SpaceX Dragon Recovers from Frightening Propulsion System Failure – Sunday Docking Set

Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert

Kennedy Space Center – Barely 11 minutes after the spectacular Friday morning, March 1 launch of the SpaceX Falcon 9 rocket and unmanned Dragon capsule bound for the International Space Station (ISS), absolute glee suddenly threatened to turn to total gloom when the mission suffered an unexpected failure in the critical propulsion system required to propel the Dragon to the Earth orbiting outpost.

An alarming issue with the Dragons thrust pods prevented three out of four from initializing and firing.

For several hours the outlook for the $133 million mission appeared dire, but gradually began to improve a few hours after launch.

“It was a little frightening,” said SpaceX CEO Elon Musk at a Friday afternoon media briefing for reporters gathered at the Kennedy Space Center, commenting on the moments after the glitch appeared out of nowhere.

“We noticed after separation that only one of the four thruster pods engaged or was ready to engage,” Musk explained. “And then we saw that the oxidizer pressure in three of the four tanks was low.”

Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert
Launch of SpaceX Falcon 9 on CRS-2 mission on March 1, 2013 from Cape Canaveral, Florida. Credit: Jeff Seibert/Wired4Space.com

The situation progressed onto the road to recovery after SpaceX engineers immediately sprang into action and frantically worked to troubleshoot the thruster problems in an urgent bid to try and bring the crucial propulsion systems back on line and revive the mission.

By late Saturday afternoon sufficient recovery work had been accomplished to warrant NASA, ISS and SpaceX managers to give the go-ahead for the Dragon to rendezvous with the station early Sunday morning, March 3.

“The station’s Mission Management Team unanimously agreed that Dragon’s propulsion system is operating normally along with its other systems and ready to support the rendezvous two days after Friday’s launch on a Falcon 9 rocket from the Cape Canaveral Air Force Station in Florida,” NASA announced in a statement on Saturday, March 2.

A failure to ignite the thrusters within 1 or 2 days would have resulted in unacceptable orbital decay and a quick and unplanned fiery reentry into the earth’s atmosphere, said Musk.

Reentry would cause a total loss of the mission – carrying more than a ton of vital supplies, science gear, research experiments, spare parts, food, water and provisions to orbit for the stations six man crew.

Shortly after the Dragon achieved orbit and separated from the second stage, the solar arrays failed to deploy and the live webcast stopped prematurely.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013 ISS - shot from the roof of the Vehicle Assembly Building.  .  Credit: Ken Kremer/www.kenkremer.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013 to the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Ken Kremer/www.kenkremer.com

During the course of the Friday afternoon briefing, Musk and NASA officials received continuous updates indicating the situating was changing and slowly improving.

Musk confirmed that SpaceX was able to bring all four of Dragon’s thruster pods back up and running. Engineers were able to identify and correct the issue, normalizing the pressure in the oxidation tanks.

The problem may have been caused by stuck valves or frozen oxidizer in the lines. Dragon has four oxidizer tanks and four fuel tanks.

“We think there may have been a blockage of some kind or stuck check valves going from the helium pressure tank to the oxidizer tank,” Musk hypothesized. “Whatever that blockage is seems to have alleviated.”

Three of the four thruster pods must be active before the Dragon would be permitted to dock, said Mike Suffredini, NASA program manager for the ISS. There are a total of 18 Draco thrusters.

SpaceX and the ISS partners conducted a thorough review process to assure that the thrusters will work as advertised and allow the Dragon to safely enter the stations keep out zone and physically dock at the berthing port onto the Earth-facing port of the Harmony module.

“SpaceX said it has high confidence there will be no repeat of the thruster problem during rendezvous, including its capability to perform an abort, should that be required,” NASA said in a statement.

Dragon is now slated to be grappled early Sunday morning at 6:31 a.m. by NASA Expedition 34 Commander Kevin Ford and NASA Flight Engineer Tom Marshburn – that’s one day past the originally planned Saturday morning docking.


Video: Falcon 9 SpaceX CRS-2 launch on March 1, 2013 bound for the ISS – shot from the roof of the Vehicle Assembly Building. Credit: Matthew Travis/Spacearium

NASA says that despite the one-day docking delay, the Dragon unberthing and parachute assisted return to Earth will still be the same day as originally planned on March 25.

There are numerous docking opportunities available in the coming days if SpaceX and NASA determined that more time was needed to gain confidence that Dragon could safely carry out an attempt.

Musk said the Dragon could stay on orbit for several additional months if needed.

We have to review the data with NASA before docking to make sure it’s safe, Musk emphasized on Friday.

Falcon 9 SpaceX CRS-2 launch on March 1, 2013.  Credit: Mike Killian/www.zerognews.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Mike Killian/www.zerognews.com

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to berth at the ISS. SpaceX is under contract to NASA to conduct a dozen Dragon resupply flight to the ISS over the next few years at a cost of about $1.6 Billion.

NASA TV coverage of rendezvous and grapple on Sunday, March 3 will begin at 3:30 a.m. EST. Coverage of berthing operations on NASA TV will begin at 8 a.m.

SpaceX’s live coverage at http://www.spacex.com/webcast begins at 6:00 a.m. Eastern.

Ken Kremer

Falcon 9 SpaceX CRS-2 launch on March 1, 2013.  Credit: Mike Killian/www.zerognews.com
Falcon 9 SpaceX CRS-2 launch on March 1, 2013. Credit: Mike Killian/www.zerognews.com

Curiosity’s Landing Leftovers

Enhanced-color HiRISE image of impact craters from MSL's ballast weights (NASA/JPL-Caltech)

During its “seven minutes of terror” landing on August 6, 2012, NASA’s Mars Science Laboratory dropped quite a few things down onto the Martian surface: pieces from the cruise stage, a heat shield, a parachute, the entry capsule’s backshell, a sky crane, one carefully-placed rover (obviously) and also eight tungsten masses — weights used for ballast and orientation during the descent process.

Two 75 kilogram (165 lb) blocks were released near the top of the atmosphere and six 25 kg (55 lb) weights a bit farther down, just before the deployment of the parachute. The image above, an enhanced-color image from the HiRISE camera aboard the Mars Reconnaissance Orbiter, shows the impact craters from four of these smaller tungsten masses in high resolution. This is part of a surface scan acquired on Jan. 29, 2013.

These four craters are part of a chain of six from all the 55 kg weights. See below for context:

CLICK TO PLAY - Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)
CLICK TO PLAY – Before-and-after images of the 55 kg-mass landing sites (NASA/JPL/MSSS)

Captured by MRO’s Context Camera shortly after the rover landed, the animation above shows the impact site of all six 55 kg masses. These impacted the Martian surface about 12 km (7.5 miles) from the Curiosity rover’s landing site.

A mosaic has been assembled showing potential craters from the larger ballast blocks as well as other, smaller pieces of the cruise stage. Check it out below or download the full 50mb image here.

HiRISE images of MSL's impact craters (NASA/JPL/University of Arizona)
HiRISE images of MSL’s impact craters (NASA/JPL/University of Arizona)

As Alfred McEwen wrote in his article on the University of Arizona’s HiRISE site: “most of the stuff we sent to Mars crashed on the surface–everything except the Curiosity rover.”

 

Giveaway: Win a Free Copy of the Sun Surveyor App for Your iPhone

It’s time for another giveaway. This time we’re giving out 10 copies of the Sun Surveyor App for iOS. This is an app that helps photographers know where the Sun is going to be, to get that perfect mountain photo.

Sun Surveyor calculates Sun and Moon positions, Sun and Moon rise & set times, solar noon, golden hour and blue hour times, moon phases, sun shadow ratios and many other pieces of related information. A 3D Compass, Augmented Reality View and Interactive Map enable use as a visualizer, tracker and predictor of Sun and Moon paths, with many practical uses for photographers & filmmakers, stargazers, solar industry & real estate professionals, architects and others.

Sun Surveyor is available for iOS and Android. But this promotion is open to iOS users only, unfortunately (iOS lets developers give away free copies of their apps, but Google Play doesn’t).

This Giveaway is now closed. Thank you for your interest!

You can learn more about the iOS version here, or from Google Play.

Just put your email into the box below to enter the giveaway. The giveaway ends on Saturday, March 9th, 2013.

Curiosity Rover Has Computer Problems

Curiosity Rover's Self Portrait at 'John Klein' Drilling Site, which combines dozens of exposures taken by the rover's Mars Hand Lens Imager (MAHLI) during the 177th Martian day, or sol, of Curiosity's work on Mars (Feb. 3, 2013). Credit: NASA/JPL-Caltech/MSSS

A problem with the memory on the Curiosity rover’s main computer has caused engineers to switch the rover over to a redundant onboard computer. This caused the rover to go into “safe mode,” which was anticipated in the computer switch. And so now over the next few days, the team will be shifting the rover from safe mode to operational status. They are also troubleshooting the condition that affected operations yesterday.

The @MarsCuriosity Twitter feed posted: “Don’t flip out: I just flipped over to my B-side computer while the team looks into an A-side memory issue.”

JPL said the condition is related to a glitch in flash memory linked to the other, now-inactive, computer in response to a memory issue on the computer that had been active.

The intentional swap occurred at about 2:30 a.m. PST on Thursday, Feb. 28.

“We switched computers to get to a standard state from which to begin restoring routine operations,” said Richard Cook. .

Like many spacecraft, Curiosity carries a pair of redundant main computers in order to have a backup available if one fails. Each of the computers, A-side and B-side, also has other redundant subsystems linked to just that computer. Curiosity is now operating on its B-side, as it did during part of the flight from Earth to Mars. It operated on its A-side from before the August 2012 landing through Wednesday.

“While we are resuming operations on the B-side, we are also working to determine the best way to restore the A-side as a viable backup,” said JPL engineer Magdy Bareh, leader of the mission’s anomaly resolution team.

The spacecraft remained in communications at all scheduled communication windows on Wednesday, but it did not send recorded data, only current status information. The status information revealed that the computer had not switched to the usual daily “sleep” mode when planned. Diagnostic work in a testing simulation at JPL indicates the situation involved corrupted memory at an A-side memory location used for addressing memory files.

Scientific investigations by the rover were suspended Wednesday and today. Resumption of science investigations is anticipated within several days. This week, laboratory instruments inside the rover have been analyzing portions of the first sample of rock powder ever collected from the interior of a rock on Mars.

Source: JPL

5 Landsat Pictures That Changed the World

Mount St. Helens shortly after its eruption in 1980. Credit: Landsat

Turn a camera to a location for four decades, and you can see a lot of change. Streets appear or disappear. Trees grow and eventually, die. Houses spring up and slowly decay.

Landsat is the longest-running Earth observation program, with four decades of observations behind it. Today, to celebrate the launch of Landsat 5 on this day in 1984, here are five Landsat images that helped us better understand the Earth and at times, how humans affect its environment.

Mount St. Helens


When Washington State’s Mount St. Helens exploded in May 1980, it killed 57 people and obliterated much of the surrounding countryside. For American volcanologists, however, St. Helens was an easy target to study both up close and with the Landsat satellite. This 1980 image shows the devastated countryside in the weeks after the eruption. Landsat photos from every year since demonstrate how the area has recovered in the past two decades.

3-D Antarctica

A 3-D map of Antarctica using 1,100 images from the Landsat 7 satellite. Credit: Landsat
A 3-D map of Antarctica using 1,100 images from the Landsat 7 satellite. Credit: Landsat/USGS

That image up there was years in the making. First, scientists collected 1,100 images of Antarctica using the Landsat 7 satellite. That process took three years, between 1999 and 2001. They combined elevation data and field measurements. Next came the painstaking process of stitching it together. It was finally released to the public in 2007. An unexpected benefit? Spying the continent from space allowed scientists to better track Emperor penguins. That brown stain on the image is actually where the penguins were sitting when the pictures were taken.

Rushing to Kuwait’s rescue

Oil well fires burn in Kuwait during the 1991 Persian Gulf War. Credit: Landsat
Oil well fires burn in Kuwait during the 1991 Persian Gulf War. Credit: Landsat/USGS

As Iraq pulled out from Kuwait during the Persian Gulf War in 1991, Iraqi troops set fire to some 650 oil wells. The environmental devastation was enormous. This Landsat image, among many others, was crucial for Kuwaiti emergency responders to figure out where the fires were burning and how best to approach them.

Landsat’s Van Gogh image

NASA once compared this image of phytoplankton surrounding Gotland to Vincent Van Gogh's "Starry Night." Credit: Landsat
NASA once compared this image of phytoplankton surrounding Gotland to Vincent Van Gogh’s “Starry Night.” Credit: Landsat/USGS

Are those stars and nebulas we see above? Not quite, but NASA points out it does look very similar to the Vincent Van Gogh image “Starry Night.” That 2005 snapshot from Landsat 7 actually shows phytoplankton surrounding the Swedish island of Gotland in the Baltic Sea. The picture was voted the top snapshot by NASA visitors to the “Earth As Art” contest held in 2012.

Shrinking Aral Sea

The Aral Sea has shrunk to half its size in just 40 years. Credit: Landsat
The Aral Sea has shrunk to half its size in just 40 years. Credit: Landsat/USGS

The series of Landsat images above show just how much of the Aral Sea disappeared between 1977 and 2006. The body of water, located between Uzbekistan (south) and Kazakhstan, used to be the fourth-largest lake in the world. The Soviets tapped into the sea several decades ago to irrigate the surrounding area. While local authorities are working to reverse the damage, the sea is still about half the size it used to be.

There’s more Landsat magic to come in the next few years. The Landsat Data Continuity Mission left Earth last month and will take more pictures of the Earth in even better resolution than its ancestors. Take a look at its launch video below.

Dragon Launches Successfully, But Suffers Anomaly After Reaching Orbit

Dragon launches on the SpaceX Falcon 9 on March 1, 2013. Credit: John O'Connor/nasatech

Just after 10 am Eastern time, the SpaceX successfully launched their Dragon capsule on a second resupply mission to the International Space Station. The launch, rocket stage and spacecraft separations went perfectly, but the Dragon experienced an anomaly at about the time the solar arrays should have deployed. The SpaceX webcast announced that the spacecraft experienced a problem and then ended the webcast. NASA TV has not offered information either. We’ll provide more information as soon it becomes available.

Update: (10:44 EST) Elon Musk, SpaceX CEO just tweeted: “Issue with Dragon thruster pods. System inhibiting 3 of 4 from initializing. About to inhibit override.” Then minutes later he added, “Holding on solar array deployment until at least two thruster pods are active.”

See below for a continuation of our live-blogging of the Dragon anomaly, as it happened..

Also, here’s the launch video from launch to separation (note, the separation video is spectacular!):

Dragon carries 18 Draco thrusters for attitude control and maneuvering, so there may be an issue with those. Dragon’s thruster problem may be preventing the spacecraft from going into array deploy attitude, thus preventing array deploy.

Only time will tell if this is a software or hardware problem. The SpaceX press kit describes what needs to happen for solar array deploy:

Dragon separates from Falcon 9’s second stage, and seconds later, Dragon will reach its preliminary orbit. It then deploys its solar arrays and begins a carefully choreographed series of Draco thruster firings to reach the space station.

If Dragon can’t make it to the ISS, then it would need to be decided if and how it can return back to Earth on a good trajectory with limited thruster control.

The SpaceX controllers are obviously working to try and resolve the problem.

Update: 11:10 EST An update from NASA TV at about 11:10 am, said that part of response to problem with Dragon may be reorganizing the burn sequences in order for the spacecraft to be able to approach to the ISS. Musk just tweeted: “About to pass over Australia ground station and command inhibit override.”

Update: 11:25 EST: A statement from SpaceX says that “One thruster pod is running. Two are preferred to take the next step which is to deploy the solar arrays. We are working to bring up the other two in order to plan the next series of burns to get to station.”

Update: 11:42 EST: Elon Musk just tweeted: “Thruster pod 3 tank pressure trending positive. Preparing to deploy solar arrays.” That is good news.

Update: 11:50 EST: Another Tweet from Musk, with some short but sweet news: “Solar array deployment successful” That means they were abe to get at least two of the four thruster pods working, per the minimum requirement. Now, to see if the thruster problem causes any issues with getting to the ISS.

Update: 12:05 EST: Elon Musk continues to be the best source of info. He’s just tweeted, “Attempting bring up of thruster pods 2 and 4.”
We’re assuming that means 1 and 3 are already working, since it was going to take at least 2 pods thrusting to enable solar array deploy.

Update: 12:14 EST: The latest statement from SpaceX : “After Dragon achieved orbit, the spacecraft experienced an issue with a propellant valve. One thruster pod is running. We are trying to bring up the remaining three. We did go ahead and get the solar arrays deployed. Once we get at least 2 pods running, we will begin a series of burns to get to station.”

So, they were able to deploy the arrays with just one thruster pod working, and they are now working to get at least one more working. One question to consider is if the spacecraft and arrays were able to be in the right position to gather sunlight and produce power.

Update: 12:42 EST: According to reports on Twitter, a NASA official has said that three Dragon thruster pods are needed to fly to the ISS, and at this point, only one pod is working.

SpaceX CRS-2 Launch on March 1, 2013. Credit: John O'Connor/nasatech
SpaceX CRS-2 Launch on March 1, 2013. Credit: John O’Connor/nasatech

Update: 2:00 EST: This update from SpaceX: “SpaceX is still working through issues in Dragon’s propulsion system. The mission’s first rendezvous burn was delayed at least one orbit to about 2 p.m. EST.” (which is now)….stay tuned for updates. There will be a press conference sometime today, NASA has said, but has not yet set a specific time.

Update: 2:28 EST: NASA says the Dragon capsule Dragon will no longer be able to make its scheduled rendezvous with the station tomorrow. SpaceX indicated the rendezvous with the ISS will now not happen until at least Sunday morning. There will be a news briefing at 3pm EST.

Communication between the ISS crew and mission control confirms the delay for the rendezvous: “They are making progress recovering their prop system, but it’s not going to be in time to support the rendezvous and capture for tomorrow,” NASA’s spacecraft communicator told the crew. “So that is not going to happen tomorrow.”

“OK, copy, sounds like another off-duty day for us,” said ISS commander Kevin Ford. “We don’t wish that. We wish it gets fixed and gets up here to us. That’s really awesome they’re working their way through the problems. That’s what it’s all about.”

Update: 2:58 EST: Latest Tweet from Elon Musk has good news: “Pods 1 and 4 now online and thrusters engaged. Dragon transitioned from free drift to active control. Yes!!”

Update: 4:11 EST: Here’s a brief synopsis of the press briefing:

During the press conference, Elon Musk indicated there was a blockage in the helium line leading to the oxidizer pressurization system, or perhaps a stuck valve, and the pressure was not high enough to turn on the thrusters. The engineering team cycled the valves several times, using pressure hammering to loosen up and debris that might be stuck in the valves. And now, the pressure is nominal, with all the oxidizer tanks holding the target pressure on all 4 pods, and so Musk said he is hopeful that all the thrusters will be able to work.

Musk said they decided to deploy Dragon arrays before two thrusters were online because the temperature of the array actuators was dropping rapidly. But they also deployed solar arrays partly to mitigate Dragon’s attitude rotation “like a skater extending arms during a spin,” he said.

Musk mentioned the batteries on board had 12-14 hours of life, so deploying the arrays early was not a question of running out of power, but making sure solar arrays didn’t get so cold that they couldn’t deploy later.

NASA’s Mike Suffredini said that at least 3 of the 4 pods have to be operational in order to make an approach to the ISS.

They will make a decision on when to make the rendezvous when they’ve ascertained if the thrusters are working.

Ken Kremer will provide a more detailed update later.

{End of live blogging}

Diagram of the Dragon capsule. Credit: SpaceX
Diagram of the Dragon capsule. Credit: SpaceX

The Dragon is carrying 544 kilograms (1,200 lbs) of scientific experiments and supplies to the space station, and docking was scheduled for Saturday at 6:30 a.m. ET (1100 GMT). That will likely change.

Dragon’s 18 Draco thrusters permit orbital maneuvering and attitude control. They are mounted on four pods: two of the pods contain five thrusters and the other two contain four thrusters. They are powered by nitrogen tetroxide/monomethylhydrazine, and the thrust is used to control the approach to the ISS, power departure from the ISS, and control Dragon’s attitude upon reentry.

As far as the solar arrays, each array is constructed of four panels. Each array measures 6.4 meters (21 feet). The arrays can draw up to 5,000 watts of power, which is about enough power to light about 85 light bulbs. For launch, the arrays are stowed in the unpressurized trunk of the Dragon and are covered by protective fairings. When the fairings jettison, the automated deployment of the arrays is triggered. On the way back to Earth the trunk is jettison and it, along with the arrays, burn up in the atmosphere.

If the arrays do not deploy, battery life on Dragon is only a few hours 12-14 hours, which would not be enough time to keep it alive until it would reach the ISS. It will be about 20 hours from launch until it approaches the ISS, if the mission continues on its scheduled timeline.

You may recall that during the previous mission to the ISS in October 2012 (the second flight to ISS, but first operational SpaceX resupply flight) one of the rocket’s first stage engines suffered an anomaly, where a combustion chamber ruptured. That engine was shut down, and the other engines fired longer to make up for it. The Dragon cargo made it to the correct orbit and continued on the ISS, but a satellite that was launched to orbit as a secondary payload by the Falcon 9 rocket was sent into the wrong orbit as a result of “a pre-imposed safety check required by NASA,” on October 7, and the ORBCOMM OG2 satellite later deorbited and fell back to Earth.

For this launch, all nine engines appeared to work nominally and all stages separated perfectly.

But obviously the SpaceX team saw the thruster problem immediately, as that’s when the webcast was ended.

Beautiful Astrophoto: Zoom Into Orion

A poster with a progression of images from Cape Espichel, Sesimbra in Spain. Left is a wide field starscape, center is Orion's deep sky objects and right is a closeup of M42. Credit and copyright: Miguel Claro.

Here’s an awesome sequence of images from skyscape photographer Miguel Claro. These images were captured from Cape Espichel, Sesimbra, Portugal, about 40 km away from Lisbon. This triple sequence poster contains a beautiful widefield view of the well-known winter constellations visible from the northern hemisphere; then a zoom in to focus on Orion; then Claro zooms in even more to find the Great Orion Nebula M42 and M43.

Claro took a single shot for each image with a DSLR camera, using between 10, 35 and 300 mm. “To do this work I´ve used the incredible Vixen Polarie mounting travel, to avoid the Earth rotation, and a Canon 60Da, a camera sensitive to the infrared/H-alpha wavelengths,” Claro said.

Below is an annotated version of the different objects in the image:

An annotated poster with a progression of images from Cape Espichel, Sesimbra in Portugal. Left is a wide field starscape, center is Orion's deep sky objects and right is a closeup of M42. Credit and copyright: Miguel Claro.
An annotated poster with a progression of images from Cape Espichel, Sesimbra in Portugal. Left is a wide field starscape, center is Orion’s deep sky objects and right is a closeup of M42. Credit and copyright: Miguel Claro.

You can see these images and more at Claro’s website, http://miguelclaro.com/

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

SpaceX Commercial Rocket Poised for March 1 Blast Off to ISS

SpaceX Falcon 9 rocket before May 2012 blast off from Cape Canaveral Air Force Station, Florida on historic maiden private commercial launch to the ISS. Credit: Ken Kremer/www.kenkremer.com

Kennedy Space Center – All systems are GO and the weather outlook looks spectacular for the March 1 blast off of the privately developed SpaceX Falcon 9 rocket to the International Space Station (ISS).

The Falcon 9 is slated to lift off at 10:10 AM EST with a Dragon capsule loaded with fresh supplies and science gear to continued full up operation and utilization of the ISS.

Right now the weather forecast is at 80% GO on March 1 – with superbly beautiful, clear blue skies here in sunny and comfortably warm Florida from Space Launch Complex 40 at Cape Canaveral Air Force Station.

Large crowds of eager tourists, sightseers and space enthusiasts are already gathering in local hotels – most are sold out including at my hotel where I have been holding well attended ISS star parties during excellent evening viewing opportunities this week.

NASA TV will provide live launch coverage starting at 8 30 AM. SpaceX will also provide a separate feed starting about 40 minutes prior to launch.

The two stage Falcon 9 rocket was rolled out horizontally to the pad late this afternoon (Thursday, Feb. 28) in anticipation of a Friday morning launch. Myself and Dave Dickinson are on-site for Universe Today

The mission dubbed CRS-2 will be only the 2nd commercial resupply mission ever to the ISS.

There are no technical concerns at this time. Saturday March 2 is the back-up launch date in case of a last second scrub. Weather is projected as 80% favorable.

SpaceX President Gwynne Shotwell and NASA officials told me that additional launch opportunities are available Sunday, Monday and Tuesday, if needed, and later until about March 11. After that, the launch team would have to stand down to make way for the next eventual departure of a docked Soyuz and launch of a manned Russian Soyuz capsule with a new three man crew.

SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station.  Credit: Ken Kremer
SpaceX Falcon 9 rocket liftoff on May 22, 2012 from Space Launch Complex-40 at Cape Canaveral Air Force Station, Fla., on the first commercial mission to the International Space Station. Credit: Ken Kremer

The SpaceX Dragon capsule is carrying about 1,200 pounds of vital supplies and research experiments for the six man international crew living aboard the million pound orbiting outpost.

SpaceX is under contract to NASA to deliver over 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.

The capsule is fully loaded Shotwell told me. An upgraded Falcon 9 will be used in the next launch that will allow for a significant increase in the cargo up mass, Shotwell elaborated.

The Dragon is due to dock with the ISS in record time some 20 hours after blast off.

Ken Kremer

How Will Sequestration Affect NASA?

NASA Administrator Charles Bolden addresses the media at SpaceX's main hangar in Cape Canaveral, FL. The sequester will affect both NASA and SpaceX. Credit: NASA.

It seems the US in not going to avoid the sequester — the $85 billion worth of federal spending cuts due to kick in March 1, 2013. There will be across the board cuts to government agencies, applying equally to defense and non-defense spending, and will affect services from meat inspections to air traffic control. In some cases, federal workers will be furloughed or could stand to lose as much as 20 percent of their pay. One question no one can answer is how long it will take for Congress and the Obama administration to come to an agreement on a package that would reduce the deficit.

But in the near term, how will it affect NASA?

“Sequestration would significantly set back the ambitious space exploration plan the President and Congress have asked NASA to carry out,” NASA Administrator Charlie Bolden said in a message to NASA employees this week. “These damaging cuts would slash roughly 5 percent from the agency’s current annual budget during the remaining seven months of the 2013 fiscal year, a loss of about $726 million from the President’s budget request. This could further delay the restarting of human space launches from U.S. soil, push back our next generation space vehicles, and hold up development of new space technologies.

In hard numbers, NASA’s overall budget would drop to $16.9 billion, down from the $17.8 billion Congress approved last year.

NASA civil servants are safe from furloughs, but NASA contractors will see cuts in their contracts.

In a press conference on Feb. 28, preceding the scheduled March 1 launch of the SpaceX Dragon capsule to the ISS, NASA’s Space Station Manager Mike Suffredini said the ISS would not be impacted very much. With humans on board the ISS, there can be no cuts in operations that would endanger the crew. While Sufferdini didn’t say so, if the cuts continue long-term to NASA, there likely would be an impact to science being done, and perhaps eventually crew size.

Spending on the commercial crew program might take one of the biggest hits, and would be reduced to $388 million, which is $18 million less than it is currently spending and $441.6 million less than the agency had been planning to spend in 2013. Boeing, Sierra Nevada, and SpaceX are all under contract to meet performance milestones to deliver cargo and ultimately crew (by 2017) to the International Space Station.

In a separate letter to Senate Appropriations Committee Chairwoman Barbara Mikulski, (D-MD) Bolden said NASA’s commercial crew partners would be affected by this summer, as NASA would no longer be able to fund upcoming events such as a test of Boeing’s CST-100 orbital maneuvering and attitude control engine in July, a September review of an in-flight abort test SpaceX plans to conduct in April 2014, and an October integrated system and safety analysis review of Sierra Nevada’s DreamChaser space plane.

Also at the SpaceX press conference on Feb. 28, SpaceX President Gwynne Shotwell said the specifics of how the sequestration will affect her company is not yet known, but it will likely impact some of their milestones if the budget issues aren’t resolved soon.

Howard Bloom, founder of the Space Development Steering Committee, said these cuts to commercial crew would be a disaster, delaying when US astronauts could launch on US rockets, and would just “shovel” money to Russia.

“This nip and tuck may result in a period of an additional one to two years in which America cannot get astronauts to the International Space Station on our own launch vehicles,” he said in a statement sent to Universe Today. “But we are committed to manning the Space Station. How will we do it? Using Russian Soyuz capsules. At a price of $63 million paid to the Russians for each American passenger– a total of $350-400 million per year.”

Even worse, Bloom said, sequestration could eliminate one of more of the companies working on American launch vehicles, and the result would be “less competition and a potentially higher cost per launch once a new vehicle comes into service.”

Science and research will also be affected, with reductions of $51.1 million below the FY 2013 budget request for astrophysics and science, meaning funding for new missions such as Explorer and Earth Venture Class will be cut, decreasing mission selections by 10 to 15 percent, resulting in lower funding levels for new activities and causing some launch delays. There will also be a reduction in the number of science flight opportunities such as those for college and high school students, and the elimination of Centennial Challenges funding to for any new prizes.

NASA’s Space Technology Program would be cut by $24 million to $550 million instead of $699 million, and any updates or construction at NASA facilities would be centers would be canceled. This may impact updates at Kennedy Space Center for infrastructure needed for NASA’s Space Launch System (SLS), the Orion Multi-Purpose Crew Vehicle, and other programs.

As far as other science programs in the US there are reports that at least 1,000 National Science Foundation grants will be cut, and the National Institute of Health will lose $3.1 billion.

“We will continue to keep you informed as we learn more about issues surrounding the potential sequestration,” Bolden said in his email to NASA employees. Dr. Elizabeth Robinson, Agency Chief Financial Officer, and her staff in the Office of the Chief Financial Officer here at NASA HQ will be following up with the Officials in Charge regarding our plans for implementing sequestration and how those plans will affect NASA’s day-to-day operations. Please feel free to contact her or her staff with questions or concerns.”

Sources: NBC, AeroNews, Space Industry News.

‘Ultimate’ Prebiotic Molecules Found in Interstellar Space

Clouds of cosmic dust in the region of Orion. Credit: ESO

The building blocks of life could have their beginnings in the tiny icy grains that make up the gas and dust found between the stars, and those icy grains could be the key to understanding how life can arise on planets. With help from students, researchers have discovered an important pair of prebiotic molecules in the icy particles in interstellar space. The chemicals, found in a giant cloud of gas about 25,000 light-years from Earth may be a precursor to a key component of DNA and another may have a role in the formation of an important amino acid.

“We found the ultimate prebiotic of prebiotic molecules,” said Anthony Remijan, of the National Radio Astronomy Observatory (NRAO).

Using the Green Bank Telescope (GBT) in West Virginia, researchers found a molecule called cyanomethanimine, which produces adenine, one of the four nucleobases that form the “rungs” in the ladder-like structure of DNA. The other molecule, called ethanamine, is thought to play a role in forming alanine, one of the twenty amino acids in the genetic code.

Previously, scientists thought such processes took place in the very tenuous gas between the stars. The new discoveries, however, suggest that the chemical formation sequences for these molecules occurred not in gas, but on the surfaces of ice grains in interstellar space.

“Finding these molecules in an interstellar gas cloud means that important building blocks for DNA and amino acids can ‘seed’ newly-formed planets with the chemical precursors for life,” said Remijan.

In each case, the newly-discovered interstellar molecules are intermediate stages in multi-step chemical processes leading to the final biological molecule. Details of the processes remain unclear, but the discoveries give new insight on where these processes occur.

“We need to do further experiments to better understand how these reactions work, but it could be that some of the first key steps toward biological chemicals occurred on tiny ice grains,” Remijan said.

The discoveries were made possible by new technology that speeds the process of identifying the “fingerprints” of cosmic chemicals. Each molecule has a specific set of rotational states that it can assume. When it changes from one state to another, a specific amount of energy is either emitted or absorbed, often as radio waves at specific frequencies that can be observed with the GBT.

New laboratory techniques have allowed astrochemists to measure the characteristic patterns of such radio frequencies for specific molecules. Armed with that information, they then can match that pattern with the data received by the telescope. Laboratories at the University of Virginia and the Harvard-Smithsonian Center for Astrophysics measured radio emission from cyanomethanimine and ethanamine, and the frequency patterns from those molecules then were matched to publicly-available data produced by a survey done with the GBT from 2008 to 2011.

A team of undergraduate students participating in a special summer research program for minority students at the University of Virginia (U.Va.) conducted some of the experiments leading to the discovery of cyanomethanimine.

“This is a pretty special discovery and proves that early-career students can do remarkable research,” said Books Pate, a U. Va professor who mentored the students.

Source: NRAO