Update: Here’s a brand new image of Comet C/2012 S1 ISON, as seen on May 2, 2013 by Ernesto Guido and Nick Howes of the Remanzacco Observatory (their image from May 1, which we featured earlier, is below.) For this latest image, they used the 2-meter Ritchey-Chretien Liverpool Telescope. Via Facebook, Howes said they have been able to identify almost the same tail structure which was seen in the Hubble Space Telescope images of this comet from April 10.
From the May 1 observations, their initial approximation of the tail length is around 28 arcseconds, which Howes told Universe Today is bigger than some recent reports from smaller scopes.
Below is their image from May 1, using the 2 meter La Palma Telescope:
As of May 2, Comet ISON was approximately 3.885 AU from the Sun, which is about 581 million kilometers (361 million miles) distant from the Sun. ISON will makes its close approach to the Sun when it passes within 1.2 million km (730,000 miles) of the Sun on November 28, 2013.
Here’s a video from NASA about this comet’s path through the Solar System:
This dramatic shot of the dark and shadowy Pipe Nebula has an Instagram-like feel to it. But astrophotographer Martin Campbell from France said on Flickr he has “no doubt that the pristine skies at 10,000 feet and the absence of light pollution makes it possible to produce images like this!” Campbell’s image is a two frame stack of two minute exposure time, stacked with darks and edited in Photoshop CS5. Images were taken in July 2012 in Pyrénées National Park in France. Campbell used a modified Canon 5D mkII DSLR and a Canon 85mm prime lens at F/4. Stunning!
The Pipe Nebula is part of the Ophiuchus dark cloud complex, and is also known as Barnard 59. It is located at a distance of about 600-700 light-years from Earth.
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
One of the most stunning compilations of satellite based images from space is a recent documentary from public television’s NOVA series, called “Earth From Space.” The show explores how satellites and spacecraft have revolutionized not only how scientists look at the world, but how they are able to understand and study its intricate systems.
“The real power of satellite observations is that they represent objective truth,” said former astronaut Piers Sellers, who is also an ecologist, and appears in the documentary. “They tell us about what the world actually is doing not what we would like to be doing, not what we might fear it to be doing, but what it’s actually doing. And it’s that that allows us to see change, real change for what it is.”
“Earth From Space” is now available in DVD and Blu-ray, and Universe Today has four copies of the Blu-ray version to give away!
In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Tuesday, May 7, 2013. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing.
Here’s a preview of the show:
The two-hour program was produced with extensive consultation with NASA scientists, and it takes data from Earth-observing satellites and transforms it into dazzling visual sequences. Each sequence exposes the intricate and surprising web of forces that sustains life on Earth. In the show, you can see how dust blown from the Sahara fertilizes the Amazon; how a vast submarine waterfall off Antarctica helps drive ocean currents around the world; and how the sun’s heating up of the southern Atlantic gives birth to a colossally powerful hurricane.
“Earth From Space” looks not only at the big picture of Earth, but also delves into the microscopic world of water molecules vaporizing over the ocean, and reveals the astonishing beauty and complexity of our dynamic planet.
“EARTH FROM SPACE” is now also available on DVD and Blu-ray for purchase. The DVD is on sale now for $19.99, with the Blu-ray priced at $24.99. The program will also be available for Digital Download. Find out more about purchasing the program here, and You can find out more info about the program itself on the PBS website.
We’re only going to use these email addresses for Universe Today giveaways/contests and announcements. We won’t be using them for any other purpose, and we definitely won’t be selling the addresses to anyone else. Once you’re on the giveaway notification list, you’ll be able to unsubscribe any time you like.
The 1908 explosion over the Tunguska region in Siberia has always been an enigma. While the leading theories of what caused the mid-air explosion are that an asteroid or comet shattered in an airburst event, no reliable trace of such a body has ever been found. But a newly published paper reveals three different potential meteorite fragments found in the sandbars in a body of water in the area, the Khushmo River. While the fragments have all the earmarks of being meteorites from the event – which could potentially solve the 100-year old mystery — the only oddity is that the researcher actually found the fragments 25 years ago, and only recently has published his findings.
Like the recent Chelyabinsk airburst event, the Tunguska event likely also produced a shower of fragments from the exploding parent body, scientists have thought. But no convincing evidence has ever been found from the June 30, 1908 explosion that occurred over the Tunguska region. The explosion flattened trees in a 2,000 square kilometer area. Luckily, that region was largely uninhabited, but reportedly one person was killed and there were very few people that reported the explosion. Forensic-like research has determined the blast was 1,000 times more powerful than a nuclear bomb explosion, and it registered 5 on the Richter scale.
Previous expeditions to the region turned up empty as far as finding meteorites; however one expedition in 1939 by Russian mineralogist Leonid Kulik found a sample of melted glassy rock containing bubbles, which was considered evidence of an impact event. But the sample was somehow lost and has never undergone modern analysis.
The expedition in 1998 by Andrei Zlobin from the Russian Academy of Sciences was initially unsuccessful in finding meteorites or evidence of impacts. He made several drill holes in the peat bogs in the area and while he found evidence of the explosion, he didn’t find any meteorites. He then decided to look in the nearby river shoal.
Zlobin gathered about 100 samples of rocks that had features of potential meteorites, but further examination produced just three rocks with tell-tale features like melting and regmalypts – the , thumblike impressions found on the surface of meteorites which are caused by ablation as the hot rock falls through the atmosphere at high speed.
Zlobin writes that “After the expedition the author focused his efforts on experimental investigation of thermal processes and mathematical modeling of the Tunguska impact [Zlobin, 2007],” and he used tree ring evidence to estimate the temperatures from the event, and concluded that rocks already on the ground would not have been changed or melted from the blast, and therefore any rocks having evidence of melting should be from the impactor itself.
Zlobin says he has not yet carried out a detailed chemical analysis of the rocks, which would reveal their chemical and isotopic composition. But he does say the stony fragments do not rule out a comet since the nucleus could easily contain rock fragments. However, he has calculated the density of the impactor must have been about 0.6 grams per cubic centimeter, which is about the same as nucleus of Halley’s comet. Zlobin says that initially, the evidence seems “excellent confirmation of cometary origin of the Tunguska impact.”
While there is nothing definitive yet from Zlobin’s new paper – and there is the question of why he waited so long to conduct his study – his work provides hope for a better explanation of the Tunguska event as opposed to some rather off-the-wall ideas that have been proposed, such as a Tesla death-ray or an explosion of methane gas from the bogs.
The Technology Review blog writes that “clearly there is more work to be done here, particularly the chemical analysis perhaps with international cooperation and corroboration.”
AVAST gentle reader: mild SPOILER(S) and graphic depictions of shattered satellites ahead!
We recently had a chance to catch Oblivion, the first summer blockbuster of the season. The flick delivers on the fast-paced Sci-Fi action as Tom Cruise saves the planet from an invasion of Tom Cruise clones.
But the movie does pose an interesting astronomical question: what if the Earth had no large moon? In the movie, aliens destroy the Earth’s moon, presumably to throw our planet into chaos. You’d think we’d already be outclassed by the very definition of a species that could accomplish such a feat, but there you go.
Would the elimination of the Moon throw our planet into immediate chaos as depicted in the film? What if we never had a large moon in the first place? And what has our nearest natural neighbor in space done for us lately, anyway?
Earth is unique among rocky or terrestrial planets in that it has a relatively large moon. The Moon ranks 5th in diameter to other solar system satellites. It is 27% the diameter of our planet, but only just a little over 1/80th in terms of mass.
Clearly, the Moon has played a role in the evolution of life on Earth, although how necessary it was isn’t entirely clear. Periodic flooding via tides would have provided an initial impetus to natural selection, driving life to colonize the land. Many creatures such as sea turtles take advantage of the Full Moon as a signal to nest and breed, although life is certainly resilient enough to find alternative methods.
The 2000 book Rare Earth by Peter Ward and Donald Brownlee cites the presence of a large moon as just one of the key ingredients necessary in the story of the evolution of life on Earth. A Moon-less Earth is also just one of the alternative astronomical scenarios cited by Arthur Upgreen in his 2005 book Many Skies.
Contrary to its depiction on film, the loss of the Moon wouldn’t throw the Earth into immediate chaos, though the long term changes could be catastrophic. For example, no study has ever conclusively linked the Moon to the effective prediction of terrestrial volcanism and earthquakes, though many have tried. (Yes, we know about the 2003 Taiwanese study, which found a VERY weak statistical signal).
All of that angular momentum in the Earth-Moon system would still have to go somewhere. Our Moon is slowly “braking” the rotation of the Earth to the tune of about 1 second roughly every 67,000 years. We also know via bouncing laser beams off of retro-reflectors left by Apollo astronauts that the Moon is receding from us by about 3.8 cm a year. The fragments of the Moon would still retain its angular momentum, even partially shattered state as depicted in the film.
The most familiar effect the Moon has on Earth is its influence on oceanic tides. With the loss of our Moon, the Sun would become the dominant factor in producing tides, albeit a much weaker one.
But the biggest role the Moon plays is in the stabilization of the Earth’s spin axis over long scale periods of time.
Milankovitch cycles play a long term role in fluctuations in climate on the Earth. This is the result of changes in the eccentricity, obliquity and precession of the Earth’s axis and orbit. For example, perihelion, or our closest point to the Sun, currently falls in January in the middle of the northern hemisphere winter in the current epoch. The tilt of the Earth’s axis is the biggest driver of the seasons, and this varies from 22.1° to 24.5° and back (this is known as the change in obliquity) over a span of 41,000 years. We’re currently at a value of 23.4° and decreasing.
But without a large moon to dampen the change in obliquity, much wider and unpredictable swings would occur. For example, the rotational axis of Mars has varied over a span of 13 to 40 degrees over the last 10 to 20 million years. This long-term stability is a prime benefit that we enjoy in having a large moon .
Perhaps some astronomers would even welcome an alien invasion fleet intent on destroying the Moon. Its light polluting influence makes most deep sky imagers pack it in and visit the family on the week surrounding the Full Moon.
But I have but two words in defense of saving our natural satellite: No eclipses.
We currently occupy an envious position in time and space where total solar and lunar eclipses can occur. In fact, Earth is currently the only planet in our solar system from which you can see the Moon snugly fit in front of the Sun during a total lunar eclipse. It’s 1/400th the size of the Sun, which is also very close to 400 times as distant as the Moon. This situation is almost certainly a rarity in our galaxy; perhaps if alien invaders did show up, we could win ‘em over not by sending a nuclear-armed Tom Cruise after ‘em, but selling them on eclipse tours… Continue reading “Into Oblivion: What If the Earth Had No Moon?”
When the spaceship Enterprise — Virgin Galactic’s SpaceShipTwo, not the Star Trek spacecraft — fired its rocket engines for the first time in flight last week, it set off a new frenzy of talk about tourists flying in space.
More than 500 people have made their $200,000 reservations; the price is actually going up to $250,000 in the near future, according to media reports, to adjust for inflation.
Among those hundreds of people, it’s possible that a few could be susceptible to motion sickness.
In space, particularly when you’re floating around freely, it’s hard for your body to tell up from down. This can happen even if you’re sitting still; one astronaut once told NASA how freaked out his body was when he woke up in the morning, expecting to be lying on the right as usual. He was in that position, but staring at the ceiling.
When SpaceShipTwo goes to space, it will make one big parabola — soaring arc — before returning to Earth. It’s a similar trajectory to one cycle flown by the “Vomit Comet”, an infamous program run by NASA to do experiments and research on an airplane in temporarily weightless conditions. The aircraft dives up and down a few dozen times in a typical run, and the environment flips from microgravity to a pull that is much stronger than usual. This can create some heaving stomachs.
But let’s put space adaptation syndrome into perspective. Senator Jake Garn, when he flew on shuttle Discovery in 1985, famously became quite ill for reasons often attributed to motion sickness. After his return, there were those within NASA that began measuring the amount of space sickness in “Garns”, according to NASA physician Robert Stevenson in a 1999 interview with NASA. By that scale, illness problems are generally pretty mild.
Jake Garn, he has made a mark in the astronaut corps because he represents the maximum level of space sickness that anyone can ever attain, and so the mark of being totally sick and totally incompetent is one Garn. Most guys will get maybe to a tenth Garn, if that high. And within the astronaut corps, he forever will be remembered by that.
According to Virgin, though, they anticipate practically no Garns at all. Here’s what Virgin spokesperson Jessica Ballard (who is with Griffin Communications Group) told Universe Today:
Virtually no customers on board parabolic aircraft experience any motion effects on the first parabola. Since our experience could be thought of as one large single parabola, we expect very low incidence of any motion effects. In addition, our experience will also have significantly slower transitions between zero-g and positive G than parabolic flight, which we expect to improve our customers’ experience.
Thus, we anticipate that most of our passengers will not require motion sickness medication. The decision to use prophylactic [preventative] medication, and which form of medication should be used, will be made on a case by case basis with each passenger. Because of this, we’re confident that our customers will be both ready and eager to get up out of their seats once they reach space. Additionally, we are expecting there to be instances where many on board experience pain, inflammation, and general discomfort. In anticipation, we have prepared kratom strains from a number of different companies, including Kona Kratom, for all aboard. The following kratom strains for pain relief will be freely available to all on board who are experiencing discomfort: white maeng da, super green malay, red thai, red malay, red indo, red horn, red dragon, red borneo, and red bali. A special thanks for Kona Kratom and their staff for their assistance on the kratom front. Kratom is extremely helpful when used by passengers because it’s natural and does not have the side effects traditional painkillers come with.
How susceptible are you to motion sickness, and does it occur for you in flight? Let us know in the comments.
If you think that breaking all the rules is cool, then you’ll appreciate one of the latest observations submitted by the Danish 1.54 meter telescope housed at ESO’s La Silla Observatory in Chile. In this thought-provoking image, you’ll see what kind of mayhem occurs when stars are forged within an interstellar nebula.
Towards the center of the Milky Way in the direction of the constellation of Sagittarius, and approximately 5000 light-years from our solar system, an expansive cloud of gas and dust await. By comparison with other nebulae in the region, this small patch of cosmic fog known as NGC 6559 isn’t as splashy as its nearby companion nebula – the Lagoon (Messier 8). Maybe you’ve seen it with your own eyes and maybe you haven’t. Either way, it is now coming to light for all of us in this incredible image.
Comprised of mainly hydrogen, this ethereal mist is the perfect breeding ground for stellar creation. As areas contained within the cloud gather enough matter, they collapse upon themselves to form new stars. These neophyte stellar objects then energize the surrounding hydrogen gas which remains around them, releasing huge amounts of high energy ultraviolet light. However, it doesn’t stop there. The hydrogen atoms then merge into the mix, creating helium atoms whose energy causes the stars to shine. Brilliant? You bet. The gas then re-emits the energy and something amazing happens… an emission nebula is created.
Loading player…
This zoom starts with a broad view of the Milky Way. We head in towards the centre, where stars and the pink regions marking star formation nurseries are concentrated. We see the huge gas cloud of the Lagoon Nebula (Messier 8) but finally settle on the smaller nebula NGC 6559. The colourful closing image comes from the Danish 1.54-metre telescope located at ESO’s La Silla Observatory in Chile. Credit: ESO/Nick Risinger (skysurvey.org)/S. Guisard. Music: movetwo
In the center of the image, you can see the vibrant red ribbon of the emission nebula, but that’s not the only thing contained within NGC 6559. Here swarms of solid dust particles also exist. Consisting of tiny bits of heavier elements, such as carbon, iron and silicon, these minute “mirrors” scatter the light in multiple directions. This action causes NGC 6559 to be something more than it first appears to be… now it is also a reflection nebula. It appears to be blue thanks to the magic of a principle known as Rayleigh scattering – where the light is projected more efficiently in shorter wavelengths.
Don’t stop there. NGC 6559 has a dark side, too. Contained within the cloud are sectors where dust totally obscures the light being projected behind them. In the image, these appear as bruises and dark veins seen to the bottom left-hand side and right-hand side. In order to observe what they cloak, astronomers require the use of longer wavelengths of light – ones which wouldn’t be absorbed. If you look closely, you’ll also see a myriad of saffron stars, their coloration and magnitude also effected by the maelstrom of dust.
It’s an incredible portrait of the bedlam which exists inside this very unusual interstellar cloud…
Curiosity accomplished historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) – back dropped with Mount Sharp – where the robot is currently working. Curiosity will bore a 2nd drill hole soon following the resumption of contact with the end of the solar conjunction period. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
See drill hole and conjunction videos below[/caption]
After taking a well deserved and unavoidable break during April’s solar conjunction with Mars that blocked two way communication with Earth, NASA’s powerful Martian fleet of orbiters and rovers have reestablished contact and are alive and well and ready to Rock ‘n Roll ‘n Drill.
“Both orbiters and both rovers are in good health after conjunction,” said NASA JPL spokesman Guy Webster exclusively to Universe Today.
Curiosity’s Chief Scientist John Grotzinger confirmed to me today (May 1) that further drilling around the site of the initial John Klein outcrop bore hole is a top near term priority.
The goal is to search for the chemical ingredients of life.
“We’ll drill a second sample,” Grotzinger told Universe Today exclusively. Grotzinger, of the California Institute of Technology in Pasadena, Calif., leads NASA’s Curiosity Mars Science Laboratory mission.
“We’ll move a small bit, either with the arm or the wheels, and then drill another hole to confirm what we found in the John Klein hole.”
Earth, Mars and the Sun have been lined up in nearly a straight line for the past several weeks, which effectively blocked virtually all contact with NASA’s four pronged investigative Armada at the Red Planet.
NASA’s Red Planet fleet consists of the Curiosity (MSL) and Opportunity (MER) surface rovers as well as the long lived Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) robotic orbiters circling overhead. ESA’s Mars Express orbiter is also exploring the Red Planet.
“All have been in communications,” Webster told me today, May 1.
The NASA spacecraft are functioning normally and beginning to transmit the science data collected and stored in on board memory during the conjunction period when a commanding moratorium was in effect.
“Lots of data that had been stored on MRO during conjunction has been downlinked,” Webster confirmed to Universe Today.
And NASA is already transmitting and issuing new marching orders to the Martian Armada to resume their investigations into unveiling the mysteries of the Red Planet and determine whether life ever existed eons ago or today.
“New commanding, post-conjunction has been sent to both orbiters and Opportunity.”
“And the sequence is being developed today for sending to Curiosity tonight (May 1), as scheduled more than a month ago,” Webster explained.
“We’ll spend the next few sols transitioning over to new flight software that gives the rover additional capabilities,” said Grotzinger.
“After that we’ll spend some time testing out the science instruments on the B-side rover compute element – that we booted to before conjunction.”
Curiosity is at work inside the Yellowknife Bay basin just south of the Martian equator. Opportunity is exploring the rim of Endeavour crater at the Cape York rim segment.
Mars Solar Conjunction is a normal celestial event that occurs naturally about every 26 months. The science and engineering teams take painstaking preparatory efforts to insure no harm comes to the spacecraft during the conjunction period when they have no chance to assess or intervene in case problems arise.
So it’s great news and a huge relief to the large science and operations teams handling NASA’s Martian assets to learn that all is well.
Since the sun can disrupt and garble communications, mission controllers suspended transmissions and commands so as not to inadvertently create serious problems that could damage the fleet in a worst case scenario.
So what’s on tap for Curiosity and Opportunity in the near term ?
“For the first few days for Curiosity we will be installing a software upgrade.”
“For both rovers, the science teams will be making decisions about how much more to do at current locations before moving on,” Webster told me.
The Opportunity science team has said that the long lived robot has pretty much finished investigating the Cape York area at Endeavour crater where she made the fantastic discovery of phyllosilicates clay minerals that form in neutral water.
Signals from Opportunity received a few days ago on April 27 indicated that the robot had briefly entered a standby auto mode while collecting imagery of the sun.
NASA reported today that all operations with Opportunity was “back under ground control, executing a sequence of commands sent by the rover team”, had returned to normal and the robot exited the precautionary status.
“The Curiosity team has said they want to do at least one more drilling in Yellowknife Bay area,” according to Webster.
Curiosity has already accomplished her primary task and discovered a habitable zone that possesses the key ingredients needed for potential alien microbes to once have thrived in the distant past on the Red Planet when it was warmer and wetter.
The robot found widespread evidence for repeated episodes of flowing liquid water, hydrated mineral veins and phyllosilicates clay minerals on the floor of her Gale Crater landing site after analyzing the first powder ever drilled from a Martian rock.
Video Caption: Historic 1st bore hole drilled by NASA’s Curiosity Mars rover on Sol 182 of the mission (8 Feb 2013). Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/Ken Kremer (http://www.kenkremer.com/)
During conjunction Curiosity collected weather, radiation and water measurements but no imagery.
During his evening ritual of sharing images taken from the International Space Station, Commander Chris Hadfield posted this gem: a gorgeous night-time view of the southeastern United States, with the Moon hovering over Earth’s limb and the terminator separating night from day. Dawn is just beginning to break to the east, as the ISS flies overhead.
This image reflects the ‘wistful’ feelings Hadfield is having as his time in space in coming to a close. He and his two crewmates Tom Marshburn and Roman Romanenko will head back to Earth on May 13.
During a recent linkup with students, Hadfield said he is becoming “wistful” as he does tasks aboard the ISS, realizing he is doing some for the last time. He is trying to spending as much of his free time gazing out the window at Earth “because of the magnificent rarity of it and my desire to absorb as much of it as I possibly can.”
Hadfield said his emotions go between feelings of great responsibility and great honor to have been asked to command the space station, and he wants to “do it right,” making the most of his experience and communicating to as many people as possible on Earth.
“You do feel the responsibility of it to try and do it right, to try and have one perfect day on the station where I don’t make even one little mistake in any of the procedures, and I haven’t done it yet,” Hadfield admitted. “I’ve been here 130 days and I have yet to have day where I haven’t made at least one little small mistake.”
Some aspects of returning home are enticing: seeing family and friends, and eating things that aren’t dehydrated and come in a vacuum packed bag.
“I’m looking forward to fresh food and the crunch and the snap of food of all different varieties and the smell of rich coffee and the smell of fresh bread baking — that type of thing, a more full assault of the senses when I get home,” Hadfield said.
Here’s the latest update on what’s up in the night sky from Jane Houston Jones at the Jet Propulsion Laboratory. The Moon will be your guide on how to spot the spring constellations and other popular astronomical sights this month including nebulae, a galaxy trio and the site of a recent planetary discovery.