Comet PANSTARRS Crosses Paths With Zodiacal Light

The tapering wedge of the zodiacal light reaches from the western horizon on March 3, 2013 toward the bright Planet Jupiter at top. Credit: Bob King

With the much-anticipated PANSTARRS comet emerging into the evening sky this week, we might keep our eyes open to another sight happening at nearly the same time. If you live where the sky to the west is very dark, look for the zodiacal light, a tapering cone of softly-luminous light slanting up from the western horizon toward the bright planet Jupiter near twilight’s end.

It makes its first appearance about 75 minutes after sunset and lingers for an hour and a half. Sunlight reflected from countless dust particles shed by comets and to a lesser degree by colliding asteroids is responsible for this little-noticed phenomenon. Comets orbiting approximately in the plane of the solar system between Jupiter and the sun are its key contributors. Jupiter’s gravity stirs the works into a pancake-like cloud that permeates the inner solar system.

The zodiacal is formed of dust left behind by comets orbiting between Jupiter and the sun and forms a pancake-like structure in the plane of the planets. Illustration: Bob King
The zodiacal is formed of dust left behind by comets orbiting between Jupiter and the sun and forms a pancake-like structure in the plane of the planets. Illustration: Bob King

More of us would be more aware of the zodiacal light if we knew better when and where to look. While a dark sky is essential, you don’t have to move to the Atacama Desert. I live 9 miles from a moderate-sized, light-polluted city; the western sky is terrible but the east is plenty dark and ideal for watching the morning zodiacal light in the fall months.

Near its base, the cone easily matches the summer Milky Way in brightness and spans about two fists held horizontally at arm’s length. At first glance you’d be tempted to think it was the lingering glow of twilight until you realize it’s nearly two hours after sunset. The farther you follow up the cone, the fainter and narrower it becomes. From top to bottom the light pyramid measures nearly five fists long. In other words, it’s HUGE.

The pyramid-shaped zodiacal light cone is centered on the same path the sun and planets take across the sky called the ecliptic. This map shows the sky 90 minutes after sunset in early March facing west. Created with Stellarium
The pyramid-shaped zodiacal light cone is centered on the same path the sun and planets take across the sky called the ecliptic. This map shows the sky facing west 90 minutes after sunset in early March. Created with Stellarium

The zodiacal light is centered on the same path the sun and planets take through the sky called the ecliptic, an imaginary circle that runs through the familiar 12 constellations of the zodiac. Every spring, that path intersects the western horizon at dusk at a steep angle, tilting the light cone up into clear view. A similar situation happens in the eastern sky before dawn in October. Of course the light’s there all year long, but we don’t notice it because it’s slanted at a lower angle and blends into the hazy air near the horizon.

The zodiacal light we see at dusk is a portion of the larger zodiacal dust cloud that extends at least to Jupiter’s distance (~500 million miles) on either side of the Sun, making it the single biggest thing in the Solar System visible with the naked eye. Under exceptional skies, like those found on distant mountaintops or far from city lights, the cone tapers into the zodiacal band that completely encircles the sky.

The gegenschein is the small, oval glow within the zodiacal band seen in this photo taken at the European Southern Observatory in Chile. Credit: ESO / Yuri Beletsky
The gegenschein is the small, oval glow within the zodiacal band seen in this photo taken at the European Southern Observatory in Chile. Credit: ESO / Yuri Beletsky

Exactly opposite the sun around local midnight, you might see an enhancement in the band called the gegenschein (GAY-gen-shine). This eerie oval glow is caused by sunlight shining directly on interplanetary dust grains and then back to your eye. A similar boost happens for the same reason at the time of full moon.

Deep connections abound throughout the universe. Over time, much of the comet dust in the zodiacal cloud either spirals inward toward the sun or gets pushed outward by solar radiation. The fact that we can still see it today means it’s continually being replenished by the silent comings and goings of comets.

Comet C/2011 L4 PANSTARRS photographed with a 200mm telephoto lens over Bridgetown, Western Australia on March 3. Credit: Jim Gifford
Comet C/2011 L4 PANSTARRS photographed with a 200mm telephoto lens over Bridgetown, Western Australia on March 3.
Credit: Jim Gifford

Consider Comet L4 PANSTARRS. Dribs and drabs of dust sputtered from this comet during its current trip to the inner solar system may find their way into the zodiacal cloud to secure its presence for future sky watchers. How wonderful then the comet and the ghostly light should happen to be at their best the very same time of year.

Zodical light touching the Seven Sisters star cluster also known as the Pleiades March 19, 2012. Credit: Bob King
Zodical light touching the Seven Sisters star cluster also known as the Pleiades March 19, 2012. Credit: Bob King

Now through March 13 is the ideal time for zodiacal light viewing. If you begin your evening with Comet PANSTARRS, stick around until nightfall to spot the light. Face west and cast a wide view across the sky, sweeping your gaze from left to right and back again. Look for a big, hazy glow reaching from the horizon toward the Planet Jupiter. After the 13th, the waxing moon will wash out the subtle light cone for a time. Another “zodiacal window” opens up in late March through mid-April when the moon comes up too late to spoil the view.

As you take in the sight, consider how something as small as a dust mote, when teamed with its mates, can create a jaw-dropping comet’s tail, meet its end in the fiery finale of a meteor shower or span a billion miles of space.

Why This Weekend is Perfect for a Messier Marathon

To 'scopes, get set, marathon! (A homemade 14" Gregorian reflector, photo by author).

This coming weekend presents the first window for 2013 to complete a challenge in the realm of backyard astronomy and visual athletics. With some careful planning, persistence, and just plain luck, you can join the vaunted ranks of those seasoned observers who’ve seen all 110 objects in the Messier catalog… in one night.

Observing all of the objects in Messier’s catalog in a single night has become a bit of a sport over the last few decades for northern hemisphere observers, and several clubs and organizations now offer certificates for the same.  The catalog itself was a first attempt by French astronomer Charles Messier to catalog the menagerie of “faint fuzzies” strewn about the northern hemisphere sky.

Not that Charles knew much about the nature of what he was seeing. The modern Messier catalog includes a grab bag collection of galaxies, nebulae, open and globular clusters and more down to magnitude +11.5, all above declination -35°. Charles carried out his observations from Paris France at latitude +49° north. Unfortunately, this  also means that Messier catalog is the product of Charles Messier’s northern-based vantage point. The northernmost objects in the catalog are Messiers 81 & 82 at declination +69°, which never get above the horizon for observers south of latitude -21°. His initial publication of the catalog in 1774 contained 45 objects, and his final publication contained 103, with more objects added based on his notes after his death in 1817. (Fun fact: Messier is buried in the famous Père Lachaise Cemetery in Paris, site of other notable graves such as those of Chopin and Jim Morrison).

M51, the Whirlpool Galaxy, one of the more photogenic objects in the Messier catalog. (Credit: NASA/Hubble Heritage Project).
M51, the Whirlpool Galaxy, one of the more photogenic objects in the Messier catalog. (Credit: NASA/Hubble Heritage Project).

There’s a fair amount of controversy on Messier’s motivations and methods for compiling his catalog. The standard mantra that will probably always be with us is that Messier was frustrated with stumbling across these objects in his hunt for comets and decided to catalog them once and for all. He eventually discovered 13 comets in his lifetime, including Comet Lexell which passed only 2.2 million kilometres from Earth in 1770.

No one is certain where the modern tradition of the Messier Marathon arose, though it most likely had its roots in the amateur astronomy boom of the 1970s and was a fixture of many astronomy clubs by the 1980s. There are no Messier objects located between right ascension 21 hours 40 minutes  and 23 hours 20 minutes, and only one (M52)  between 23 hours 20 minutes and 0 hours 40 minutes. With the Sun reaching the “0 hour” equinoctial point on the March Vernal Equinox (falling on March 20th as reckoned in Universal Time for the next decade), all of the Messier objects are theoretically observable in one night around early March to early April. Taking into account for the New Moon nearest to the March equinox, the best dates for a weekend Messier marathon for the remainder of the decade are as follows;

Optimal Messier marathon dates for the remainder of the decade. (Compiled by author).
Optimal Messier marathon dates for the remainder of the decade. (Compiled by author).

Note that this year’s weekend is very nearly the earliest that it can occur. The optimal latitude for Messier marathoning is usually quoted as 25° north, about the latitude of Miami. It’s worth noting that 2013 is one of the very few years where the primary weekend falls on or before our shift one hour forward to Daylight Saving time, occurring this year on March 10th for North America.

Students of the Messier catalog will also know of the several controversies that exist within the list. For example, one wide double star in Ursa Major made its way into the catalog as Messier 40. There’s also been debate over the years as to the true identity of Messier 102, and most marathoners accept the galaxy NGC 5866 in its stead. Optics of the day weren’t the most stellar (bad pun intended) and this is evident in the inclusion of some objects but the omission of others. For example, it’s hard to imagine a would-be comet hunter mistaking the Pleiades (M45) for an icy interloper, but curiously, Messier omits the brilliant Double Cluster in Perseus.

M42, the Orion Nebula. (Photo by Author, taken back in the days of ye ole film!)
M42, the Orion Nebula. (Photo by Author, taken back in the days of ye ole film!)

It’s vital for Messier marathoners to run through objects in proper sequence. Most visual observers run these in groups, although Alex McConahay suggests in a recent April 2013 Sky & Telescope article that folks running a photographic marathon (see below) beware of wasting precious time crossing the celestial meridian (a maneuver which requires a telescope equipped with a German Equatorial mount to “flip” sides) hunting down objects. The unspoken “code of the skies” for visual Messier marathoners is that “Go-To” equipped scopes are forbidden. Part of the intended purpose of the exercise is to acquaint you with the night sky via star hopping to the target.

Most observers complete Messier objects in groups. You’ll want to nab M77 and M74 immediately after local dusk, or the marathon will be over before it starts. You’ll then want to move over to the Andromeda Galaxy and the collection of objects in its vicinity before scouring Orion and environs. From that point out, you can begin to slow down a bit and pace yourself through the galaxy groups in Coma Berenices and the Bowl of Virgo asterism. Another cluster of objects stretch out in the sky past midnight along the plane of our Milky Way Galaxy from Sagittarius to Cygnus, and the final (and often most troublesome) targets to bag are the Messier objects in Aquarius and M30 in Capricornus just before dawn. Remember, dark skies, warm clothes, and hot coffee are your friends in this endeavor!

There have been alternate rules or versions of Messier marathons over the years. Some imagers complete one-night photographic messier marathons. There are even abbreviated or expanded versions of the feat. It is also possible to nab most of the Messier catalog with a good pair of binoculars under clear skies. Probably the most challenging version we’ve heard of is sketching all 110 Messier objects in one evening… you might be forgiven for using a Go-To enabled telescope to accomplish this!

Finally, just like running marathons, the question we often get is why. Some may eschew transforming the art of dark sky observing into a task of visual gymnastics. We feel that to run through this most famous of catalogs in an evening is a great way to learn the sky and practice the fast-disappearing art of star hopping. And hey, no one’s saying you can’t take a year or three to finish the Messier catalog… its a big universe, and the New General Catalog (NGC) and Index Catalog (IC) containing thousands of objects will still be waiting. Have YOU seen all 110?

–      A perpetual listing of Messier marathon visibility by latitude by Tom Polakis.

–      An All Sky Map of the Messier catalog.

–      A handy priority list for a Messier marathon compiled by Don Machholz.

Feel the Power of a Mighty Falcon 9 Blast Off Creaming Cameras

Remote cameras set up for Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com

Video: Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Mike Barrett/Wired4Space.com

Have you ever wondered what it would be like to be standing at the base of a launch pad when a powerful rocket ignites for the heavens?

It’s a question I get from many kids and adults.

So check out the fabulous video from my friends Mike Barrett and Jeff Seibert- and feel the power of the mighty SpaceX Falcon 9 which just rocketed to space on March 1 from Space Launch Complex 40 on Cape Canaveral Air Force Station, Florida.

Mike and Jeff set up a series of video recorders distributed around the Falcon 9 Launch Pad – for a ‘You Are There’ experience.

Well although you’d enjoy the awesome view for a split second, the deafening sound and fury would certainly drive you mad, and then leave you dead or vegetabilized and wishing you were dead.

The cameras get creamed in seconds with mud, soot and ash.

How is this view possible?

Those of us media folks lucky enough to cover rocket launches, usually get to visit around the pad the night before to view the behemoths up close – after they are rolled out and unveiled for liftoff.

We also have the opportunity to set up what’s called “remote cameras” spaced around the pad that take exquisite images and videos from just dozens of yards (meters) away – instead of from ‘safe’ distance a few miles (km) away.

The cameras can be triggered by sound or timers to capture up close sounds and sights we humans can’t survive.

After a shaky start, the SpaceX Dragon cargo resupply capsule launched atop the Falcon 9 safely docked at the International Space Station on Sunday, March 3.

The SpaceX CRS-3 flight is slated to blast off sometime during Fall 2013

Maybe we’ll see you there !

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building.  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS from Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com
SpaceX Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 rocket sits horizontal at pad before launch on March 1, 2013. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission - posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Credit: Ken Kremer/www.kenkremer.com
Dave Dickinson & Ken Kremer; reporting live for Universe Today from Space Launch Complex 40, Cape Canaveral Florida, on the SpaceX Falcon 9 CRS-2 mission – posing with Falcon 9 rocket in horizontal position at pad prior to March 1, 2013 liftoff. Rocket exhaust blasts out of the concrete Flame Trench at right. Credit: Ken Kremer/www.kenkremer.com

Curiosity Rover Recovering From Computer Glitch

This self-portrait of NASA's Mars rover Curiosity combines 66 exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on Mars (Feb. 3, 2013). Image credit: NASA/JPL-Caltech/MSSS

The Curiosity rover is now out of “safe mode” following a memory problem with its main computer, and the Mars Science Laboratory team expects the rover to resume full operations next week. Controllers switched the rover to a redundant onboard computer, the rover’s “B-side” computer, on Feb. 28 when the “A-side” computer that the rover had been using demonstrated symptoms of a corrupted memory location. The intentional computer swap put the rover, as anticipated, into minimal-activity safe mode.

“We are making good progress in the recovery,” said MSL Project Manager Richard Cook. “One path of progress is evaluating the A-side with intent to recover it as a backup. Also, we need to go through a series of steps with the B-side, such as informing the computer about the state of the rover — the position of the arm, the position of the mast, that kind of information.”

This is the first glitch of any kind the Curiosity rover has suffered since landing in August, 2012. NASA has indicated this is not a serious problem (as Emily Lakdawalla of the Planetary Society put it “not life-threatening, just really inconvenient.) It will just take time to make sure the computer switch-over is done correctly.

NASA says the cause for the A-side’s memory symptoms observed last week remains to be determined, but the most likely cause was that the computer memory was corrupted by a cosmic ray hit. These are subatomic particles traveling through space at extraordinary speeds. The origin of cosmic rays was recently determined to be distant supernovae.

Meanwhile, the rover has not done any surface operations or uploaded any new images to Earth since Sol 200, so for those of you going through withdrawal from not seeing any new raw images from Curiosity, we’ll keep you posted of when the flow of images resumes.

A Completely Fake UFO Video

Screenshot from the “UFO Over Santa Clarita VFX Breakdown” video.

We’ve yet to see an authentic and convincing UFO video, and this one takes the cake. It is completely fake. Not one thing in it is real. Seriously. If you haven’t yet seen or heard about the “UFO Over Santa Clarita” video (above), it appears to be footage taken from a handheld camera, shakily taking shots from within a moving car. Then a spaceship darts across the sky, and the gasping filmmaker stops the car, only see a huge hovering mothership grab the first ship and disappear.

The filmmaker, Aristomenis “Meni” Tsirbas, revealed to Wired that, as many suspected, the video was fake. But impressively, absolutely everything in the film, from the car’s interior to the sky to the UFOs, is not real. It is all CGI (Computer Generated Imagery).

“The video is 100 percent CGI through and through,” Tsirbas told Wired. “The electric towers [seen alongside the road] are 3-D geometry and the sky is a 3-D dome that has a texture map on it that’s a combination of painting, volumetric clouds and photogrammetry.”

Tsirbas has now produced a new video showing the breakdown of the CGI, and it’s quite impressive:

“The point of the video was to prove that CGI can look natural and convincing,” Tsirbas told Wired in another article. ”Everybody assumes the background and car are real, and that the UFOs are probably fake, especially the over-the-top mothership at the end. The general reaction is disbelief, so I usually have to prove it by showing a wireframe of the entire shot to prove that nothing is real.”

Tsirbas has worked on movies such as Titanic and Hellboy and several Star Trek television shows. Wired said Tsirbas and his team spent about four months mimicking the look of an accidental extraterrestrial encounter captured on a smartphone.

As impressive as Tsirbas’ handiwork is, what is most perplexing is the reaction to the video by some of the UFOer crowd.

“But the most unusual comments come from a growing chorus of people who insist that the announcement of the hoax is actually part of an elaborate government plan to cover up the fact that the video is real,” Tsirbas said in Wired. “I even received a mildly threatening personal e-mail from one of these people.”

Go figure.

NASA Finds a Space Invader

The image of a spiral galaxy has been stretched and mirrored by gravitational lensing into a shape similar to that of a simulated alien from the classic 1970s computer game Space Invaders Credit: NASA, ESA, and the Hubble Heritage/ESA-Hubble Collaboration

Pew pew! NASA has found a Space Invader, but they won’t be activating any laser cannons to shoot it down. If you remember the classic 1970s computer game “Space Invaders,” you’ll quickly see the resemblance of the game’s pixelated alien to this actual image from the Hubble Space Telescope. This strange-looking object is really a mirage created by the gravitational field of a foreground cluster of galaxies warping space and distorting the background images of more distant galaxies.

Here, Abell 68, a massive cluster of galaxies, acts as a natural lens in space to brighten and magnify the light coming from very distant background galaxies. Just like a fun house mirror, lensing creates a fantasy landscape of arc-like images and mirror images of background galaxies. The foreground cluster is 2 billion light-years away, and the lensed images come from galaxies far behind it.

This image was taken in infrared light by Hubble’s Wide Field Camera 3, and combined with near-infrared observations from Hubble’s Advanced Camera for Surveys.

Aliens from the Space Invaders game. Via HelloComputer.
Aliens from the Space Invaders game. Via HelloComputer.

The image was found as part of Hubble’s Hidden Treasures image processing competition, and was spotted by Nick Rose.

You can still play the Space Aliens game (just search for it online), or you might want to try this huge version:

Source: NASA

Book Review: African Cosmos

In 1986, Halley’s Comet captivated a teenager living in a small South African town. Curious about what his nation does in astronomy, he scoured books at the local library and asked questions of his teachers.

It was, however, a tough time to learn about it. Under apartheid, African science was seen as “nothing of merit” until the Westerners colonized the continent two centuries ago.

This tale, told in African Cosmos: Stellar Arts, portrays part of the difficulty of reporting on African science. Turn back to  when Egyptians built the pyramids, and you can understand that astronomy goes back thousands of years on the continent. Yet, Africa is under-represented in discussions about popular astronomy. Language, scattered cultures, and distance from the Western world are all barriers.

Creating this volume must have been daunting for Christine Mullen Kreamer and her collaborators, who gathered 20 essays about African astronomy.

But you can see for yourself, as this book is available for free on iPad, and you can download it here.

Africa is a large continent with humans living anywhere from crowded cities to sparse grassland. There are at least 3,000 ethnic groups on that landmass, according to Baylor University, with many of these cultures having separate views in astronomical culture and history.

It’s hard to gather all that information into a single book, but the Smithsonian National Museum of African Art does its best.

The book opens with lengthy explanations of the Egyptian and Babylonian contributions to astronomy. The Babylonians, for example, observed the strange backwards motion of Mars when our planet “catches up” in our smaller orbit to Mars’ larger one. The Egyptians used the sky to develop a 12-month calendar to track important feasts and the time for harvests.

Retrograde motion of Mars. Image credit: NASA
Retrograde motion of Mars. Image credit: NASA

This information is readily accessible elsewhere, but the art makes it stand out. Flip the pages, and you’ll gaze at period art, maps and even astronomical tables that were on display at the museum for a 2012 exhibition.

Perhaps the most fascinating historical chapter is Cosmic Africa, which traces the development of a film of the same title. Anne Rogers and her film team did field research in seven countries to narrow down which tribes to focus on. Eventually, they settled on the Ju/’hoansi in Namibia, the Dogon in Mali and (through archaeology) the area of Nabta Playa in Egypt.

There aren’t many explanations of these peoples in the historical record, so it’s neat to see how their culture is shaped by the stars and nebulas they see. Adding to the interest, the team deliberately visited the Ju/’hoansi during a partial solar eclipse to learn how the tribe reacts to more rare astronomical events.

You’ll see a lot of tribes in this large volume, and will also get hints of the latest art and science surrounding African astronomy. The most current astronomical information is sparse, perhaps out of recognition that the information would go out of date very quickly. It might have been interesting nevertheless to include more information about the Square Kilometer Array, the world’s largest telescope, that is under development in both Africa and Australia.

For more information on the book, check out the online exhibition from the Smithsonian.

Carnival of Space #291

This week’s Carnival of Space is hosted by Brian Wang at the Next Big Future blog.

Click here to read Carnival of Space #291

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Image Gallery: Astronauts Capture a Dragon

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA

Sunday was a big day in space, and astronaut Chris Hadfield captured the excitement in photos, and shared them via Twitter. “What a day!” Hadfield tweeted. “Reached & grabbed a Dragon, berthed her to Station & opened the hatch to find fresh fruit, notes from friends, and peanut butter.”

SpaceX’s Dragon spacecraft overcame a problem with its thrusters after reaching orbit on Friday, and on Sunday Dragon successfully approached the Station, where it was captured by Expedition 34 Commander Kevin Ford and crewmate Tom Marshburn using the station’s Canadarm2 robotic arm. Dragon was grappled at 5:31 a.m. EST, and was berthed to the Earth-facing port of the Harmony module at approximately 8:56 a.m. EST on March 3.

See more photos below. The image captions are Hadfield’s Tweets.

'Dragon comes into view - first sight this morning, sneaking up on us from behind the Progress solar array,' Tweeted Chris Hadfied. Credit: NASA/Chris Hadfield.
‘Dragon comes into view – first sight this morning, sneaking up on us from behind the Progress solar array,’ tweeted Chris Hadfied. Credit: NASA/Chris Hadfield.
'The Dragon spaceship high over Mount Etna - both spitting fire.' Credit: NASA/Chris Hadfield.
‘The Dragon spaceship high over Mount Etna – both spitting fire.’ Credit: NASA/Chris Hadfield.
The Dragon approaches the ISS over sub-Saharan Africa. Credit: NASA/Chris Hadfield.
The Dragon approaches the ISS over sub-Saharan Africa. Credit: NASA/Chris Hadfield.
Hadfield's self-portrait in the Cupola with rising Dragon below, Africa behind. Credit: NASA/Chris Hadfield.
Hadfield’s self-portrait in the Cupola with rising Dragon below, Africa behind. Credit: NASA/Chris Hadfield.
'Like a Praying Mantis, Canadarm2 poised to reach out and grab Dragon.' Credit: NASA/Chris Hadfield.
‘Like a Praying Mantis, Canadarm2 poised to reach out and grab Dragon.’ Credit: NASA/Chris Hadfield.
'Success! Canadarm2 holds Dragon by the nose, to drag it up and hook it on to a Station hatch.' Credit: NASA/Chris Hadfield.
‘Success! Canadarm2 holds Dragon by the nose, to drag it up and hook it on to a Station hatch.’ Credit: NASA/Chris Hadfield.
'Happy crewmember - Dragon securely snared by Canadarm2, ready to be lifted around, hooked into place, and opened up.' Credit: NASA/Chris Hadfield.
‘Happy crewmember – Dragon securely snared by Canadarm2, ready to be lifted around, hooked into place, and opened up.’ Credit: NASA/Chris Hadfield.

In this video, Hadfield provides a tour of the Robotic Workstation where the crew commanded Canadarm2 to capture and dock the Dragon:

It’s Earth Madness! Vote for Your Favorite Images of Our Home Planet

Screenshot of one of the competing images in the Earth Madness competition bracket.

NASA’s Earth Observatory website has decided to join in on the bracketology fever that overtakes many US citizens during the month of March … but with science and not basketball. Instead of March Madness, it’s EARTH MADNESS! From March 4 through April 5, Earth Observatory fans can vote for their favorite images of the year. There are thirty-two images vying for the title, but only one can be the winner. This will be a head-to-head competition, whittling the total from 32 to 16 to 8 to 4 to 2 in a tournament of remote sensing science. The competition will be stiff in the four brackets — Earth at Night, Events, Data, and True-Color — so it is up to you to separate the winners from the losers. Check back each week to vote in the next round and help choose a winner.

Print a copy of the bracket, fill it out, and get that workplace pool going. Come back every Monday to vote and watch the results.