland.”

Cumberland lies about nine feet (2.75 meters) west of the “John Klein’ outcrop where Curiosity conducted humanity’s first ever interplanetary drilling on the alien Martian surface in February 2013.

“We’ll confirm what we found in the John Klein hole,” Grotzinger told me.

Curiosity discovered a habitable zone at the John Klein drill site.

After pulverizing and carefully sifting the John Klein drill tailings, a powered, aspirin sized portion of the gray rock was fed into a trio of inlet ports atop the rovers deck and analyzed by Curiosity’s duo of miniaturized chemistry labs named SAM and Chemin inside her belly to check for the presence of organic molecules and determine the inorganic chemical composition.

‘Cumberland’ and ‘John Klein’ are patches of flat-lying bedrock shot through with pale colored calcium sulfate hydrated mineral veins and a bumpy surface texture at her current location inside the ‘Yellowknife Bay’ basin.

This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS
This patch of bedrock, called “Cumberland,” has been selected as the second target for drilling by NASA’s Mars rover Curiosity. The rover has the capability to collect powdered material from inside the target rock and analyze that powder with laboratory instruments. The favored location for drilling into Cumberland is in the lower right portion of the image. Credit: NASA/JPL-Caltech/MSSS

“The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water,” NASA said in a statement.

Curiosity snapped high resolution color images of Cumberland on Sol 192 (Feb. 19, 2013) as part of the ongoing data collection campaign to put Yellowknife Bay into scientific context and search for future drill targets.

The John Klein bore hole (drilled on Feb 8, 2013, Sol 182) is visible in our new photo mosaic above created by myself and my imaging partner Marco Di Lorenzo. It was stitched from a ‘Martian baker’s dozen’ of raw images captured on May 2 (Sol 262). and shows the hand-like tool turret positioned above the first pair of drill holes.

Our new Sol 262 mosaic illustrates that Curiosity is again fully functional and flexing the miracle arm following a relaxing month long period of ‘Spring Break’ when there was no two- way communication with Earth during April’s solar conjunction.

The Sol 262 photo mosaic was originally featured at NBC News by Cosmic Log science editor Alan Boyle who likened it to a future Martian handshake in this cleverly titled story; “Curiosity’s ‘hand’ outstretched on Mars: Will humans ever shake it?”

See below our Sol 169 panoramic context view of Curiosity inside Yellowknife Bay collecting spectroscopic science measurements at the John Klein outcrop.

Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) - back dropped with Mount Sharp - where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer -(kenkremer.com)/Marco Di Lorenzo

Curiosity found that the fine-grained, sedimentary mudstone rock at the John Klein worksite inside the shallow depression known as Yellowknife Bay possesses significant amounts of phyllosilicate clay minerals; indicating the flow of nearly neutral liquid water and a habitat friendly to the possible origin of simple Martian microbial life forms eons ago.

Grotzinger also explained to Universe Today that Curiosity will soon to more capable than ever before.

“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities’” said Grotzinger.

“Then we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”

Curiosity will spend a month or more at the Cumberland site to collect and completely analyze the drill tailings.

Then she’ll resume her epic trek to mysterious Mount Sharp, the 3.5 mile (5 km) high mountain that dominates her landing site and is her ultimate driving inside Gale Crater according to Grotzinger.

“After that [Cumberland] we’re likely to begin the trek to Mt. Sharp, though we’ll stop quickly to look at a few outcrops that we passed by on the way into Yellowknife Bay,” Grotzinger explained to Universe Today.

The Shaler outcrop passed by on the path into Yellowknife Bay is high on the list of stops during the year long journey to Mount Sharp, says Grotzinger. Read more details about Shaler in a new BBC story by Jonathan Amos – here – featuring our Shaler outcrop mosaic.

And don’t forget to “Send Your Name to Mars” aboard NASA’s MAVEN orbiter- details here. Deadline: July 1, 2013

Ken Kremer

…………….
Learn more about Mars, Curiosity and NASA missions at Ken’s upcoming lecture presentation:

June 12: “Send your Name to Mars” and “Antares Rocket Launch from Virginia”; Franklin Institute and Rittenhouse Astronomical Society, Philadelphia, PA, 8 PM.

This map shows the location of "Cumberland," the second rock-drilling target for NASA's Mars rover Curiosity, in relation to the rover's first drilling target, "John Klein," within the southwestern lobe of a shallow depression called "Yellowknife Bay." Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona
This map shows the location of “Cumberland,” the second rock-drilling target for NASA’s Mars rover Curiosity, in relation to the rover’s first drilling target, “John Klein,” within the southwestern lobe of a shallow depression called “Yellowknife Bay.” Cumberland, like John Klein, is a patch of flat-lying bedrock with pale veins and bumpy surface texture. The bumpiness is due to erosion-resistant nodules within the rock, which have been identified as concretions resulting from the action of mineral-laden water. Image credit: NASA/JPL-Caltech/Univ. of Arizona