Actor Russell Crowe made some waves this week when he claimed to have captured photos of a UFO outside the window of his office in Australia. It turns out it really was a UFO…. an Unidentified Floating Object, which has now been identified. Crowe’s office sits on a pier in Sydney’s Royal Botanic Gardens, and via Twitter, Crowe said that he and a friend set up camera to capture fruit bats flying over the Gardens. “Canon 5D, no flash, can’t be lense (sic) flare because it moves, camera is fixed,” and “The camera is on a balcony – not behind glass.”
But ParaBreakdown’s Phil Poling has now provided a breakdown of why Crowe’s UFO is most likely to be a series of long-exposure photos of a … wait for it … passing sailboat with a high mast.
If you’ve been following Golden Spike Company, you know that the company is planning to launch commercial Lunar exploration missions by 2020.
Last month, Golden Spike announced their Indiegogo crowdfunding campaign to raise funds to help generate public interest in their mission. So far people from around the world have contributed to the Golden Spike Indiegogo campaign.
Today, Golden Spike has announced a video submission contest for their supporters. Keep reading to learn how you can participate!
To enter, simply submit your video on why you believe Lunar exploration is important. Golden Spike will accept entries for the first round of the competition until Friday, March 15. All appropriate videos will be uploaded to the Golden Spike Youtube Channel where the public can vote for their favorite via the comments section. The prize for the first round of videos is a lunar rover model (at left).
The recent meteor explosion over Chelyabinsk brought to the forefront a topic that has worried astronomers for years, namely that an impactor from space could cause widespread human fatalities. Indeed, the thousand+ injured recently in Russia was a wake-up call. Should humanity be worried about impactors? “Hell yes!” replied astronomer Neil deGrasse Tyson to CNN’s F. Zakharia .
The geological and biological records attest to the fact that some impactors have played a major role in altering the evolution of life on Earth, particularly when the underlying terrestrial material at the impact site contains large amounts of carbonates and sulphates. The dating of certain large impact craters (50 km and greater) found on Earth have matched events such as the extinction of the Dinosaurs (Hildebrand 1993, however see also G. Keller’s alternative hypothesis). Ironically, one could argue that humanity owes its emergence in part to the impactor that killed the Dinosaurs.
Only rather recently did scientists begin to widely acknowledge that sizable impactors from space strike Earth.
“It was extremely important in that first intellectual step to recognize that, yes, indeed, very large objects do fall out of the sky and make holes in the ground,” said Eugene Shoemaker. Shoemaker was a co-discoverer of Shoemaker-Levy 9, which was a fragmented comet that hit Jupiter in 1994 (see video below).
Hildebrand 1993 likewise noted that, “the hypothesis that catastrophic impacts cause mass extinctions has been unpopular with many geologists … some geologists still regard the existence of ~140 known impact craters on the Earth as unproven despite compelling evidence to the contrary.”
Beyond the asteroid that struck Mexico 65 million years ago and helped end the reign of the dinosaurs, there are numerous lesser-known terrestrial impactors that also appear destructive given their size. For example, at least three sizable impactors struck Earth ~35 million years ago, one of which left a 90 km crater in Siberia (Popigai). At least two large impactors occurred near the Jurassic-Cretaceous boundary (Morokweng and Mjolnir), and the latter may have been the catalyst for a tsunami that dwarfed the recent event in Japan (see also the simulation for the tsunami generated by the Chicxulub impactor below).
Glimsdal et al. 2007 note, “it is clear that both the geological consequences and the tsunami of an impact of a large asteroid are orders off magnitude larger than those of even the largest earthquakes recorded.”
However, in the CNN interview Neil deGrasse Tyson remarked that we’ll presumably identify the larger impactors ahead of time, giving humanity the opportunity to enact a plan to (hopefully) deal with the matter. Yet he added that often we’re unable to identify smaller objects in advance, and that is problematic. The meteor that exploded over the Urals a few weeks ago is an example.
In recent human history the Tunguska event, and the asteroid that recently exploded over Chelyabinsk, are reminders of the havoc that even smaller-sized objects can cause. The Tunguska event is presumed to be a meteor that exploded in 1908 over a remote forested area in Siberia, and was sufficiently powerful to topple millions of trees (see image below). Had the event occurred over a city it may have caused numerous fatalities.
Mark Boslough, a scientist who studied Tunguska noted, “That such a small object can do this kind of destruction suggests that smaller asteroids are something to consider … such collisions are not as improbable as we believed. We should be making more efforts at detecting the smaller ones than we have till now.”
Neil deGrasse Tyson hinted that humanity was rather lucky that the recent Russian fireball exploded about 20 miles up in the atmosphere, as its energy content was about 30 times larger than the Hiroshima explosion. It should be noted that the potential negative outcome from smaller impactors increases in concert with an increasing human population.
So how often do large bodies strike Earth, and is the next catastrophic impactor eminent? Do such events happen on a periodic basis? Scientists have been debating those questions and no consensus has emerged. Certain researchers advocate that large impactors (leaving craters greater than 35 km) strike Earth with a period of approximately 26-35 million years.
The putative periodicity (i.e., the Shiva hypothesis) is often linked to the Sun’s vertical oscillations through the plane of the Milky Way as it revolves around the Galaxy, although that scenario is likewise debated (as is many of the assertions put forth in this article). The Sun’s motion through the denser part of the Galactic plane is believed to trigger a comet shower from the Oort Cloud. The Oort Cloud is theorized to be a halo of loosely-bound comets that encompasses the periphery of the Solar System. Essentially, there exists a main belt of asteroids between Mars and Jupiter, a belt of comets and icy bodies located beyond Neptune called the Kuiper belt, and then the Oort Cloud. A lower-mass companion to the Sun was likewise considered as a perturbing source of Oort Cloud comets (“The Nemesis Affair” by D. Raup).
The aforementioned theory pertains principally to periodic comets showers, however, what mechanism can explain how asteroids exit their otherwise benign orbits in the belt and enter the inner solar system as Earth-crossers? One potential (stochastic) scenario is that asteroids are ejected from the belt via interactions with the planets through orbital resonances. Evidence for that scenario is present in the image below, which shows that regions in the belt coincident with certain resonances are nearly depleted of asteroids. A similar trend is seen in the distribution of icy bodies in the Kuiper belt, where Neptune (rather than say Mars or Jupiter) may be the principal scattering body. Note that even asteroids/comets not initially near a resonance can migrate into one by various means (e.g., the Yarkovsky effect).
Indeed, if an asteroid in the belt were to breakup (e.g., collision) near a resonance, it would send numerous projectiles streaming into the inner solar system. That may help partly explain the potential presence of asteroid showers (e.g., the Boltysh and Chicxulub craters both date to near 65 million years ago). In 2007, a team argued that the asteroid which helped end the reign of the Dinosaurs 65 million years ago entered an Earth-crossing orbit via resonances. Furthermore, they noted that asteroid 298 Baptistina is a fragment of that Dinosaur exterminator, and it can be viewed in the present orbiting ~2 AU from the Sun. The team’s specific assertions are being debated, however perhaps more importantly: the underlying transport mechanism that delivers asteroids from the belt into Earth-crossing orbits appears well-supported by the evidence.
Thus it appears that the terrestrial impact record may be tied to periodic and random phenomena, and comet/asteroid showers can stem from both. However, reconstructing that terrestrial impact record is rather difficult as Earth is geologically active (by comparison to the present Moon where craters from the past are typically well preserved). Thus smaller and older impactors are undersampled. The impact record is also incomplete since a sizable fraction of impactors strike the ocean. Nevertheless, an estimated frequency curve for terrestrial impacts as deduced by Rampino and Haggerty 1996 is reproduced below. Note that there is considerable uncertainty in such determinations, and the y-axis in the figure highlights the “Typical Impact Interval”.
In sum, as noted by Eugene Shoemaker, large objects do indeed fall out of the sky and cause damage. It is unclear when in the near or distant future humanity will be forced to rise to the challenge and counter an incoming larger impactor, or again deal with the consequences of a smaller impactor that went undetected and caused human injuries (the estimated probabilities aren’t reassuring given their uncertainty and what’s in jeopardy). Humanity’s technological progress and scientific research must continue unabated (and even accelerated), thereby affording us the tools to better tackle the described situation when it arises.
Is discussion of this topic fear mongering and alarmist in nature? The answer should be obvious given the fireball explosion that happened recently over the Ural mountains, the Tunguska event, and past impactors. Given the stakes excessive vigilance is warranted.
Fareed Zakharia’s discussion with Neil deGrasse Tyson is below.
2013 was supposed to be the year of Solar Max, the peak of the 11-year sunspot cycle. But so far, solar activity has been fairly low, with sunspot numbers well below expectations as well as infrequent solar flares.
Back in 2008, the NOAA/NASA Solar Cycle Prediction Panel, said that due to the extrememly deep and quite solar minimum going on at that time, they anticipated Solar Cycle 24 – our current cycle – to be below average in intensity. They’ve certainly been right about that.
In this video, solar physicist Dean Pesnell of the Goddard Space Flight Center says that this solar max looks different from what we expected because it may end up being “double peaked.”
This video shows the low amount of sunspots so far in 2013:
This short 60-second video explains organic molecules and what they can tell us about the history of Mars. It’s also a good segue to provide an update on how the Curiosity rover is doing following the computer problems we reported earlier this week.
Word is that the rover will resume its activities tonight. This is later than originally planned, as shortly after being recovered from safe mode back into active status following a memory issue with one of its on-board computers, engineers put Curiosity into sleep mode because of a rather large solar flare that was heading to Mars.
“Storm’s a-comin’!” the rover’s Twitter account announced. “There’s a solar storm heading for Mars. I’m going back to sleep to weather it out.”
But the CME has now passed and all appears to be well with the rover. Look for raw images to resume soon!
Be careful where you get your news. Some websites have headlines that are screaming “GIANT ASTEROID HEADING TO EARTH!” or “2014 END OF THE WORLD!” It’s been billed as the largest threat to Earth in a millennium, and this supposed nearly 300 meter (1,000 ft.) -wide asteroid is spurring “urgent meetings going on among scientists on how deflect it.”
This asteroid can’t hit Earth because it doesn’t exist. Or at the very least, it doesn’t exist yet. The first clue this asteroid is a fake is its name: 2014 AZ5. Asteroids are named for the year they are discovered, and since it is only 2013…. well, you see the issue.
Additionally, this asteroid isn’t listed on JPL’s Small Body Database, or the Minor Planet Center’s website, the official places where all known asteroids are listed. As much as some people like to think there are conspiracies and government cover-ups, absolutely every asteroid that’s ever been detected is listed on these sites.
There is, actually, another asteroid that will be whizzing by Earth this week at a very safe distance of about 950,000 km. On March 9, Asteroid 2013 ET, a very large 100 meter-wide rock will make its closest approach. Gianluca Masi from the Virtual Telescope project will host a webcast from the Virtual Telescope robotic facility in Italy on March 8, 2013 at 19:00 UT (2 pm EST). You can watch for free on their website. “It is worth to underline that there are NO risks at all of collision,” Masi said.
Here’s an image of 2013 ET that Masi took on March 4, 2013:
There are some craters on the Moon that never see the light of day. But that doesn’t stop the Lunar Reconnaissance Orbiter from shedding new light on some the darkest mysteries on the lunar surface. With its battery of instruments, LRO has been collecting data so that we can learn more about what we can’t see with our eyes or with optical telescopes. The video provides more details, but by studing the Moon, we’ll improve our understanding of the solar system, bringing new discoveries to light.
While those of us in the northern hemisphere are impatiently waiting to see Comet PANSTARRS (tonight, March 7 it should be visible in the southern parts of the US and Europe just after twilight), southern hemisphere observers have been dazzled by not one but TWO comets. Here, astrophotographer Guillermo Abramson captures both PANSTARRS and Comet Lemmon in one shot on March 4, 2013!
Below is a great shot Abramson took of Comet PANSTARRS on March 3:
With this being the Year of the Comets make sure to submit all your comet astrophotos to our Flickr page. We’ll be posting more images from comet-watchers soon!
Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.
Captain Kirk has nothing on the “strange new worlds” the Kepler space telescope has found.
NASA’s planet-probing orbiting observatory launched its quest to find more Earths four years ago this week. Since then, it’s found thousands of planets ranging from ginormous gas giants to tiny rocky worlds that are even smaller than our planet. NASA extended its mission to 2016 last year, putting the telescope into planet-hunting overtime and, we assume, scientists into overdrive.
Along the way, Kepler has revealed some bizarre star systems. Check out some of the weirdest exoplanets Kepler has found so far:
‘Tatooine’ (Kepler-16b)
“Circumbinary” is the scientific explanation for Kepler-16b’s 2 star-system. But “Tatooine” is the name that took the public by storm (or is that Stormtrooper?) when this world, orbiting two stars, was revealed in 2011. Although it’s named after Luke Skywalker’s home in Star Wars, proving Kepler-16b is habitable would be a bit of a stretch. The planet’s mass is about one-third that of Jupiter, and surface temperatures reach an estimated and frigid -100 degrees Celsius.
Deciphering a tune (Kepler-37b)
Scientists found Kepler 37-b through listening to its parent star sing. Seriously. The planet (just slightly larger than our moon) was revealed through measuring oscillations in brightness caused by star-quakes, then converting those to sound. “The bigger the star, the lower the frequency, or ‘pitch’ of its song,” said Steve Kawaler, a research team member from Iowa State University in a past Universe Today interview.
The 6-planet swarm (Kepler-11b, 11c, 11d, 11e, 11f, 11g)
It’s sure crowded around the star Kepler-11. There are six planets orbiting in circles smaller than Venus’ orbit around the Sun. Not only that, but five of those planets are even closer to their parent star than Mercury is to our sun. Excited astronomers said the system will rewrite planetary formation theories. “We really were just amazed at his gift that nature has given us,” said Jack Lissauer, co-investigator of the Kepler mission, in 2011. “With six transiting planets, and five so close and getting the sizes and masses of five of these worlds, there is only one word that adequately describes the new finding: Supercalifragilisticexpialidocious.”
The warring siblings (Kepler-36b and 36c)
Take a planet the size of Neptune and put it near Earth, and you’d have some scary results. Tides from the constant interaction would raise the water and the ground, causing fissures and no end of local zoning headaches for municipal authorities as the ground shifts, to say the least. Seriously, though, Kepler-36b (the rocky world) comes within less than 5 Earth-Moon distances of Kepler 36-c (a gaseous world about 8 times larger) every 97 days or so. They’ll never crash into each other, but just like young human siblings, they can cause quite a bit of chaos.
The mirror (Kepler-7b)
Well, Kepler-7b isn’t quite as reflective as a mirror, but it certainly catches more sunlight than scientists expected. This “hot Jupiter” was among the first planets that Kepler spotted. In 2011, however, it was revealed that its albedo, or reflectivity, flirted with the upper limit for these humongous planets. What’s causing this? Could be clouds, or could be the composition of its atmosphere. Shows we still have a lot to learn about these exoplanets.
Have you ever been out on a beautiful, starry night and wondered what it was you were seeing? Maybe you are walking your date home on an amazing, clear night and want to impress the heck out of her by comparing her eyes to the stars in Orion’s Belt; or her movements are as graceful as the swans in Cygnus. The Distant Suns app will help you locate these features in the night sky to back your romantic gestures with pure science.
The people at Distant Suns have been working hard to improve the features in this already cool app. The latest and greatest addition is the ability to track Comet PANSTARRS more easily. One of my favorite features of this app is the overlaying of the local landscape with the current features in the night sky. This really allows you to have a reference point for your stargazing in the future should you find yourself without your cell phone.
For the rest of this week until Sunday only, the Distant Suns App is available for half price. If that is still too rich for your blood, try to win one of 6 free copies that Universe Today and Distant Suns is offering to give away this week. With the days getting longer and the nights getting warmer, this is a really cool way to learn about the features of the night sky without the benefit of a telescope.
This Giveaway is now closed. Thank you for your interest!
In order to be entered into the giveaway drawing, just put your email address into the box at the bottom of this post (where it says “Enter the Giveaway”) before Monday, March 11, 2013. We’ll send you a confirmation email, so you’ll need to click that to be entered into the drawing.
About Distant Suns Astronomy App Features include:
Augmented Reality Viewing overlays the sky with the local landscape (iOS only)
What’s Up? Offers an overview of the evening’s sky
GPS and Compass aware
News ticker of up-to-date space and astronomy news
NASA’s Night Sky Network of local astronomical events
Over 300,000 planets, stars, galaxies, nebula and star clusters