And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
It’s a wonderful thing for children to look up to their fathers, but some kids have to look a little further than others — especially when dad is in command of the International Space Station!
Around 6 p.m. EST on February 14, the ISS passed over southern New England, and for a few brief moments the Station was directly above Rhode Island, at 37 miles wide the smallest state in the US. 240 miles up and heading northeast at 17,500 mph, the ISS quickly passed out of sight for anyone watching from the ground, but it was enough time for Heidi and Anthony Ford to get a view of the place where their father Kevin Ford has been living and working since the end of October… and thanks to Brown University’s historic Ladd Observatory and astronomer Robert Horton they got to see the Station up close while talking to their dad on the phone.
“One of the things [Anthony and I] like to do is to pop outside to watch dad fly over, which you can do on occasion when the timing is just right,” Heidi said. “We were looking at the schedule to see when the flyover would be so we could go see him. I remembered that the Ladd was open to the public, so I thought I’d call over there and see if this is something we could visit the Ladd to do.”
Robert Horton, an astronomer with Brown University, was happy to meet Heidi and Anthony at the Ladd for the flyover.
While the Ladd’s main 12″ telescope doesn’t have the ability to track fast-moving objects like the ISS, Horton had some at home that could. So he set one of them up at the observatory and prepared to track the station during its six-minute pass.
Just before the flyby, Heidi’s phone rang — it was her dad calling from the ISS.
“He told her, ‘I’m over Texas. I’ll be there in a few minutes,’” Horton said later in an interview with Brown reporters. “Sure enough the point of light appeared in the sky and we started to track it. They could look through the eyepiece and actually make out the solar panels while they were talking with him.”
The Brown University-run Ladd Observatory holds free public viewing nights every Tuesday, weather permitting. People line up inside the 122-year-old dome to peer through its recently restored 12″ refracting telescope at objects like the Moon, Jupiter, and Saturn, and local amateur astronomers set up their own ‘scopes on the observatory’s rooftop deck for additional viewing opportunities.
Heidi had told their dad that they’d be watching from Providence as he passed over, and luckily his schedule allowed him to make a phone call during that particular evening’s pass.
While they had both watched flyovers before, it was the first time either of them had ever seen the ISS through a telescope.
It made for a “very special Valentine’s Day,” Heidi said.
And as for Horton, who had donated the use of his telescope? He got a chance to talk with Commander Ford as well — an experience he’ll likely never forget.
“I can think of a thousand questions to ask him now that I’m not on the phone with him,” Horton said. “But, frankly, I was awestruck at the time.”
A little over a year ago Alan Stern, principal investigator on the New Horizons mission, announced the team’s plans to have a Forever Stamp issued by the US Postal Service commemorating the New Horizons spacecraft along with its targets, Pluto and Charon. Thousands signed the petition, and today the team announced a long-awaited update to all of its supporters: it’s definitely a maybe!
In an email sent out to petition signers as well as on its Facebook page, the New Horizons team noted that the stamp — conceptualized by planetary scientist and artist Dan Durda — has cleared its first major hurdle in the USPS approval process and will be submitted for review and consideration before their Advisory Committee.
Pending that approval, it will then be put on the agenda for the meeting of the Citizens’ Stamp Advisory Committee.
After that point, since no notification is made to the applicant about a stamp’s approval by the Postmaster General until a public announcement is issued it’s likely that we won’t know if there will actually be a New Horizons stamp until the spacecraft is on final approach to Pluto in July 2015. Hopefully the USPS will see the benefit to having a stamp actually ready for purchase by that time and plan accordingly, but one never knows. Until then, cross your fingers and keep an eye out for a Forever Stamp featuring the “First Spacecraft to Explore Pluto!”
“This is a chance for us all to celebrate what American space exploration can achieve though hard work, technical excellence, the spirit of scientific inquiry, and the uniquely human drive to explore.”
– Alan Stern, New Horizons Principal Investigator
USPS Forever Stamps can be used to mail a one-ounce letter regardless of when the stamps are purchased or used and no matter how prices may change in the future. Forever Stamps are always sold at the same price as a regular First-Class Mail stamp. Forever Stamps can be used for international mail, but since all international prices are higher than domestic US prices, additional postage is necessary.
We’ve currently found 867 different exoplanets, but have yet to definitely determine if one of those harbors life. How will astronomers make that determination? They’ll look at things such as its composition, orbital properties, atmosphere, and potential chemical interactions. While oxygen is relatively abundant in the Universe, finding it in the atmosphere of a distant planet could point to its habitability because its presence – in large quantities — would signal the likely presence of life.
But where to look first? A new study finds that we could detect oxygen in the atmosphere of a habitable planet orbiting a white dwarf – a star that is in the process of dying — much more easily than for an Earth-like planet orbiting a Sun-like star.
“In the quest for extraterrestrial biological signatures, the first stars we study should be white dwarfs,” said Avi Loeb, theorist at the Harvard-Smithsonian Center for Astrophysics (CfA) and director of the Institute for Theory and Computation.
Loeb and his colleague Dan Maoz from Tel Aviv University estimate that a survey of the 500 closest white dwarfs could spot one or more habitable Earths.
A white dwarf is what stars like the Sun become after they have exhausted their nuclear fuel. It puffs off its outer layers, leaving behind a hot core which can be about the size of Earth. It slowly cools and fades over time, but it can retain heat long enough to warm a nearby world for billions of years.
Currently, most planets that we’ve found orbit close to their parent star, since astronomers find planets using astrometry by the gravitational influence the planet has on the star, causing it to wobble ever so slightly. Massive planets close to the star have the biggest effect and so are the easiest to detect.
Using the photometry, astronomers see a dip in the amount of light a star gives off when a planet passes in front of the star. Since a white dwarf is about the same size as Earth, an Earth-sized planet would block a large fraction of its light and create an obvious signal. Photometry, or the transit method, has proven the best way to find exoplanets.
A white dwarf is much smaller and fainter than the Sun, and a planet would have to be much closer in to be habitable with liquid water on its surface, so that should make planets around a white dwarf star easier to detect. A habitable planet would circle the white dwarf once every 10 hours at a distance of about a million miles.
More importantly, we can only study the atmospheres of transiting planets. When the white dwarf’s light shines through the ring of air that surrounds the planet’s silhouetted disk, the atmosphere absorbs some starlight. This leaves chemical fingerprints showing whether that air contains water vapor, or even signatures of life, such as oxygen.
But there’s a caveat: Before a star becomes a white dwarf it swells into a red giant, engulfing and destroying any nearby planets. Therefore, a planet would have to arrive in the habitable zone after the star evolved into a white dwarf. Either it would migrate towards the star from a more distant orbit or be a new planet formed from leftover dust and gas.
However, we have yet to find a exoplanet around a white dwarf, even though Loeb and Moaz say the abundance of heavy elements on the surface of white dwarfs suggests that a significant fraction of them have rocky planets.
We need a better eye in the sky to find planets around white dwarfs, say Loeb and Maoz, and the James Webb Space Telescope (JWST), scheduled for launch by the end of this decade, promises to sniff out the gases of these alien worlds.
Loeb and Maoz created a synthetic spectrum, replicating what JWST would see if it examined a habitable planet orbiting a white dwarf. They found that both oxygen and water vapor would be detectable with only a few hours of total observation time.
“JWST offers the best hope of finding an inhabited planet in the near future,” said Maoz.
Recent research by CfA astronomers Courtney Dressing and David Charbonneau showed that the closest habitable planet is likely to orbit a red dwarf star (a cool, low-mass star undergoing nuclear fusion). Since a red dwarf, although smaller and fainter than the Sun, is much larger and brighter than a white dwarf, its glare would overwhelm the faint signal from an orbiting planet’s atmosphere. JWST would have to observe hundreds of hours of transits to have any hope of analyzing the atmosphere’s composition.
“Although the closest habitable planet might orbit a red dwarf star, the closest one we can easily prove to be life-bearing might orbit a white dwarf,” said Loeb.
Just a week after a huge fireball streaked across the skies of the Chelyabinsk region of Russia, astronomers published a paper that reconstructs the orbit and determines the origins of the space rock that exploded about 14-20 km (8-12.5 miles) above Earth’s surface, producing a shockwave that damaged buildings and broke windows.
Researchers Jorge Zuluaga and Ignacio Ferrin at the University of Antioquia in Medellin, Colombia used a resource not always available in meteorite falls: the numerous dashboard and security cameras that captured the huge fireball. Using the trajectories shown in videos posted on YouTube, the researchers were able to calculate the trajectory of the meteorite as it fell to Earth and use it to reconstruct the orbit in space of the meteoroid before its violent encounter with our planet.
The results are preliminary, Zuluaga told Universe Today, and they are already working on getting more precise results. “We are working hard to produce an updated and more precise reconstruction of the orbit using different pieces of evidence,” he said via email.
But through their calculations, Zuluaga and Ferrin determined the rock originated from the Apollo class of asteroids.
Using triangulation, the researchers used two videos specifically: one from a camera located in the Revolutionary Square in Chelyabinsk and one video recorded in the a nearby city of Korkino, along with the location of a hole in the ice in Lake Chebarkul, 70km west of Chelyabinsk. The hole is thought to have come from the meteorite that fell on February 15.
Zuluaga and Ferrin were inspired to use the videos by Stefen Geens, who writes the Ogle Earth blog and who pointed out that the numerous dashcam and security videos may have gathered data about the trajectory and speed of the meteorite. He used this data and Google Earth to reconstruct the path of the rock as it entered the atmosphere and showed that it matched an image of the trajectory taken by the geostationary Meteosat-9 weather satellite.
But due to variations in time and date stamps on several of the videos — some which differed by several minutes — they decided to choose two videos from different locations that seemed to be the most reliable.
From triangulation, they were able to determine height, speed and position of the meteorite as it fell to Earth.
This video is a virtual exploration of the preliminary orbit computed by Zuluaga & Ferrin
But figuring out the meteroid’s orbit around the Sun was more difficult as well as less precise. They needed six critical parameters, all which they had to estimate from the data using Monte Carlo methods to “calculate the most probable orbital parameters and their dispersion,” they wrote in their paper. Most of the parameters are related to the “brightening point” – where the meteorite becomes bright enough to cast a noticeable shadow in the videos. This helped determine the meteorite’s height, elevation and azimuth at the brightening point as well as the longitude, latitude on the Earth’s surface below and also the velocity of the rock.
“According to our estimations, the Chelyabinski meteor started to brighten up when it was between 32 and 47 km up in the atmosphere,” the team wrote. “The velocity of the body predicted by our analysis was between 13 and 19 km/s (relative to the Earth) which encloses the preferred figure of 18 km/s assumed by other researchers.”
They then used software developed by the US Naval Observatory called NOVAS, the Naval Observatory Vector Astrometry to calculate the likely orbit. They concluded that the Chelyabinsk meteorite is from the Apollo asteroids, a well-known class of rocks that cross Earth’s orbit.
According to The Technology Review blog, astronomers have seen over 240 Apollo asteroids that are larger than 1 km but believe there must be more than 2,000 others that size.
However, astronomers also estimate there might be about 80 million out there that are about same size as the one that fell over Chelyabinsk: about 15 meters (50 feet) in diameter, with a weight of 7,000 metric tons.
In their ongoing calculations, the research team has decided to make future calculations not using Lake Chebarkul as one of their triangulation points.
“We are acquainted with the skepticism that the holes in the icesheet of the lake have been produced artificially,” Zuluaga told Universe Today via email. “However I have also read some reports indicating that pieces of the meteoroid have been found in the area. So, we are working hard to produce an updated and more precise reconstruction of the orbit using different pieces of evidence.”
Many have asked why this space rock was not detected before, and Zuluaga said determining why it was missed is one of the goals of their efforts.
“Regretfully knowing the family at which the asteroid belongs is not enough,” he said. “The question can only be answered having a very precise orbit we can integrate backwards at least 50 years. Once you have an orbit, that orbit can predict the precise position of the body in the sky and then we can look for archive images and see if the asteroid was overlooked. This is our next move!”
Sometimes the tried and true methods are still the best, even in observational astronomy. Researchers at the University of Prague demonstrated this recently in a study of the eclipsing binary system V994 Herculis (V994 Her).
Researchers P. Zasche and R. Uhla used a method known as the Light-travel-time Effect to verify that V994 Her is actually a double binary. If that method sounds familiar to any astronomy historians out there, that’s because it was first used by 17th century astronomers to gauge the speed of light.
V994 Her is a rarity in the skies. While many eclipsing binaries are known, V994 Her is one of only six quadruple eclipsing binary stars discovered. An eclipsing binary star is a system where the two stars pass one in front of the other from our line of sight. Although too close to be split visually, eclipsing binaries rise and fall in brightness periodically. One famous example is the star Algol (Beta Persei) in the constellation Perseus. Algol means the “Demon Star” in Arabic, which suggests that its curious nature was known to Arab astronomers in pre-telescopic times.
The votes have been tallied and the results are in from the SETI Institute’s Pluto Rocks Poll: “Vulcan” and “Cerberus” have come out on top for names for Pluto’s most recently-discovered moons, P4 and P5.
After 450,324 votes cast over the past two weeks, Vulcan is the clear winner with a landslide 174,062 votes… due in no small part to a little Twitter intervention by Mr. William Shatner, I’m sure.
During a Google+ Hangout today, SETI Institute senior scientist Mark Showalter — who discovered the moons and opened up the poll — talked with SETI astronomer Franck Marchis and MSNBC’s Alan Boyle about the voting results. Showalter admitted that he wasn’t quite sure how well the whole internet poll thing would work out, but he’s pleased with the results.
“I had no idea what to expect,” said Showalter. “As we all know the internet can be an unruly place… but by and large this process has gone very smoothly. I feel the results are fair.”
As far as having a name from the Star Trek universe be used for an actual astronomical object?
“Vulcan works,” Showalter said. “He’s got a family tie to the whole story. Pluto and Zeus were brothers, and Vulcan is a son of Pluto.”
The other winning name, Cerberus, is currently used for an asteroid. So because the IAU typically tries to avoid confusion with two objects sharing the same exact name, Showalter said he will use the Greek version of the spelling: Kerberos.
Cerberus (or Kerberos) is the name of the giant three-headed dog that guards the gates to the underworld in Greek mythology.
Now that the international public has spoken, the next step will be to submit these names to the International Astronomical Union for official approval, a process that could take 1–2 months.
(Although who knows… maybe Bill can help move that process along as well?)
Read more about the names on the Pluto Rocks ballot here, and watch the full recorded Google+ Hangout below:
On this day (Feb. 25) in 1969, Mariner 6 was hefted off of Earth on a path to Mars. What’s less known is the spacecraft nearly was destroyed only 10 days beforehand as the rocket began to collapse. This NASA account succinctly summarizes what must have been a terrifying moment:
A faulty switch opened the main valves on the Atlas stage. This released the pressure which supported the Atlas structure, and as the booster deflated it began to crumple. Two ground crewman started pressurizing pumps, saving the structure from further collapse. The Mariner 6 spacecraft was removed, put on another Atlas/Centaur, and launched on schedule. The two ground crewman, who had acted at risk of the 12-story rocket collapsing on them, were awarded Exceptional Bravery Medals from NASA.
Who were these exceptional people? Universe Today asked around at NASA for some answers, and got the gentlemen’s names: Billy McClure and Charles Beverlin, who were NASA contractors at General Dynamics. It appears that these two men were the first to receive an Exceptional Bravery Medal from the agency.
McClure, a Second World War veteran, died in 2009 at the age of 85. It appears that the medal was a highlight in McClure’s life, according to an account by his great-granddaughter Hanna Smith, who referred to him as “Grandad”:
“Grandad was flown to California to receive copies of the first pictures ever taken of Mars and to be personally thanked by the Vice President of the United States,” she wrote in a 2012 article. McClure retired from General Dynamics after 31 years of service. His son, also named Billy McClure, was a worker on the U.S. shuttle program.
The agency had no contact information for Beverlin given that he was not a NASA employee.
As for Mariner 6, the mission made it to Mars at a time when spacecraft failures were fast and frequent. The spacecraft’s closest approach to Mars was 2,131 miles (3,431 km) and it successfully beamed images and information back to Earth. It’s images finally squashed the notion of Martian “canals” — once proposed by astronomer Percival Lowell — and showed the surface of Mars to be very different from that of the Moon, in contrast to the results from Mariner 4. Mariner 6 also helped identify the makeup of the south polar cap (predominantly carbon dioxide, and its radio science refined estimates of the mass, radius and shape of Mars.
Just think, this cratered image of Mars below was only possible through an act of bravery from two men.
Sixteen years ago, a fire on the Russian space station Mir erupted after a cosmonaut routinely ignited a perchlorate canister that produced oxygen to supplement the space station’s air supply. Jerry Linenger, an American astronaut aboard Mir at that time, wrote about the incident that occurred on February 24, 1997 in his memoir Off the Planet:
As the fire spewed with angry intensity, sparks – resembling an entire box of sparklers ignited simultaneously – extended a foot or so beyond the flame’s furthest edge. Beyond the sparks, I saw what appeared to be melting wax splattering on the bulkhead opposite the blaze. But it was not melting max. It was molten metal. The fire was so hot that it was melting metal.
Linenger famously had some trouble donning gas masks, which kept malfunctioning, but he and the rest of the crew managed to put out the blaze before it spun out of control. The cause was traced to a fault in the canister.
Mir itself was deorbited in 2001, but the fire safety lessons are still vivid in everyone’s mind today.
NASA fire expert David Urban told Universe Today that a fire is among the most catastrophic situations that a crew can face.
You can’t go outside, you’re in a very small volume, and your escape options are limited. Your survival options are limited. That space can tolerate a much smaller fire than you can tolerate in our home. The pressure can’t escape easily, and the heat stays there, and the toxic products are there as well.
Urban, who is chief of the combustion and reacting systems branch of the research and technology directorate of the NASA Glenn Research Center, said NASA and Russia have learned several things from the incident that they have implemented on the International Space Station today:
– Changing fabrication procedures for the canisters. NASA officials and their Russian counterparts “took a good hard look” at the canisters and determined they were still the best solution given their modest weight and easy portability. They did, however, put stricter guidelines into the fabrication in the Russian facility. “The most likely cause was contamination during assembly of the cassette, the cartridge that contains the perchlorate. So, much stronger control there and more testing of the units as they make them. ”
– Better insulation. Urban noted the canisters are now in specially designed cases, a sort of high-temperature insulation package that can absorb the “blow torch effect” that happens if a unit fails. “It protects the rest of the vehicle … like a fire in a fireplace.”
– Clearing the way. Just before the Mir fire happened, the crew happened to clean up trash from the immediate area near the faulty canister. The procedure was just a coincidence, but it could have ended up saving the ship, Urban said. Today’s space station crews are very careful to keep a buffer between the canisters on board and any items. “In the shuttle era, it was different because it came back in 16 days or less. The space station or Mir, it’s like your house. You can’t let clutter accumulate. We’ve learned a lot in Mir about how to manage a long-duration vehicle.”
– Keeping up with the latest research. There are, in fact, two fire suppression systems on the International Space Station: a water foam system in the Russian sections, and a carbon dioxide system in the United States area. NASA is now working on a more modern “water mist” fire suppression method, based on an ongoing trend seen protecting terrestrial areas such as electronics and shipping rooms. This system emits fine particles, sort of like a sprinkler, that are just tens of microns across and act almost like a gas. Urban said the system is late in the design review part of development and should be ready for use on station within the next couple of years.
One 2011 NASA report on the incident also highlighted the importance of emergency preparation and safety drills to mitigate fires as they happen. “More effective warning systems could save several seconds of reaction time, which, in a crisis, could mean the difference between success and failure,” it stated. You can read the rest of that report here.
A Polar Satellite Launch Vehicle (PSLV) successfully launched from India today, sending seven different international satellites into orbit. Launch was at 7:31 a.m. EST (12:31 UTC) and on board were three Canadian-built spacecraft including a small asteroid-hunting satellite (weighing in at just 74 kg) called NEOSSat, other small satellites from the UK, Austria and Denmark and an India-France joint effort called SARAL, an Earth observation satellite, the primary payload for the launch.
Reports indicate all seven satellites were placed in their proper orbits and after their initial check-outs will being their missions.
NEOSSat (Near-Earth Object Surveillance Satellite)will track large asteroids that may come close to Earth and also track space debris in orbit. The suitcase-sized NEOSSat will orbit approximately 800 kilometers above the Earth, searching for objects that are difficult to spot using ground-based telescopes. Because of its location, NEOSSat will not be limited by the day-night cycle and will operate continuously.
“NEOSSat will discover many asteroids much faster than can be done from the ground alone,” said Alan Hildebrand of the University of Calgary. “Its most exciting result, however, will probably be discovering new targets for exploration by both manned and unmanned space missions.”
SARAL will be monitoring climate on Earth; CanX-3 BRITE (BRIght Target Explorer) is billed as the smallest astronomical telescope looking for faint objects; Sapphire is a military satellite that will keep track of objects orbiting between 3,800 and 25,000 miles (6,000 and 40,000 kilometers) from Earth; TUGSat-1 BRITE from Austria will monitor changes in brightness in stars; AAUSat 3 from Denmark will moniter ship traffic on Earth’s oceans, and STRaND-1 is a nanosatellite carrying a smartphone, has unique “screaming in space” experiment.