I’ve Always Dreamed of Being an Astronaut…

Astronaut bedding from Snurk (www.snurkbeddengoed.nl/

After seeing this on Google+, I knew I had to do a Bad Astronomer-like “want” post. This is a definite want. You can now be the first in your galaxy to have this awesome new bedding set. The duvet and pillow comes from a Dutch bedding shop named Snurk (that’s Dutch for ‘snoring’): “Underneath these sheets you will dream far beyond the stars…lie down, close your eyes and feel gravity decrease instantly.” They are now taking pre-orders, available in March.

Hat tip to Michael Interbartolo/Edward Burke

A Valentine From Voyager

Venus, Earth, Jupiter, Saturn, Uranus and Neptune as seen by Voyager 1 on Valentine's Day in 1990

On February 14, 1990, after nearly 13 years of travel through the outer Solar System, NASA’s Voyager 1 spacecraft crossed the orbit of Pluto and turned its camera around, capturing photos of the planets as seen from that vast distance. It was a family portrait taken from over 4.4 billion kilometers away — the ultimate space Valentine.

Who says astronomy isn’t romantic?

Full mosaic of Voyager 1 images taken on Feb. 14, 1990 (NASA/JPL)
Full mosaic of Voyager 1 images taken on Feb. 14, 1990 (NASA/JPL)

“That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives… There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world.”

– Carl Sagan

VoyagerValentineIt was the unique perspective above provided by Voyager 1 that inspired Carl Sagan to first coin the phrase “Pale Blue Dot” in reference to our planet. And it’s true… from the edges of the solar system Earth is just a pale blue dot in a black sky, a bright speck just like all the other planets. It’s a sobering and somewhat chilling image of our world… but also inspiring, as the Voyager 1 and 2 spacecraft are now the farthest human-made objects in existence — and getting farther every second. They still faithfully transmit data back to us even now, over 35 years since their launches, from 18.5 and 15.2 billion kilometers away.

The Voyagers sure know the value of a long-term relationship.

See more news from the Voyager mission here.

An Enormous Arctic Spiral

Satellite image of a cloud vortex off the coast of Greenland (NASA/MODIS/Chelys)

Looking south across the southern tip of Greenland, this satellite image shows an enormous cloud vortex spiraling over the northern Atlantic ocean on January 26, 2013. An example of the powerful convection currents in the upper latitudes, these polar low cyclones are created when the motion of cold air is energized by the warmer ocean water beneath.

Sometimes referred to as Arctic cyclones, these spiraling storms can bring gale-force winds and heavy snowfall over a wide area of ocean during their 12- to 36-hour lifespans. Hurricane-type storms don’t only form in the tropics!

This image was captured by the MODIS instrument on NASA’s Aqua satellite from its polar orbit 705 km (438 miles) above the Earth. The view has been rotated so south is up; the southernmost tip of Greenland can be seen at lower right. Click for an impressive high-resolution view.

Image via EOSNAP/Chelys

Lunar Exploration Company Offers the Public a Chance to Participate

Golden Spike: more human bootprints on the Moon, and you can help. Credit: Golden Spike.

Last December, when a private space exploration company named Golden Spike announced they are working to offer human expeditions to the Moon by 2020, they also said wanted to bring public along as an integral part of the company’s mission. Since their initial announcement, the Golden Spike team says they’ve been inundated with emails, letters and social media posts from people wanting to know how to take part, and how they could help speed the development of human lunar expeditions.

Today, The Golden Spike Company — which hopes to generate sustainable human lunar exploration with a series of commercial expeditions for nations, corporations, and individuals — began a 10-week Indiegogo crowdfunding campaign to enable a “participatory exploration program.” This isn’t funding the building of rockets and spaceships directly, but does allow the public to help the company accelerate their efforts.

“The funds will enable us to launch our participatory exploration program, which is more than just the perks people get for making a donation,” said Golden Spike President and CEO Dr. Alan Stern in an email to Universe Today. “It involves apps, membership, media productions, and more, and that effort is intended to become self-sustaining after we jump-start it with Indiegogo.”

Stern said funds from the Indiegogo campaign will also be used for other activities in Golden Spike.

“We’re building a program that is about connecting people to lunar exploration,” he said, “and when we had people keep telling us they want to help fund us to help get us to the Moon, we’re really excited about that. But while our major funding will, of course come from sales and investment, this gives people a sense of participation too.”

The company is looking to raise $240,000 – a dollar for every mile from the Earth to the Moon.

“The drive aims to raise awareness about Golden Spike, accelerate Golden Spike’s plans for innovative public participation in its activities, and give the global community of space enthusiasts and the general public a chance to help fuel Golden Spike’s human Lunar exploration mission,” says the Golden Spike team on their Indiegogo page.

“We hope that this campaign and all the projects it enables will generate a degree of participation in space exploration that has never existed before” said Gerry Griffin, former Apollo Flight Director and the Chairman of Golden Spike’s Board of Directors.

Those participating in the crowdfunding campaign will become Golden Spike ‘insiders,’ with an Olympics Movement-style membership program for children and adults. “We want to make it possible for people to follow Golden Spike’s development and space missions just like people follow Hollywood, NASCAR, and professional sports,” said Stern.

Some of the perks of donating include receiving reconnaissance images of potential landing sites, having the chance to vote on where missions should land on the Moon, and having your name and a short message left on the Moon. Big donors would receive trips to launches of missions to the Moon.

But to get the Moon yourself via Golden Spike, you’ll have to foot the $1.5 billion price tag for a two-person lunar mission.

The Golden Spike Company was started by a group of former NASA engineers and spaceflight experts, looks to provide services such as vehicles, mission planning, mission ops, and crew training to create a reliable and affordable lunar exploration system that will be U.S. based

Stern said they will not build new hardware but adapt crew capsules already in development and use existing infrastructure and launchers. However, they are looking to developing their own lunar spacesuits and lunar landers.

Their tentative plan is to use a series of launches where the first launch sends a lunar lander to orbit the Moon and a second launch brings the crew, which will then dock with the lander and head to the Moon.

Stern said their costs per flight are not much higher than some recent robotic lunar missions that have been flown and they will offset their costs with spaceship naming rights, media rights, and other enticements. They already have companies involved, such as United Launch Alliance, Armadillo Aerospace, Masten Space Systems, and have brought several investors on board.

Golden Spike’s website

The Indiegogo page for Golden Spike

A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company
A proposed Golden Spike lunar lander on the Moon. Credit: Golden Spike Company

New Research Sheds Light On Black Hole Growth

The black hole that has grown the most can be found in the Sombrero galaxy . The researchers estimate that this black hole has been swallowing the equivalent of one Sun every twenty years and is now over 500 million times as heavy as the Sun. ESO Public Image Release

In a new study led by University of Central Lancashire astronomer Dr. Victor Debattista, researchers are looking into the mystery of how black holes grow and evolve. For many years, astronomers surmised black holes took on mass when their host galaxies merged, but now new modeling techniques show that black holes in spiral galaxies are forced to take on mass.

“Recent Hubble Space Telescope (HST) observations have revealed that a majority of active galactic nuclei (AGN) are resident in isolated disk galaxies, contrary to the usual expectation that AGN are triggered by mergers.” says Debattista. “Here we develop a new test of the cosmic evolution of supermassive black holes (SMBHs) in disk galaxies by considering the local population of SMBHs. We show that substantial SMBH growth in spiral galaxies is required as disks assemble.”

Weighing in a range of one million to one billion times that of the Sun, the black holes located at the core of most galaxies would appear to be gaining at much quicker rates than expected. These are not just exceptions – more like rules. Even the Milky Way’s quiescent black hole might be gaining as much mass as the Sun every 3,000 years. Past observations have shown growth during collision events, when huge amounts of gas around the black hole become intensely hot and shine as an active galactic nucleus. This is a process which can be spotted as far back as the first formations in our Universe. However, these new simulations are giving insight into large scale growth without the need for violence.

“The X-ray-selected sample of moderate luminosity AGN consists of more than 50% disk galaxies, with ongoing mergers evident no more frequently than in nonactive galaxies.” explains the research team. “Some show that even heavily obscured quasars are hosted largely by disks, not by mergers. Studies of star-formation using Herschel find that the specific star formation rates of X-ray selected AGN hosts are no different from those of inactive galaxies, also indicating that AGN hosts are not undergoing fundamentally different behaviors”

These modeling techniques, combined with current observations done with the Hubble Space Telescope, give credence to the theory that black holes can gain significant mass even in “quiet” spiral galaxies. As a matter of fact, there is a strong possibility that AGNs present in some spiral galaxies may even outnumber galaxy mergers. To make this concept even more exciting, astronomers are anticipating an event later this year in our own galaxy – an event where a gas cloud near the Milky Way’s nucleus will encounter our own central black hole. According to predictions, our black hole may take on as much as 15 Earth masses in a period of 10 years from this cloud.

This concept of black hole growth isn’t entirely new, though. According to other research done with the Hubble Space Telescope and led by Dr. Stelios Kazantzidis of Ohio State University and Professor Frank C. van den Bosch of Yale University, they had previously pinpointed mass properties of black holes – making size predictions which utilized the speed of stars residing in the galaxies. In this instance, the team disproved previous assumptions that black holes were unable to grow while the host galaxy grew. Their comparison of spiral and elliptical galaxies “found there is no mismatch between how big their black holes are.” This means black holes would be gaining in mass – growing along at the same rate as the galaxy itself.

“These simulations show that it is no longer possible to argue that black holes in spiral galaxies do not grow efficiently. ” comments Debattista on this new research. ” Our simulations will allow us to refine our understanding of how black holes grew in different types of galaxies.”

See an Asteroid’s-Eye-View of Friday’s Close Approach Between 2012 DA14 and Earth

Painting of Asteroid 2012 DA14. © David A. Hardy/www.astroart.org

If you haven’t heard yet, this Friday, February 15, 2013 will be a close flyby of an asteroid named 2012 DA14. It’s turning out to be a highly anticipated event, as it will pass just 27,630 kilometers (17,168 miles) from the surface of the Earth, well within the range of many Earth-orbiting satellites. If you could watch the action from the vantage point of space, what would this flyby look like? Analytical Graphics, Inc., a company that creates modeling and analysis software for space, defense and other areas, has put together an animation which includes the asteroid’s trajectory as it approaches Earth, a closeup of the asteroid during its closest approach, a highlighted portion of Earth orbit that it is expected to pass through, and other interesting data.

The video above also provides a view of the asteroid’s pass by Earth below the geosynchronous orbit belt, how it will crossing the equatorial plane from South to North, a size comparison, and how the Earth/Moon will perturbs the asteroid’s orbit.

This asteroid is about 50 meters (164 feet) in size. Asteroid experts, including NASA’s Don Yeomans has , said there is no possibility of this asteroid hitting Earth, and they have also effectively ruled out the chance of any satellites getting hit.

The asteroid will not be bright enough to be visible with the unaided eye, but will be visible to backyard astronomers with good telescopes. The timing of the pass will allow viewers in eastern Europe, Africa, Australia and New Zealand to have the best chance of seeing this asteroid.

See our complete guide on how to see Asteroid 2012 DA14.

This asteroid must be stirring the imaginations of many; already renowned and award-winning space artist David A. Hardy has created a painting of his impression of 2012 DA14’s approach to Earth:

Thanks to Hardy for allowing us to post his lovely artwork. You can see more at his website, and he did an interview with us last year, which you can read here.

Animation courtesy of (AGI).

Cosmic Ink-blot Test: Can You See the Gecko in Space?

This image from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in Chile, shows the bright star cluster NGC 6520 and its neighbour, the strangely shaped dark cloud Barnard 86. This cosmic pair is set against millions of glowing stars from the brightest part of the Milky Way — a region so dense with stars that barely any dark sky is seen across the picture.
Millions of glowing stars from the brightest part of the Milky Way — a region so dense with stars that barely any dark sky is seen across the picture. Credit: ESO

A small, isolated dark nebula known as a Bok globule was described as “a drop of ink on the luminous sky” by its discoverer, astronomer Edward Emerson Barnard. Through a small telescope, the object seen here, Barnard 86, does appear as though someone may have dropped a blob of dark ink on the telescope lens. Or perhaps it appears as a spot where there are no stars, or a window into a patch of distant, clearer sky. However, this object is actually in the foreground of the star field — a cold, dark, dense cloud made up of small dust grains that block starlight and make the region appear opaque. It is thought to have formed from the remnants of a molecular cloud that collapsed to form the nearby star cluster NGC 6520, seen just to the left of Barnard 86 in this image.

Some say Barnard 86 looks like a gecko … can you see the resemblance?

This image was taken with the Wide Field Imager on the MPG/ESO 2.2-meter telescope at ESO’s La Silla Observatory in Chile. This cosmic pair is set against millions of glowing stars from the brightest part of the Milky Way — a region so dense with stars that barely any dark sky is seen across the picture.

It is located in the constellation of Sagittarius in one of the richest star fields in the whole sky, the Large Sagittarius Star Cloud. The huge number of stars that light up this region dramatically emphasize the blackness of dark clouds like Barnard 86.

For more info on this image, see this ESO page.

A Cosmic Rose for Your Spacey Valentine

A beautiful planetary nebula, Sh2-174. Credit: T.A. Rector (University of Alaska Anchorage) and H. Schweiker (WIYN and NOAO/AURA/NSF)

We space-nerds like to express our amorous feelings, just like the rest of the population (although admittedly some of need more help/prodding in this area than others). And so just in time for Valentine’s Day comes this new image of a planetary nebula, which looks like a rose — or even a tulip – to share with your very spacey valentine.

The name of this planetary nebula, however, is not so romantic: Sh2-174. We need some suggestions for a better name!

And the way this object was created is not so romantic, either, as planetary nebulae come about in violent events. Sh2-174 was created when a low-mass star blew off its outer layers at the end of its life. The core of the star remains and is called a white dwarf. Usually the white dwarf can be found very near the center of the planetary nebula. But in the case of Sh2-174 it is off to the right. (It is the very blue star near the center of the blue gas). This asymmetry is due to the planetary nebula’s interaction with the interstellar medium that surrounds it.

This image was obtained with the wide-field view of the National Optical Astronomy Observatory (NOAO) Mosaic 1 camera on the Mayall 4-meter telescope at Kitt Peak National Observatory. Travis Rector from the University of Alaska Anchorage made the observations for this image, taken through four different filters which are assigned colors that approximate what the human eye can see: B (blue), I (orange), Hydrogen-alpha (red) and Oxygen [OIII] (blue) filters. In this image, North is up, East is to the left.

Source: NOAO

10 Amazing 3-D Views from the Mars Reconnaissance Orbiter

The Dunes of 'Inca City.' Credit: NASA/JPL/University of Arizona.

These pictures require you to grab the 3-D glasses you have handy by your desk (if you don’t have a pair, here’s some great options for buying some) and get a “you-are-there” experience from the HiRISE camera on the Mars Reconnaissance Orbiter. Here, you can virtually tumble down crater walls, hover over steep cliffs, and see how layered bedrock appears from above.

Our lead image is of an area referred to as “Inca City,” the informal name given by Mariner 9 scientists in 1972 to a set of intersecting, rectilinear ridges, which some people thought looked like structures or streets. Even back then scientists thought they might be dunes, but that didn’t keep people from going off the deep end about this region. But the power of HiRISE has revealed these truly are dunes, and in this image you can see some of the seasonal processes as the region goes from winter to spring. As the carbon dioxide frost and ice on the dunes warms, small areas warm and sublimate (turn from solid to gas) faster, creating a speckled surface.

Enjoy more 3-D views below. All images link directly to the HiRISE site where you can see other versions and get more info about each image. See all the HiRISE anaglyphs that are available here.

Fresh 4-Kilometer Rayed Crater Northeast of Chimbote Crater. Credit: NASA/JPL/University of Arizona.
Fresh 4-Kilometer Rayed Crater Northeast of Chimbote Crater. Credit: NASA/JPL/University of Arizona.
Cliff with Columnar Jointing. Credit: NASA/JPL/University of Arizona.
Cliff with Columnar Jointing. Credit: NASA/JPL/University of Arizona.
Central Uplift of a Large Impact Crater. Credit: NASA/JPL/University of Arizona.
Central Uplift of a Large Impact Crater. Credit: NASA/JPL/University of Arizona.
Buttes and craters: Compositional Diversity in Northern Hellas Region. Credit: NASA/JPL/University of Arizona.
Buttes and craters: Compositional Diversity in Northern Hellas Region. Credit: NASA/JPL/University of Arizona.
Well-Preserved 4-Kilometer impact Crater. Credit: NASA/JPL/University of Arizona.
Well-Preserved 4-Kilometer impact Crater. Credit: NASA/JPL/University of Arizona.
Flow Boundary in Elysium Planitia. Credit: NASA/JPL/University of Arizona.
Flow Boundary in Elysium Planitia. Credit: NASA/JPL/University of Arizona.
A fissure on Mars named Cerberus Fossae. Credit: NASA/JPL/University of Arizona.
A fissure on Mars named Cerberus Fossae. Credit: NASA/JPL/University of Arizona.
Possible Gullies in Graben. Credit: NASA/JPL/University of Arizona.
Possible Gullies in Graben. Credit: NASA/JPL/University of Arizona.
Layered Bedrock on Crater Floor. Credit: NASA/JPL/University of Arizona.
Layered Bedrock on Crater Floor. Credit: NASA/JPL/University of Arizona.

Carnival of Space #288

This week’s Carnival of Space is hosted by our pal Ray Sanders at his Dear Astronomer website!

Click here to read Carnival of Space #288.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.