We Live in a Cosmic Shooting Gallery

In this new video from Big Think, astrophysicist Neil deGrasse Tyson says he’s almost embarrassed for our species that it takes a warning shot across our bow before legislators take seriously the advice they’ve been receiving from astronomers about getting serious about asteroid detection and deflection; that it’s a matter of when not if Earth will get smacked by an asteroid. “But it took an actual meteor over Russia exploding with 25 times the power of the atom bomb in Hiroshima to convince people that maybe we should start doing something about it.”

ALMA Now a Full-Fledged Observatory

This image shows an aerial view of the Chajnantor Plateau, located at an altitude of 5000 meters in the Chilean Andes, where the array of ALMA antennas is located. Credit: Clem & Adri Bacri-Normier (wingsforscience.com)/ESO.

Today, in a remote part of the Chilean Andes, the Atacama Large Millimeter/submillimeter Array (ALMA), was inaugurated at an official ceremony. This event marks the completion of all the major systems of the giant telescope and the formal transition from a construction project to a fully fledged observatory. ALMA is a partnership between Europe, North America and East Asia in cooperation with the Republic of Chile.

ALMA is able to observe the Universe by detecting light that is invisible to the human eye, and will show us never-before-seen details about the birth of stars, infant galaxies in the early Universe, and planets coalescing around distant suns. It also will discover and measure the distribution of molecules — many essential for life — that form in the space between the stars.

ALMA’s three international partners today welcomed more than 500 people to the ALMA Observatory in the Chilean Atacama Desert to celebrate the success of the project. The guest of honour was the President of Chile, Sebastián Piñera.

In honor of the official inauguration of ALMA, this movie, called ALMA — In Search of Our Cosmic Origins, has been released:

The President of Chile, Sebastián Piñera, said: “One of our many natural resources is Chile’s spectacular night sky. I believe that science has been a vital contributor to the development of Chile in recent years. I am very proud of our international collaborations in astronomy, of which ALMA is the latest, and biggest outcome.”

The Director of ALMA, Thijs de Graauw, expressed his expectations for ALMA. “Thanks to the efforts and countless hours of work by scientists and technicians in the ALMA community around the world, ALMA has already shown that it’s the most advanced millimetre/submillimetre telescope in existence, dwarfing anything else we had before. We are eager for astronomers to exploit the full power of this amazing tool.”

The observatory was conceived as three separate projects in Europe, USA and Japan in the 1980s, and merged to one in the 1990s. Construction started in 2003. The total construction cost of ALMA is approximately US$ 1.4 billion.

The antennas of the ALMA array, fifty-four 12-metre and twelve smaller 7-meter dish antennas, work together as a single telescope. Each antenna collects radiation coming from space and focuses it onto a receiver. The signals from the antennas are then brought together and processed by a specialized supercomputer: the ALMA correlator. The 66 ALMA antennas can be arranged in different configurations, where the maximum distance between antennas can vary from 150 meters to 16 kilometers.

Source: ESO

How the Space Shuttle Killed an American Halley’s Comet Mission

Halley's Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA
Halley's Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA

NASA missed the chance to visit Halley’s Comet in 1986 when the famed sentinel swung close to Earth, as it does every 76 years. Luckily for history, the Europeans flew Giotto past it on this day (March 13) in 1986, and some other nations sent their own probes.

The full story of NASA’s withdrawal is in Bruce Murray’s Journey Into Space: The First Three Decades of Space Exploration. Murray, the former director of the Jet Propulsion Laboratory, has chapters upon chapters on Halley, but here are some notable highlights.

First of all, there were at least three initiatives for NASA to send a mission to the famed comet. The missions below are in chronological order, and it appears it was only when the preceding one was killed that the next was envisioned:

– Solar sail. This mission would use the power of the solar wind — bits streaming from the sun — to bring a spacecraft within Halley’s gravitational influence. In fact, the spacecraft would stay with Halley as it whisked out of the solar system and would return (long dead) when Halley came back in 2061.

A rendezvous with Comet Tempel 2. Another idea would see a spacecraft swing close to Comet Tempel 2 but also have a probe that would take a picture of Halley from a distance. NASA also considered splitting the mission in two to meet annual budgetary requirements, but the Comet Science Working Group was cool to the idea. There also was some thought about bringing the Europeans into this mission, but that never worked out.

Galileo-type hardware. A third initiative had the Jet Propulsion Laboratory envisioning a distant flyby of Halley, basically using similar types of parts that flew in a spacecraft (called Galileo) to Jupiter.

All three of these initiatives fell to budget cuts during the 1970s and 1980s. What caused the budget cuts? In large part, the space shuttle program. To be sure, the shuttle was an impressive piece of hardware, and we are not doubting what it contributed to the construction of the International Space Station and to human spaceflight in general. But it was a large project and in those tight times, something had to give.

Perhaps the most interesting cancellation came in 1979, when NASA administrator Robert Frosch and his deputy went to President Jimmy Carter’s office to plead for the case of two projects: a solar electric propulsion system that would eventually power the Halley-Tempel 2 mission, and the Compton Gamma Ray Observatory (which flew into space, after many delays, in 1991).

Carter, according to Murray, was reading a book on black holes penned by Walter Sullivan of the New York Times. (We’re assuming it’s the 1979 book Black Holes: The Edge of Space, the End of Time.) When presented with the options, Carter said he was “partial to the gamma-ray thing because of this connection with the black-hole problem.”

That signaled the beginning of the end for NASA’s Halley-Tempel 2 mission.

Habitable Earth-Like Exoplanets Might Be Closer Than We Think

The graphic shows optimistic and conservative habitable zone boundaries around cool, low mass stars. The numbers indicate the names of known Kepler planet candidates. Yellow color represents candidates with less than 1.4 times Earth-radius. Green color represents planet candidates between 1.4 and 2 Earth radius. Credit: Penn State.

Size might matter when it comes to stars having habitable environments for planets, and in this case smaller might be better, as well as closer to Earth. A new study indicates that low mass stars may be the most abundant planet hosts in our galaxy. And since these smaller stars like M-dwarfs are plentiful, the number of potentially habitable planets could be greater than previously thought.

“We now estimate that if we were to look at 10 of the nearest small stars we would find about four potentially habitable planets, give or take,” said Ravi Kopparapu from Penn State University. “That is a conservative estimate,” he added. “There could be more.”

Kopparapu has published a new paper where he recalculated how common Earth-sized planets in the habitable zones of low-mass stars, also known as cool stars or M-dwarfs. Since the orbit of planets around M-dwarfs is very short, this allows scientists to gather data on a greater number of orbits in a shorter period of time than can be gathered on Sun-like stars, which have larger habitable zones.

Additionally, since M-dwarfs are more common than Sun-like stars, it means more of them can be observed.

Moreover, there are M-dwarfs located relatively close to Earth, which makes it easier to study any planet that may be orbiting these stars.

“The average distance to the nearest potentially habitable planet is about seven light-years,” Kopparapu said. “That is about half the distance of previous estimates.”

Kopparapu said there are about eight of these cool stars within 10 light-years of Earth, and the thinks, conservatively, we should expect to find about three Earth-size planets in the habitable zones.

His paper follows up on a recent study by researchers at the Harvard-Smithsonian Center for Astrophysics which analyzed 3,987 M-dwarf stars to calculate the number of Earth-sized planet candidates in cool stars’ habitable zones. That study used habitable zone limits calculated in 1993, but recently, a group of astronomers that included Kopparapu developed a new model for identifying habitable zones around stars based on water and carbon dioxide absorption (see the Habitable Zone Calculator here). Now Kopparapu has applied the new model to the Harvard team’s study, and found that there are additional planets in the newly determined habitable zones.

“I used our new habitable zone calculations and found that there are nearly three times as many Earth-sized planets in the habitable zones around these low mass stars as in previous estimates,” Kopparapu said. “This means Earth-sized planets are more common than we thought, and that is a good sign for detecting extraterrestrial life.”

Read Kopparapu’s paper.

Source: Penn State

ALMA Eyes Most Distant Star-forming Galaxy

This schematic image represents how light from a distant galaxy is distorted by the gravitational effects of a nearer foreground galaxy, which acts like a lens and makes the distant source appear distorted, but brighter, forming characteristic rings of light, known as Einstein rings. An analysis of the distortion has revealed that some of the distant star-forming galaxies are as bright as 40 trillion Suns, and have been magnified by the gravitational lens by up to 22 times. Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Let’s turn down the lights and set the stage… We’re moving off through space, looking not only at distant galaxies, but the incredibly distant past. Once upon a time astronomers assumed that star formation began in massive, bright galaxies as a concentrated surge. Now, new observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) are showing us that these deluges of stellar creation may have begun much earlier than they thought.

According to the latest research published in today’s edition of the journal, Nature, and in the Astrophysical Journal, researchers have revealed fascinating discoveries taken with the new international ALMA observatory – which celebrates its inauguration today. Among its many achievements, ALMA has given us a look even deeper into space – showing us ancient galaxies which may be billions of light years distant. The observations of these starburst galaxies show us that stars were created in a frenzy out of huge deposits of cosmic gas and dust.

Loading player…

“The more distant the galaxy, the further back in time one is looking, so by measuring their distances we can piece together a timeline of how vigorously the Universe was making new stars at different stages of its 13.7 billion year history,” said Joaquin Vieira (California Institute of Technology, USA), who led the team and is lead author of the paper in the journal Nature.

Just how did these observations come about? Before ALMA, an international team of researchers employed the US National Science Foundation’s 10-metre South Pole Telescope (SPT ) to locate these distant denizens and then homed in on them to take a closer look at the “stellar baby boom” during the Universe’s beginning epoch. What they found surprised them. Apparently star forming galaxies are even more distant than previously suspected… their onslaught of stellar creation beginning some 12 billion years ago. This time frame places the Universe at just under 2 billion years old and the star formation explosion occurring some billion years sooner than astronomers assumed. The ALMA observations included two galaxies – the “most distant of their kind ever seen” – that contained an additional revelation. Not only did their distance break astronomical records, but water molecules have been detected within them.

However, two galaxies aren’t the only score for ALMA. The research team took on 26 galaxies at wavelengths of around three millimetres. The extreme sensitivity of this cutting edge technology utilizes the measurement of light wavelengths – wavelengths produced by the galaxy’s gas molecules and stretched by the expansion of the Universe. By carefully measuring the “stretch”, astronomers are able to gauge the amount of time the light has taken to reach us and refine its point in time.

“ALMA’s sensitivity and wide wavelength range mean we could make our measurements in just a few minutes per galaxy – about one hundred times faster than before,” said Axel Weiss (Max-Planck-Institut für Radioastronomie in Bonn, Germany), who led the work to measure the distances to the galaxies. “Previously, a measurement like this would have been a laborious process of combining data from both visible-light and radio telescopes.”

For the most part, ALMA’s observations would be sufficient to determine the distance, but the team also included ALMA’s data with the Atacama Pathfinder Experiment (APEX) and ESO’s Very Large Telescope for a select few galaxies. At the present time, astronomers are only employing a small segment of ALMA’s capabilities – just 16 of the 66 massive antennae – and focusing on brighter galaxies. When ALMA is fully functional, it will be able to zero in on even fainter targets. However, the researchers weren’t about to miss any opportunities and utilized gravitational lensing to aid in their findings.

This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.
This montage combines data from ALMA with images from the NASA/ESA Hubble Space Telescope, for five distant galaxies. The ALMA images, represented in red, show the distant, background galaxies, being distorted by the gravitational lens effect produced by the galaxies in the foreground, depicted in the Hubble data in blue. The background galaxies appear warped into rings of light known as Einstein rings, which encircle the foreground galaxies. Credit:ALMA (ESO/NRAO/NAOJ), J. Vieira et al.

“These beautiful pictures from ALMA show the background galaxies warped into multiple arcs of light known as Einstein rings, which encircle the foreground galaxies,” said Yashar Hezaveh (McGill University, Montreal, Canada), who led the study of the gravitational lensing. “We are using the massive amounts of dark matter surrounding galaxies half-way across the Universe as cosmic telescopes to make even more distant galaxies appear bigger and brighter.”

Just how bright is bright? According to the news release, the analysis of the distortion has shown that a portion of these far-flung, star-forming galaxies could be as bright as 40 trillion Suns… then magnified up to 22 times more through the aid of gravitational lensing.

“Only a few gravitationally lensed galaxies have been found before at these submillimetre wavelengths, but now SPT and ALMA have uncovered dozens of them.” said Carlos De Breuck (ESO), a member of the team. “This kind of science was previously done mostly at visible-light wavelengths with the Hubble Space Telescope, but our results show that ALMA is a very powerful new player in the field.”

“This is an great example of astronomers from around the world collaborating to make an amazing discovery with a state-of-the-art facility,” said team member Daniel Marrone (University of Arizona, USA). “This is just the beginning for ALMA and for the study of these starburst galaxies. Our next step is to study these objects in greater detail and figure out exactly how and why they are forming stars at such prodigious rates.”

Bring the house lights back up, please. As ALMA peers ever further into the past, maybe one day we’ll catch our own selves… looking back.

Live from 1969: Apollo 9 Returns Home

The crew of Apollo 9: Commander James McDivitt, Command Module Pilot Dave Scott and Lunar Module Pilot Rusty Schweickart. Credit: NASA

“On the success of Apollo 9 mission hangs the hope for future manned missions to the Moon,” said famous CBS newsman Walter Cronkite. HD TV it’s not, but this is a fun look back at actual news footage from the Apollo 9 mission, which landed back on Earth on March 13, 1969, forty-four years ago today.

The ten-day Apollo 9 mission was the first manned flight of the lunar module and while in Earth orbit the crew tested the spacecraft for lunar operations. The crew included Commander Jim McDivitt, Command Module pilot Dave Scott and one of our favorite astronauts, the Lunar Module pilot Rusty Schweickart.

They successfully demonstrated the complete rendezvous and docking operations and conducted an EVA during their 151 Earth orbits. The mission carried the largest payload at that point in time to Earth orbit.

WISE Nabs the Closest Brown Dwarfs Yet Discovered

WISE J104915.57-531906 from NASA's WISE survey (centered) and resolved to should its binary nature by the Gemini Observatory (inset). (Credit: NASA/JPL/Gemini Observatory/AURA/NSF).

We now know our stellar neighbors just a little better, and a new discovery may help tell us how common brown dwarfs are in our region of the galaxy. Early this week, researchers at Pennsylvania State University announced the discovery of a binary brown dwarf system. With a parallax measurement of just under 0.5”, this pair is only 6.5 light years distant making it the third closest system to our own and the closest example of the sub-stellar class of objects known as brown dwarfs yet discovered.

Named WISE J104915.57-531906, the system was identified by analysis of multi-epoch astrometry carried out by NASA’s Wide-field Infrared Survey Explorer (WISE). The discovery was made by associate professor of astronomy and astrophysics at Penn State’s Center for Exoplanets and Habitable Worlds Kevin Luhman. The system’s binary nature and follow up observations were confirmed by spectroscopic analysis carried out by the Gemini Observatory’s Multi-Object Spectrographs (GMOS).

Animation showing the motion of WISE 1049-5319 across the All-WISE, 2MASS & Sloan Digital Sky Survyies from 1978 to 2010. (Credit: NASA/STScI/JPL/IPAC/University of Massachusetts.)
Animation showing the motion of WISE 1049-5319 across the All-WISE, 2MASS & Sloan Digital Sky Surveys from 1978 to 2010. (Credit: NASA/STScI/JPL/IPAC/University of Massachusetts.)

This find is also the closest stellar system discovered to our own solar system since the discovery of Barnard’s star by astronomer E.E. Barnard in 1916. Incidentally, Barnard’s star was the center of many spurious and controversial claims of extrasolar planet discoveries in the mid-20th century. Barnard’s star is 6 light years distant, and the closest star system to our own is Alpha Centauri measured to be 4.4 light years distant in 1839. In 1915, the Alpha Centauri system was determined to have a faint companion now known as Proxima Centauri at 4.2 light years distant. The Alpha Centauri system also made headlines last year with the discovery of the closest known exoplanet to Earth. WISE 1506+7027 is the closest brown dwarf to our solar system yet discovered. This also breaks the extended the All-WISE survey’s own previous record of the closest brown dwarf released in 2011, WISE 1506+7027 at 11.1 light years distant.

When looking for nearby stellar suspects, astronomers search for stars displaying a high proper motion across the sky. The very first parallax measurement of 11 light years distant was obtained by Friedrich Bessel for the star 61 Cygni in 1838. 61 Cygni was known as “Piazzi’s Flying Star” for its high 4.2” proper motion across the sky. To giving you an idea of just how tiny an arc second is, a Full Moon is about 1800” in diameter. With a proper motion of just under 3” per year, it would take WISE 1049-5319 over 600 years to cross the same apparent distance in the sky as viewed from the Earth!

An artist's conception of looking back at Sol from the binary brown dwarf system WISE 1049-5319, 6.5 light years distant. (Credit: Janella Williams, Penn State University).
An artist’s conception of looking back at Sol from the binary brown dwarf system WISE 1049-5319, 6.5 light years distant. (Credit: Janella Williams, Penn State University).

“Based on how this star system was moving in images from the WISE survey, I was able to extrapolate back in time to predict where it should have been located in older surveys,” stated Luhman. And sure enough, the brown dwarf was there in the Deep Near-Infrared Survey of the Southern Sky (DENIS), the Two Micron All-Sky Survey (2MASS) and the Sloan Digitized Sky Survey (SDSS) spanning a period from 1978 to 1999. Interestingly, Luhman also points out in the original paper that the pair’s close proximity to the star rich region of galactic plane in the constellation Vela deep in the southern hemisphere sky is most likely the reason why they were missed in previous surveys.

The discovery of the binary nature of the pair was also “an unexpected bonus,” Luhman said. “The sharp images from Gemini also revealed that the object actually was not just one, but a pair of brown dwarfs orbiting each other.” This find of a second brown dwarf companion will go a long way towards pinning down the mass of the objects. With an apparent separation of 1.5”, the physical separation of the pair is 3 astronomical units (1 AU= the Earth-Sun distance) in a 25 year orbit.

Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).
Size comparison of stellar vs substellar objects. (Credit: NASA/JPL-Caltech/UCB).

Brown dwarfs are sub-stellar objects with masses too low (below ~75 Jupiter masses) to sustain the traditional fusion of hydrogen into helium via the full proton-proton chain process. Instead, objects over 13 Jupiter masses begin the first portion of the process by generating heat via deuterium fusion. Brown dwarfs are thus only visible in the infrared, and run a spectral class of M (hottest), L, T, and Y (coolest). Interestingly, WISE 1049-5319 is suspected to be on the transition line between an L and T-class brown dwarf. To date, over 600 L-type brown dwarfs have been identified, primarily by the aforementioned SDSS, 2MASS & DENIS infrared surveys.

General location of WISE 1049-5319 in the constellation Vela. Note its proximity to the galactic plane. (Created by the author using Starry Night).
General location of WISE 1049-5319 in the constellation Vela. Note its proximity to the galactic plane. (Created by the author using Starry Night).

This discovery and others like it may go a long ways towards telling us how common brown dwarfs are in our region of the galaxy. Faint and hard to detect, we’re just now getting a sampling thanks to surveys such as WISE and 2MASS. The James Webb Space Telescope will do work in the infrared as well, possibly extending these results. Interestingly, Luhman notes in an interview with Universe Today that the potential still exists for the  discovery of a brown dwarf closer to our solar system than Alpha Centauri. “No published study of the data from WISE or any other survey has ruled out this possibility… WISE is much more capable of doing this than any previous survey, but the necessary analysis would be fairly complex and time consuming. It’s easier to find something than to rule out its existence.” Said Luhman. Note that we’re talking a nearby brown dwarf that isn’t gravitationally bound to the Sun… this discussion is separate from such hypothetical solar companions as Nemesis and Tyche…and Nibiru conspiracy theorists need not apply!

The WISE 1049-5319 system is also a prime target in the search for nearby extra-solar planets.  “Because brown dwarfs have very low masses, they exhibit larger reflex motions due to orbiting planets than more massive stars, and those larger reflex motions will be easier to detect.” Luhman told Universe Today. Said radial surveys for exoplanets would also be carried out in the IR band, and brown dwarfs also have the added bonus of not swamping out unseen planetary companions in the visible spectrum.

Congrats to Mr. Luhman and the Center for Exoplanets and Habitable Worlds on the discovery. You just never know what’s lying around in your own stellar backyard!

Read this original discovery paper here.

Astrophotos: Comet PANSTARRS Meets the Crescent Moon

Comet C/2011 L4 (PANSTARRS) and the crescent Moon with earthshine over the Sonoran Desert. Credit and copyright: Nic Leister.

Astrophotographers were out in force last night to try and capture Comet PANSTARRS (C/2011 L4 PANSTARRS) as it posed next to the setting crescent Moon. Those with clear skies were rewarded with great views, such as this very picturesque view from Arizona by Nic Leister. See more below:

Comet PANSTARRS and the Waxing Crescent Moon as seen over Castroville, Texas. Credit and copyright: Adrian New.
Comet PANSTARRS
and the Waxing Crescent Moon as seen over Castroville, Texas on March 12, 2013. Credit and copyright: Adrian New.

Adrian New wrote via email: “Here in historic Castroville, Texas we had an impressive view of the Comet PANSTARRS and the waxing crescent Moon. Both were easily visible close to the horizon and not affected by the light towers. Taken with a Nikon D800 at ISO 800 and a 2 second exposure at F/4. Lens was a Nikon 300mm F/4.”

Comet PANSTARRS and the lunar crescent in a colorful Arizona sunset. Credit and copyright: Chris Schur.
Comet PANSTARRS and the lunar crescent in a colorful Arizona sunset, March 12, 2013. Credit and copyright: Chris Schur.

Chris Schur said, “The comet was an easy naked eye object with tail from Arizona, at our elevation of 5150 feet.” This image was taken March 12th around 7:15 MST.

Comet PANSTARRS and the very young Moon, seen in Salem, Missouri. Credit and copyright: Joe Shuster, Lake County Astronomical Society.
Comet PANSTARRS and the very young Moon, seen in Salem, Missouri on March 12, 2013. Credit and copyright: Joe Shuster, Lake County Astronomical Society.

Joe Shuster from Missouri said he managed to outlast some clouds to get a shot of PANSTARRS and the very young Moon. He used a Canon T1i, Nikon 200mm AIS lens, ISO 800, 4s.

Crescent Moon and Comet PANSTARRS over Columbia, Missouri. Credit and copyright: Naghrenhel on Flickr.
Crescent Moon and Comet PANSTARRS over Columbia, Missouri, March 12, 2013. Credit and copyright: Naghrenhel on Flickr.

Naghrenhel on Flickr shared the story of this image: “It was a very cloudy night and I’d almost given up locating the comet PanStarrs. Then I caught a glimpse of the moon, only 2% illuminated, and decided to take a picture. I was pleasantly surprised to see the moon’s companion appear. I still couldn’t see it with an unaided eye, probably due to city light pollution. But the right exposure of the camera caught the comet. Thanks to the Universe Today website informing me of their close proximity or I would have missed the comet completely.”

Comet PANSTARRS as seen from Gastonia, North Carolina on March 12, 2013. Credit and copyright: Jim Craig.
Comet PANSTARRS as seen from Gastonia, North Carolina on March 12, 2013. Credit and copyright: Jim Craig.
Comet PANSTARRS from 3/12/2013 at about 7:50 pm. up on Mt. Wilson above Los Angeles. Credit: Tim Song Jones.
Comet PANSTARRS from 3/12/2013 at about 7:50 pm. up on Mt. Wilson above Los Angeles. Credit: Tim Song Jones.
Comet PANSTARRS as seen through the clouds in Indianapolis, Indiana. Credit: John Chumack.
Comet PANSTARRS as seen through the clouds in Indianapolis, Indiana. Credit: John Chumack.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Curiosity Discovers Environment Where Life Could have Thrived on Ancient Mars

This set of images shows the results from the rock abrasion tool from Opportunity (left) and the drill from NASA's Curiosity rover (right). Note how the rock grindings from Opportunity are brownish red, indicating the presence of hematite, a strongly oxidized iron-bearing mineral. Such minerals are less supportive of habitability and also may degrade organic compounds. On the right is the hole produced by Curiosity during the first drilling into a rock on Mars to collect a sample from inside the rock. In this case, the rock produced gray tailings -- not red -- suggesting the presence of iron that is less oxidized. Curiosity also found clay minerals that form in more neutral water friendly to the formation of life. Credit: NASA

After analyzing the first powder ever drilled from the interior of a Martian rock, NASA’s Curiosity rover discovered some of the key chemical ingredients necessary for life to have thrived on early Mars billions of years ago.

Curiosity has achieved her goal of discovering a habitable environment on the Red Planet, mission scientists reported today at a briefing held at NASA headquarters in Washington, D.C.

Data collected by Curiosity’s two analytical chemistry labs (SAM and CheMin) confirm that the gray powder collected from inside the sedimentary rock where the rover is exploring – near an ancient Martian stream bed – possesses a significant amount of phyllosilicate clay minerals; indicating an environment where Martian microbes could once have thrived in the distant past.

“We have found a habitable environment which is so benign and supportive of life that probably if this water was around, and you had been on the planet, you would have been able to drink it,” said John Grotzinger, the chief scientist for the Curiosity Mars Science Laboratory mission at the California Institute of Technology in Pasadena, Calif.

Curiosity cored the rocky sample from a fine-grained, sedimentary outcrop named “John Klein” inside a shallow basin named Yellowknife Bay, and delivered pulverized powered to the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments inside the robot.

The presence of abundant phyllosilicate clay minerals in the John Klein drill powder indicates a fresh water environment. Further evidence derives from the veiny sedimentary bedrock shot through with calcium sulfate mineral veins that form in a neutral to mildly alkaline pH environment.

This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from the Martian surface by NASA's Curiosity rover. These images were obtained by Curiosity's Chemistry and Mineralogy instrument (CheMin) and show the patterns obtained from a drift of windblown dust and sand called "Rocknest" and from a powdered rock sample drilled from the "John Klein" bedrock wherer Curiosty corted the frist interior rock samples.  The presence of abundant clay minerals in the John Klein drill powder and the lack of abundant salt suggest a fresh water environment. The presence of calcium sulfates suggests a neutral to mildly alkaline pH environment. NASA/JPL-Caltech/Ames
This side-by-side comparison shows the X-ray diffraction patterns of two different samples collected from the Martian surface by NASA’s Curiosity rover. These images were obtained by Curiosity’s Chemistry and Mineralogy instrument (CheMin) and show the patterns obtained from a drift of windblown dust and sand called “Rocknest” (left) and from a powdered rock sample drilled by Curiosity from the “John Klein” bedrock (right). The presence of abundant phyllosilicate clay minerals in the John Klein drill powder suggest a fresh water environment. The presence of calcium sulfates suggests a neutral to mildly alkaline pH environment. NASA/JPL-Caltech/Ames

“Clay minerals make up at least 20 percent of the composition of this sample,” said David Blake, principal investigator for the CheMin instrument at NASA’s Ames Research Center in Moffett Field, Calif.

The rovers 7 foot (2.1 meter) long robotic arm fed aspirin sized samples of the gray, pulverized powder into the miniaturized CheMin SAM analytical instruments on Feb. 22 and 23, or Sols 195 and 196. The samples were analyzed on Sol 200.

Scientists were able to identify carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorus in the sample – all of which are essential constituents for life as we know it based on organic molecules.

“The range of chemical ingredients we have identified in the sample is impressive, and it suggests pairings such as sulfates and sulfides that indicate a possible chemical energy source for micro-organisms,” said Paul Mahaffy, principal investigator of the SAM suite of instruments at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo
Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

The discovery of phyllosilicates on the floor of Gale crater was unexpected and has delighted the scientists. Based on spectral observations from Mars orbit. Grotzinger told me previously that phyllosilicates had only been detected in the lower reaches of Mount Sharp, the 3 mile (5 km) high mountain that is Curiosity’s ultimate destination.

Grotzinger said today that Curiosity will remain in the Yellowknife Bay area for several additional weeks or months to fully characterize the area. The rover will also conduct at least one more drilling campaign to try and replicate the results, check for organic molecules and search for new discoveries.

Ken Kremer

Comet PANSTARRS Stars in a New Timelapse Movie

Comet PANSTARRS seen over Venice, California on March 11, 2013. Credit and copyright: Thad Szabo.

NASA scientist Fred Espenak captured this wonderful timelapse video of Comet PANSTARRS as it set over the Dos Cabezas Mountains in Arizona. The photos were taken from San Simon, AZ using a Nikon D90 and Nikkor 18-200 VR zoom lens at 200mm. All exposures were 2 seconds at F/5.6 (ISO 800).

I’m now seriously jealous, as my location has been socked in with clouds all week so far. If you’re in the same boat, enjoy some more images of Comet PANSTARRS from Universe Today readers:

Comet PANSTARRS as seen over Fountain Hills, Arizona. Credit and copyright: Nice Leister,
Comet PANSTARRS as seen over Fountain Hills, Arizona. Credit and copyright: Nice Leister,
Comet PANSTARRS from Tucson, Arizona on March 11, 2013. Credit and copyright: Rob Sparks.
Comet PANSTARRS from Tucson, Arizona on March 11, 2013. Credit and copyright: Rob Sparks.
Comet PANSTARRS on March 11, 2013. Credit: Adam Block/Mount Lemmon Sky Center.
Comet PANSTARRS on March 11, 2013. Credit: Adam Block/Mount Lemmon Sky Center.
Comet PANSTARRS over Alabama USA. Credit an copyright: Kristen Lyles..
Comet PANSTARRS over Alabama USA. Credit an copyright: Kristen Lyles..

Comet PanSTARRS – The Movie from Fred Espenak on Vimeo.