12 Star Party Secret Weapons

Awaiting sunset... (Photo by author).

We’ve all been there. Well OK, all public star party telescope operators have been there. You’re set up and you’ve got a stunning view of Saturn centered in the field of view. But then the first member of the viewing public takes a quick glance and steps back from the eyepiece, stating “yeah, I saw that through the last four ‘scopes…”

What do you do when every telescope down the row is aimed at the same object? Or worse yet, what do you aim at when there is no Moon or bright planets above the horizon? Every seasoned telescope operator has a quick repertoire of secret favorites, little known but sure-fire crowd pleasers.  Sure, Saturn is awesome and you should see it through a telescope… but it’s a big universe out there. 

I’ve even seen clubs assign objects to individual telescopes to avoid having everyone point at the same thing, but this method is, well, boring for the scope operators themselves.  Most backyard astronomers can simply look at a tube pointed at Orion and know the neighboring telescope is aimed at the Orion Nebula. What follows is our very own highly subjective (but tested in the field!) list of secret star party faves. Yes, it is mid-northern latitude-centric. It also covers a span of objects of all types, as well as a handy information chart of where in the sky to find ‘em and a few surprises. We also realize that many public star parties often take place downtown under light polluted skies, so a majority of these are brighter objects.  Don’t see your favorite? Drop us a line and let us know!

12. The Double Cluster:  Straddling the border of the constellations Perseus and Cassiopeia, this pair of clusters is a fine sight at low power. The technical designation of the pair is NGC 884 and NGC 869 respectively and the clusters sit about 7000 light years distant.  You can just see the pair with the naked eye under suburban skies.

The location of Herschel 3945 in Canis Major. (Created by Author in Starry Night).
The location of Herschel 3945 in Canis Major. (Created by Author in Starry Night).

11. Herschel 3945:  A popular summer-to-fall star party target is the colored double star Albireo is the constellation Cygnus. But did you know there’s a similar target visible early in the year as well? I call Herschel 3945 the “winter Albireo” for just this reason. This 27” split pair of sapphire and orange stars offers a great contrast sure to bring out the “ohs” and “ahs.” Continue reading “12 Star Party Secret Weapons”

A Guide to Help You See Comet PANSTARRS at its Brightest

Comet L4 PANSTARRS setting over Brindabella Ranges to the west of Canberra, Australia on March 5, 2013. The photo gives a good idea of the naked eye of the comet. Credit: Vello Tabur

This is the big week so many of us in the northern hemisphere have been waiting for. Comet C/2011 L4 PANSTARRS, which has put on a splendid show in the southern hemisphere, now finally comes to a sky near us northerners!

Sky watchers in Australia and southern South America report it looks like a fuzzy star a little brighter than those in the Big Dipper with a short stub of a tail  visible to the naked eye. The comet should brighten further as it wings its way sunward. Closest approach to the sun happens on March 10 at a distance of 28 million miles. That’s about 8 million miles closer than the orbit of Mercury.

Though very low in the western sky after sundown, the comet should be visible across much of the U.S., southern Canada and Europe beginning tonight March 8.

Comet PANSTARRS will be visible tonight through about March 19 for sky watchers living near the equator. Map is drawn for Singapore. All maps created with Chris Marriott's SkyMap software
Comet PANSTARRS will be visible through about March 19 for sky watchers living near the equator. Map is drawn for Singapore. All maps created with Chris Marriott’s SkyMap software

PANSTARRS’ low altitude presents a few challenges. Approaching clouds, general haziness and the extra thickness of the atmosphere near the horizon absorbs the comet’s light, causing it to appear fainter than you’d expect. A casual sky watcher may not even notice its presence. That’s why I recommend bringing along a pair of binoculars and using the map that best fits your latitude. Find a place with a wide open view to the west, focus your binoculars on the most distant object you can find (clouds are ideal) and then slowly sweep back and forth across the sky low above the western horizon

Comet PANSTARRS map for the southern U.S. March 6-21. Time shown is about 25 minutes after sunset facing west. Map is drawn for Phoenix, Ariz.
Comet PANSTARRS map for the southern U.S. March 6-21. Time shown is about 25 minutes after sunset facing west. Map is drawn for Phoenix, Ariz.

As the nights pass, PANSTARRS rises higher in the sky and becomes easier to spot for northern hemisphere observers while disappearing from view in the south. On the 12th, a thin lunar crescent will shine just to the right of the comet. Not only will it make finding this fuzzy visitor easy-peasy, but you’ll have the opportunity to make a beautiful photograph.

Comet PANSTARRS and thin crescent moon should be a striking site about a half hour to 45 minutes after sunset on March 12. Stellarium
Comet PANSTARRS and the thin crescent Moon should make a striking sight together about a half hour to 45 minutes after sunset on March 12. Stellarium

The maps shows the arc of the comet across the western sky in the coming two weeks for three different latitudes. Along the bottom of each map is the comet’s altitude in degrees for the four labeled dates. The sun, which is below the horizon, but whose bright glow you’ll see above its setting point, will help you determine exactly in what direction to look.

One of your best observing tools and the one closest at hand (pun intended) is your hand. Photo: Bob King
One of your best observing tools and the one closest at hand (pun intended) is your hand. Photo: Bob King

A word about altitude. Astronomers measure it in degrees. One degree is the width of your little finger held at arm’s length against the sky. Believe it or not, this covers two full moon’s worth of sky. Three fingers at arm’s length equals 5 degrees or the separation between the two stars at the end of the bowl of the Big Dipper. A fist is 10 degrees. This weekend PANSTARRS will be 2-3 “fingers” high around 25 minutes after sunset when the sky is dark enough to go for it.

The northern U.S. is favored for this leg of the comet's journey. Notice how the comet arcs up higher in the sky compared to the southern U.S. and especially the equator. Map drawn for Duluth, Minn. The comet will remain visible for many weeks. Earth is closest to PANSTARRS on March 5 at 102 million miles.
The northern U.S. is favored for this leg of the comet’s journey. Notice how the comet arcs up higher in the sky compared to the southern U.S. and especially the equator. Map drawn for Duluth, Minn. The comet will remain visible for many weeks. Earth is closest to PANSTARRS on March 5 at 102 million miles.

To find PANSTARRS, locate it on the map for a particular date, note its approximate altitude and relation to where the sun set and look in that direction. Assuming your sky to the west is wide open and clear, you should see a comet staring back. If you don’t find it one night, don’t give up. Go out the next clear night and try again. While Comet PANSTARRS will fade over the next few weeks, it will also rise higher into a darker sky and become – for a time – easier to see. I also encourage you to take out your telescope for a look. You’ll see more color in the comet’s head, details in its tail and an intensely bright nucleus (center of the comet), a sign of how fiercely sunlight and solar heating are beating up on this tender object.

Sound good? Great – now have at it!

How Could Aliens Blow Up Earth?

Scientists say that a ten-second burst of gamma rays from a massive star explosion within 6,000 light years from Earth could have triggered a mass extinction hundreds of millions of years ago. In this artist's conception we see the gamma rays hitting the Earth's atmosphere. (The expanding shell is pictured as blue, but gamma rays are actually invisible.) The gamma rays initiate changes in the atmosphere that deplete ozone and create a brown smog of NO2. Credit: NASA

Earth. It seems so solid and permanent. But really, all you need to do is expand the Sun enough, and the entire planet would melt away. Or worse, find yourself at the mercy of some seriously powerful and angry aliens.

Actually, the beings who destroy Earth in The Hitchhiker’s Guide to the Galaxy, which first aired on BBC Radio 4 on this day (March 8) in 1978, were not so much angry as logical about their reasons.

In the novel, Earthlings are shocked when extraterrestrial beings — known as the Vogons — arrive with plans to build a hyperspatial express route that runs through Earth’s orbit. The plans for the route were apparently lodged in Alpha Centauri (a star system four light-years away) for the past 50 Earth years, leaving residents of the planet “plenty of time to lodge any formal complaint.”

The Vogons then prepare to do the deed. The book Douglas Adams wrote describes it thusly:

“Energize the demolition beams.” Light poured out of the hatchways … There was a terrible ghastly silence. There was a terrible ghastly noise. There was a terrible ghastly science. The Vogon Constructor Fleet coasted away into the inky starry void.

The situation had us at Universe Today wondering: just how did the Vogons do it? There isn’t much to go on, admittedly; a demolition beam, and then a terrific noise as the planet breaks apart.

We scoured the Internet for some answers and came up with these ideas:

Anti matter

What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss
What matter and antimatter might look like annihilating one another. Credit: NASA/CXC/M. Weiss

Anti matter is most simply, the opposite of matter. If you think of matter as being made up of electrons, neutrons and protons, anti matter has its own particles that have the opposite charge and magnetic moment (a property of magnetism.) You can read more technical details of anti matter in our past story, but here’s the important take-away: when matter and anti matter collide, they kill each other dead and produce gamma rays or other fundamental particles in the process. Phil Plait (author of the blog Bad Astronomy, now at Slate) says it’s indeed possible to blow up the Earth with it, but it would take a trillion tons. That’s not only complicated, but expensive. “Given that it currently costs hundreds of billions of dollars to make a single ounce of anti matter, you might have to work an extra job to cover the expense,” he wrote on Blastr.

Black hole

This artist's concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech
This artist’s concept illustrates a supermassive black hole with millions to billions times the mass of our sun. Supermassive black holes are enormously dense objects buried at the hearts of galaxies. Image credit: NASA/JPL-Caltech

If a black hole were to pop up right next to Earth or inside the planet, this might be a way to shrink the planet down to nothing super-quick. We’re not sure how the Vogons did this, but hey, we’re talking science fiction here. It’s also unclear to us how bright this would look (remember, the Vogons had a light beam), but maybe the Vogons turned on the lights for dramatic effect. And here we should interject with some sobering reality from NASA, too: “Black holes do not go around in space eating stars, moons and planets,” the agency once wrote, adding that even if a black hole appeared where the Sun is today, Earth still wouldn’t be sucked over there. In fact, the gravitational force would be identical and the planets would continue their merry orbits.

A Death Star

The Death Star in Star Wars. Credit: Lucasfilm.
The Death Star in Star Wars. Credit: Lucasfilm.

Yes yes, we know, we’re mixing up our science fiction franchises. This was actually a laser-blasting, planet-destroying machine from Star Wars. But at risk of offending the Internet, a couple of legitimate points: There’s nothing to stop alien civilizations from sharing technology, or perhaps acquiring it, rather than spend the money to develop it themselves. In 2011, three researchers from the University of Leicester suggested that indeed a Death Star could destroy a planet, given an adequate power source. Check out the details in our past Universe Today story.

Do you have some other ideas of how the Vogons destroyed Earth?

Solar Storm Blasting to Mars Shuts Down Curiosity – 1st Rocky Sample Results on tap

Curiosity Rover snapped this self portrait mosaic with the MAHLI camera while sitting on flat sedimentary rocks at the “John Klein” outcrop where the robot conducted historic first sample drilling inside the Yellowknife Bay basin, on Feb. 8 (Sol 182) at lower left in front of rover. The photo mosaic was stitched from raw images snapped on Sol 177, or Feb 3, 2013, by the robotic arm camera - accounting for foreground camera distortion. Credit: NASA/JPL-Caltech/MSSS/Marco Di Lorenzo/KenKremer (kenkremer.com)

Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.

NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.

The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.

“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).

“Space weather can by nasty!”

This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.

A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.

“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.

“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.

Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.

Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.

NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.

Curiosity has been in the midst of analyzing the historic 1st samples of gray rocky powder ever cored from the interior of a Martian rock about a month ago.

Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS Read more: http://www.universetoday.com/99911/historic-mars-rock-drilling-sample-set-for-analysis-by-curiosity-robot-in-search-of-organics/#ixzz2Mu1y6Fpr
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSSCuriosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.

Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.

Ken Kremer

Violent Martian Waters Carved Secret Trench

Mars Reconnaissance Orbiter revealed about 1,000 km of underground channels, called Marte Vallis, shown at center in this map. The rendering of Mars is in false color to highlight elevation differences. Credit: NASA/MOLA Team/Smithsonian Institute

Massive floodwaters on Mars gouged a channel more than 600 miles (1,000 kilometers) long, making a trench that was hidden to scientists until now because volcanic flows buried it underground.

Erupting groundwater, perhaps triggered by a volcano or an earthquake, forced water across the surface during the past 500 million years. This carved a trench about 62 miles (100 kilometers) wide; it would take runners more than two marathons (at 26 miles each) to cross the expanse.

Later, as volcanoes erupted in Mars’ Elysium Planitia plain, lava flows covered the channel. The trench, now called Marte Vallis, finally came to light from radar measurements by an orbiting spacecraft. The results were published in the journal Science Thursday.

“This work demonstrates the importance of orbital sounding radar in understanding how water has shaped the surface of Mars,” stated Gareth A. Morgan, the paper’s lead author and a geologist at the National Air and Space Museum’s Center for Earth and Planetary Studies.

Scientists stumbled on the trench using the radar capabilities of NASA’s Mars Reconnaissance Orbiter and its Italian-made Mars SHAllow RADar sounder, also known as SHARAD, designed to pick up ice and water underground. The instrument has a horizontal resolution of between 0.3 and 3 kilometers (between 2/10 of a mile and almost 2 miles) horizontally and 15 meters (about 50 feet) vertically.

SHARAD revealed that the largest or main channel was 370 feet (113 meters) deep, which is skyscraper height.

“This is comparable with the depth of incision of the largest known megaflood on Earth, the Missoula floods,” the paper stated, referring to bursts of water that swept across western North America after the last ice age, some 12,000 to 18,000 years ago.

Mars today is considered pretty dry, save for the water that is locked in the ice caps at the north and south poles. In recent years, however, several spacecraft and rovers revealed ancient signs of water at various points in the past.

The Curiosity rover found a streambed where hip-deep water flowed, while the Spirit and Opportunity rovers analyzed rocks such as hematite “blueberries” that form in wet conditions. From above, orbiters with NASA and the European Space Agency regularly take pictures of ancient channels and water carvings on the surface.

This is the first time scientists found a trench underground, however.

“Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry,” the paper stated.

Sources: Smithsonian, Science

Mystery Solved: Breakdown of Russell Crowe’s UFO Video

Actor Russell Crowe made some waves this week when he claimed to have captured photos of a UFO outside the window of his office in Australia. It turns out it really was a UFO…. an Unidentified Floating Object, which has now been identified. Crowe’s office sits on a pier in Sydney’s Royal Botanic Gardens, and via Twitter, Crowe said that he and a friend set up camera to capture fruit bats flying over the Gardens. “Canon 5D, no flash, can’t be lense (sic) flare because it moves, camera is fixed,” and “The camera is on a balcony – not behind glass.”

But ParaBreakdown’s Phil Poling has now provided a breakdown of why Crowe’s UFO is most likely to be a series of long-exposure photos of a … wait for it … passing sailboat with a high mast.

Crowe’s footage is below:
Continue reading “Mystery Solved: Breakdown of Russell Crowe’s UFO Video”

Join the Golden Spike Video Contest

If you’ve been following Golden Spike Company, you know that the company is planning to launch commercial Lunar exploration missions by 2020.

Last month, Golden Spike announced their Indiegogo crowdfunding campaign to raise funds to help generate public interest in their mission. So far people from around the world have contributed to the Golden Spike Indiegogo campaign.

Today, Golden Spike has announced a video submission contest for their supporters. Keep reading to learn how you can participate!

The video competition is open to anyone who contributes to the Indiegogo crowdfunding campaign at: http://www.indiegogo.com/projects/golden-spike-is-sending-nations-and-people-to-the-moon-join-in

To enter, simply submit your video on why you believe Lunar exploration is important. Golden Spike will accept entries for the first round of the competition until Friday, March 15. All appropriate videos will be uploaded to the Golden Spike Youtube Channel where the public can vote for their favorite via the comments section. The prize for the first round of videos is a lunar rover model (at left).

Email your video submission to: [email protected]

Learn more about Golden Spike Company at: www.goldenspikecompany.com

Russian Asteroid Explosion and Past Impactors Paint a Potentially Grim Future for Earth

Impactors strike during the reign of the dinosaurs (image credit: MasPix/devianart)

The recent meteor explosion over Chelyabinsk brought to the forefront a topic that has worried astronomers for years, namely that an impactor from space could cause widespread human fatalities.  Indeed, the thousand+ injured recently in Russia was a wake-up call. Should humanity be worried about impactors? “Hell yes!” replied astronomer Neil deGrasse Tyson to CNN’s F. Zakharia .

The geological and biological records attest to the fact that some impactors have played a major role in altering the evolution of life on Earth, particularly when the underlying terrestrial material at the impact site contains large amounts of carbonates and sulphates. The dating of certain large impact craters (50 km and greater) found on Earth have matched events such as the extinction of the Dinosaurs (Hildebrand 1993, however see also G. Keller’s alternative hypothesis).  Ironically, one could argue that humanity owes its emergence in part to the impactor that killed the Dinosaurs.

The Manicouagan impact crater in Quebec, Canada (image credit: NASA)
More than a dozen known impactors created 50 km sized craters (and larger) on Earth. One such example is the Manicouagan crater in Quebec, Canada.  The crater is 215 million years old, and exhibits an 85 km diameter (image credit: NASA).

Only rather recently did scientists begin to widely acknowledge that sizable impactors from space strike Earth.

“It was extremely important in that first intellectual step to recognize that, yes, indeed, very large objects do fall out of the sky and make holes in the ground,” said Eugene Shoemaker. Shoemaker was a co-discoverer of Shoemaker-Levy 9, which was a fragmented comet that hit Jupiter in 1994 (see video below).

Hildebrand 1993 likewise noted that, “the hypothesis that catastrophic impacts cause mass extinctions has been unpopular with many geologists … some geologists still regard the existence of ~140 known impact craters on the Earth as unproven despite compelling evidence to the contrary.”

Beyond the asteroid that struck Mexico 65 million years ago and helped end the reign of the dinosaurs, there are numerous lesser-known terrestrial impactors that also appear destructive given their size. For example, at least three sizable impactors struck Earth ~35 million years ago, one of which left a 90 km crater in Siberia (Popigai). At least two large impactors occurred near the Jurassic-Cretaceous boundary (Morokweng and Mjolnir), and the latter may have been the catalyst for a tsunami that dwarfed the recent event in Japan (see also the simulation for the tsunami generated by the Chicxulub impactor below).

Glimsdal et al. 2007 note, “it is clear that both the geological consequences and the tsunami of an impact of a large asteroid are orders off magnitude larger than those of even the largest earthquakes recorded.”

However, in the CNN interview Neil deGrasse Tyson remarked that we’ll presumably identify the larger impactors ahead of time, giving humanity the opportunity to enact a plan to (hopefully) deal with the matter.   Yet he added that often we’re unable to identify smaller objects in advance, and that is problematic.  The meteor that exploded over the Urals a few weeks ago is an example.

Sketch of the ensuing Tsunami caused by an impactor from Space (image credit: binouse49/devianart).
An artist’s sketch of a tsunami which can be potentially generated by an asteroid/comet impactor (image credit: binouse49/deviantart).

In recent human history the Tunguska event, and the asteroid that recently exploded over Chelyabinsk, are reminders of the havoc that even smaller-sized objects can cause. The Tunguska event is presumed to be a meteor that exploded in 1908 over a remote forested area in Siberia, and was sufficiently powerful to topple millions of trees (see image below).  Had the event occurred over a city it may have caused numerous fatalities.

Mark Boslough, a scientist who studied Tunguska noted, “That such a small object can do this kind of destruction suggests that smaller asteroids are something to consider … such collisions are not as improbable as we believed. We should be making more efforts at detecting the smaller ones than we have till now.” 

Neil deGrasse Tyson hinted that humanity was rather lucky that the recent Russian fireball exploded about 20 miles up in the atmosphere, as its energy content was about 30 times larger than the Hiroshima explosion.  It should be noted that the potential negative outcome from smaller impactors increases in concert with an increasing human population.

The Tungunska impactor is thought to have felled millions of trees in Siberia in 1908 (image credit: Kulik).
In 1908 the Tunguska impactor toppled millions of trees in a rather remote part of Siberia (image credit: Kulik).  Had the object exploded over a city, the effects may have been catastrophic.

So how often do large bodies strike Earth, and is the next catastrophic impactor eminent? Do such events happen on a periodic basis? Scientists have been debating those questions and no consensus has emerged. Certain researchers advocate that large impactors (leaving craters greater than 35 km) strike Earth with a period of approximately 26-35 million years.

The putative periodicity  (i.e., the Shiva hypothesis) is often linked to the Sun’s vertical oscillations through the plane of the Milky Way as it revolves around the Galaxy, although that scenario is likewise debated (as is many of the assertions put forth in this article). The Sun’s motion through the denser part of the Galactic plane is believed to trigger a comet shower from the Oort Cloud. The Oort Cloud is theorized to be a halo of loosely-bound comets that encompasses the periphery of the Solar System. Essentially, there exists a main belt of asteroids between Mars and Jupiter, a belt of comets and icy bodies located beyond Neptune called the Kuiper belt, and then the Oort Cloud.  A lower-mass companion to the Sun was likewise considered as a perturbing source of Oort Cloud comets (“The Nemesis Affair” by D. Raup).

A belt of comets called the Oort Cloud is theorized to encircle the Solar system  (image credit: NASA/JPL).
A halo of comets designated the Oort Cloud is theorized to encircle the periphery of the Solar System, and reputedly acts as a reservoir for objects that may become terrestrial impactors (image credit: NASA/JPL).

The aforementioned theory pertains principally to periodic comets showers, however, what mechanism can explain how asteroids exit their otherwise benign orbits in the belt and enter the inner solar system as Earth-crossers? One potential (stochastic) scenario is that asteroids are ejected from the belt via interactions with the planets through orbital resonances.  Evidence for that scenario is present in the image below, which shows that regions in the belt coincident with certain resonances are nearly depleted of asteroids.  A similar trend is seen in the distribution of icy bodies in the Kuiper belt, where Neptune (rather than say Mars or Jupiter) may be the principal scattering body.  Note that even asteroids/comets not initially near a resonance can migrate into one by various means (e.g., the Yarkovsky effect).

Indeed, if an asteroid in the belt were to breakup (e.g., collision) near a resonance, it would send numerous projectiles streaming into the inner solar system.  That may help partly explain the potential presence of asteroid showers (e.g., the Boltysh and Chicxulub craters both date to near 65 million years ago).   In 2007, a team argued that the asteroid which helped end the reign of the Dinosaurs 65 million years ago entered an Earth-crossing orbit via resonances. Furthermore, they noted that asteroid 298 Baptistina is a fragment of that Dinosaur exterminator, and it can be viewed in the present orbiting ~2 AU from the Sun.  The team’s specific assertions are being debated, however perhaps more importantly: the underlying transport mechanism that delivers asteroids from the belt into Earth-crossing orbits appears well-supported by the evidence.

Kirkwood Gaps, histogram of asteroids as a function of their average distance from the Sun.  Regions deplete of asteroids are called Kirkwood Gaps, and those bodies may have been escavated from the main belt owing to orbital resonances (image credit: Alan Chamberlain, JPL/Caltech).
A histogram featuring the number of asteroids as a function of their average distance from the Sun. Regions depleted of asteroids are often coincident with orbital resonances, the latter being a mechanism by which objects in the belt can be scattered into enter Earth-crossing orbits (image credit: Alan Chamberlain, JPL/Caltech).

Thus it appears that the terrestrial impact record may be tied to periodic and random phenomena, and comet/asteroid showers can stem from both.  However, reconstructing that terrestrial impact record is rather difficult as Earth is geologically active (by comparison to the present Moon where craters from the past are typically well preserved).  Thus smaller and older impactors are undersampled.  The impact record is also incomplete since a sizable fraction of impactors strike the ocean.  Nevertheless, an estimated frequency curve for terrestrial impacts as deduced by Rampino and Haggerty 1996 is reproduced below.  Note that there is considerable uncertainty in such determinations, and the y-axis in the figure highlights the “Typical Impact Interval”.

Estimated frequency of impacts as a function of age, diameter, and energy yield.  Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino & Haggerty 1996, NASA ADS/Springer).
Estimated frequency of impactors as a function of diameter, energy yield, and typical impact interval. Results assume an impact speed of 20 km/s and density of 3 g/cm^3 (image credit: Fig. 2 from Rampino and Haggerty 1996, NASA ADS/Springer).

In sum, as noted by Eugene Shoemaker, large objects do indeed fall out of the sky and cause damage. It is unclear when in the near or distant future humanity will be forced to rise to the challenge and counter an incoming larger impactor, or again deal with the consequences of a smaller impactor that went undetected and caused human injuries (the estimated probabilities aren’t reassuring given their uncertainty and what’s in jeopardy).  Humanity’s technological progress and scientific research must continue unabated (and even accelerated), thereby affording us the tools to better tackle the described situation when it arises.

Is discussion of this topic fear mongering and alarmist in nature? The answer should be obvious given the fireball explosion that happened recently over the Ural mountains, the Tunguska event, and past impactors.  Given the stakes excessive vigilance is warranted.

Fareed Zakharia’s discussion with Neil deGrasse Tyson is below.

The interested reader desiring additional information will find the following pertinent: the Earth Impact Database, Hildebrand 1993Rampino and Haggerty 1996Stothers et al. 2006, Glimsdal et al. 2007Bottke et al. 2007Jetsu 2011, G. Keller’s discussion concerning the end of the Dinosaurs, “T. rex and the Crater of Doom” by W. Alvarez, “The Nemesis Affair” by D. Raup, “Collision Earth! The Threat from Outer Space” by P. Grego.  **Note that there is a diverse spectrum of opinions on nearly all the topics discussed here, and our understanding is constantly evolving.  There is much research to be done.

A Rather Quiet Solar Maximum … For Now

Recent sunspot counts fall short of predictions. Credit: Dr. Tony Philips & NOAA/SWPC.

2013 was supposed to be the year of Solar Max, the peak of the 11-year sunspot cycle. But so far, solar activity has been fairly low, with sunspot numbers well below expectations as well as infrequent solar flares.

Back in 2008, the NOAA/NASA Solar Cycle Prediction Panel, said that due to the extrememly deep and quite solar minimum going on at that time, they anticipated Solar Cycle 24 – our current cycle – to be below average in intensity. They’ve certainly been right about that.

In this video, solar physicist Dean Pesnell of the Goddard Space Flight Center says that this solar max looks different from what we expected because it may end up being “double peaked.”

This video shows the low amount of sunspots so far in 2013:

Read more at Science@NASA
.

Video: Why Is Curiosity Looking for Organics?

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169). The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals - dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

This short 60-second video explains organic molecules and what they can tell us about the history of Mars. It’s also a good segue to provide an update on how the Curiosity rover is doing following the computer problems we reported earlier this week.

Word is that the rover will resume its activities tonight. This is later than originally planned, as shortly after being recovered from safe mode back into active status following a memory issue with one of its on-board computers, engineers put Curiosity into sleep mode because of a rather large solar flare that was heading to Mars.

“Storm’s a-comin’!” the rover’s Twitter account announced. “There’s a solar storm heading for Mars. I’m going back to sleep to weather it out.”

But the CME has now passed and all appears to be well with the rover. Look for raw images to resume soon!