There’s a panoramic window on the International Space Station named after the observation decks that old-time train cabooses had.
The Cupola, as it’s known, includes six side windows and a big one in the center. An astronaut floating nearby can see 1,000 km of Earth below him or her. It’s the ultimate spot to keep an eye on a hurricane, or provide guidance to a crewmate wrestling the robotic Canadarm2 towards an incoming spacecraft.
Hard to believe it’s been three years since the astronauts on STS-130 installed it in February 2010. Below, check out the best of astronaut photography of or from the Cupola since that time.
There have also been some stunning filmed timelapses from the Cupola, such as this one:
Created by the MESSENGER mission team at the Johns Hopkins University Applied Physics Laboratory and the Carnegie Institution of Washington, this animation gives us a look at the spinning globe of Mercury, its surface color-coded to reflect variations in surface material reflectance.
Thousands of Wide Angle Camera images of Mercury’s surface were stitched together to create the full-planet views.
While the vibrant colors don’t accurately portray Mercury as our eyes would see it, they are valuable to scientists as they highlight the many different types of materials that make up the planet’s surface. Young crater rays surrounding fresh impact craters appear light blue or white. Medium- and dark-blue “low-reflectance material” (LRM) areas are thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. Small orange spots are materials deposited by explosive volcanic eruptions.
At this point, over 99% of the Solar System’s innermost planet has been mapped by MESSENGER. Read more about the ongoing mission here.
Image/video credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Stretching across three light years of space and located about 3,000 light years away in the direction of the constellation of Musca, an incredible and rather understudied planetary nebula awaits a new hand to bring out new light. While most planetary nebula have a rather normal, bloated star look, NGC 5189 shows an extraordinary amount of loops and curls not normally seen in objects of its type. Just what is going on here?
This incredibly detailed image comes from the one and only Robert Gendler and was assembled from three separate data sources. The detail for the nebula is from Hubble Space Telescope data, the background starfield from the Gemini Observatory/AURA and the color data from his own equipment. Here we see fanciful gas clouds with thick clumps decorating them. Intense radiation and gas streams from the central dying star in waves, fashioning out hollows and caves in the enveloping clouds. While these clumps in the clouds may appear as wispy details, each serves as a reminder of just how vast space can be… for each an every one of them is about the same size as our Solar System.
“The complex morphology of this PN is puzzling and has not been studied in detailed so far. Our investigation reveals the presence of a new dense and cold infrared torus (alongside the optical one) which probably generated one of the two optically seen bipolar outflows and which might be responsible for the twisted appearance of the optical torus via an interaction process.” says L. Sabin (et al). ” The high-resolution MES-AAT spectra clearly show the presence of filamentary and knotty structures as well as three expanding bubbles. Our findings therefore suggest that NGC 5189 is a quadrupolar nebula with multiple sets of symmetrical condensations in which the interaction of outflows has determined its complex morphology.”
And just as incredibly large as some things can be – others can be as small. At the heart of NGC 5189 shines the tiny light of its central star… no bigger than Earth. It wobbles its way through time, rotating rapidly and spewing material into space like a runaway fire hydrant. Astronomers speculate there might be a binary star hidden inside, since usually planetary nebulae of this type have them. However, only one star has been found at the nebula’s center and it might be one very big, very bad wolf.
“Around 15% are known or suspected binaries, while the remaining 18% are non-emission line nuclei which require further study. Selecting for LIS (low ionization structures) therefore will give a mix of mostly binary and emission line nuclei which will require further observations to separate.” explains B. Miszalski (et al). “Almost all the [WR] CSPN in the sample belong to the hot [WO] type that have more extreme and chaotic LIS covering their entire nebulae, presumably due to turbulence from the strong [WR] winds disrupting pre-existing LIS.”
Just why is this celestial tapestry so complicated and complex? The answer isn’t a simple one – it’s one that has many plausible theories. We know that when a star similar to the Sun expends its fuel, it will begin to shed its outer layers… layers which normally take on very basic shape. These “normal” shapes are usually a sphere, sometimes a double lobe and at times it can be a ring or helix. However, NGC 5189 just doesn’t follow rules. Over time, researchers have speculated it has given off different outlfows at different stages – one prominent as a very visible torus situated around mid-point in the structure – consistent with the theory of a binary star system with a precessing symmetry axis. Still, there is clearly more research needed.
“Our preliminary results of a comparative spectroscopic study of these two objects shows that the chemical composition of the two nebulae is completely different, even though their morphology is most probably quite similar.” says VF Polcaro (et al). ” In addition, the PN appears much more chemically homogeneous. These features are clearly associated with the evolutionary paths of the stars.”
“The striking broad emission line spectroscopic appearance of Wolf-Rayet (WR) stars has long defied analysis, due to the extreme physical conditions within their line and continuum forming regions.” explains Paul Crowther. “Theoretical and observational evidence that WR winds depend on metallicity is presented, with implications for evolutionary models, ionizing fluxes, and the role of WR stars within the context of core-collapse supernovae and long-duration gamma ray bursts.”
Is NGC 5189 the handiwork of a binary star? Or is it the product of an intensely hot Wolf-Rayet? Like the proverbial Tootsie Pop equation… the world may never know.
Many thanks to Robert Gendler for sharing this incredible image with us.
As reported here on Universe Today last week, the SETI Institute has invited the public to vote on the names of Pluto’s 4th and 5th moons. Discovered in 2011 and 2012 respectively, researcher and co-discoverer Mark Showalter will take these names before the International Astronomical Union (IAU) after voting closes on February 25th, 2013.
But days after the polling opened, a curious twist in the tale occurred that Star Trek’s Mr. Spock would only describe as “Fascinating.”
William Shatner, James T. Kirk himself, proposed the name Vulcan for one of Pluto’s unnamed moons. Fans and Trekkies worldwide rallied, and as of writing this, Vulcan enjoys a comfortable lead over Cerberus and Styx which are vying for the 2nd place position.
This astronomical horse-race has the propensity to get interesting. In order to be considered, the IAU’s naming convention simply states “Those that share Pluto’s orbital rhythm take the name of underworld deities,” And the named moons of Charon, Nix & Hydra all follow this convention. Shatner’s case for Vulcan does cite the god as “The nephew of Pluto” in Roman mythology, but anyone who had studied Roman and Greek mythos knows that familial relations can be proven between nearly any given god and/or goddess.
Interestingly, Showalter turned down Shatner’s second Star Trek/mythological suggestion of Romulus, citing that Romulus and Remus are already the names of the moons of asteroid 87 Silvia. While the “double naming” of objects in the solar system isn’t unheard of, it may be a definite strike against a proposal. Cerberus, Orpheus, Hypnos & Persephone are all names in the running that are all also assigned to asteroids.
On February 14th, researchers “Opened up the Gates of Hell” a bit further and took more mythological nominations into the running, adding Elysium, Hecate, Melinoe, Orthrus, Sisyphus, Tantalus, Tartarus and Thantos into the fray. You can write-in candidates such as “Donald,” & “Goofy,” but these stand a proverbial snowball’s chance in Hades of being accepted. Perhaps the backing of a starship captain would help, if Adama or Han Solo were available for hire…
Still, one wonders if the name Vulcan will make it past the gate-keepers at the IAU. The IAU has sparked controversy surrounding Pluto before, in its 2006 decision that angered 5th graders everywhere when they demoted Pluto to dwarf planet status. No solar system body currently holds the name of Vulcan, although one hypothetical one once did; the tiny fleeting world that was once thought to be interior to Mercury’s orbit. Several astronomers even claimed to witness transits of the fleeting world across the face of the Sun, and up until the late 19th century, you could still find Vulcan in many astronomy texts. While the idea of Vulcan as a planet interior to Mercury is out (think of how many telescopes, both amateur and professional, now continuously monitor the Sun daily) it’s not out of the question that a small group of asteroids less than 10 kilometres in size tentatively dubbed “Vulcanoids” may still inhabit the space interior to Mercury.
But if nothing else, the poll is a fun exercise to watch as astronomy fans worldwide delve into mythological lore and dig out the names of obscure gods and goddesses. A similar debate on mythological merits swirled around the naming of the moon of dwarf planet Orcus, ultimately named Vanth in 2009.
While only two names will be selected for P4 & P5, the other denizens of the underworld may just get their day in July 2015 when NASA’s New Horizons spacecraft gives us the first close up look at Pluto and friends. Previous “first flybys” of other planets and asteroids have turned up new moons before, and Pluto may be no different.
“The discovery of so many small moons indirectly tells us that there must be lots of small particles lurking unseen in the Pluto system,” stated Harold Weaver of the Johns Hopkins University of Applied Physics Laboratory. Such debris will be a definite concern as scientists seek to thread the spacecraft’s trajectory past Pluto and its moons.
Discovered 83 years ago to the day on February 18th, 1930 by American astronomer Clyde Tombaugh, Pluto remains an uncharted corner of the solar system. Mr. Tombaugh passed away on January 17th, 1997, and an ounce of his ashes are aboard the New Horizons spacecraft which, along with the Pioneer 10 & 11 and Voyager 1 & 2 spacecraft, are escaping the solar system to wander along the galactic plane.
I’ve also got a proposal out in the running. By naming one of Pluto’s moons Alecto, we would honor Clyde with the inclusion of his initials “CT” on a moon. There is precedent for such a clever tribute before; James Christy honored his wife Charlene in the naming of Pluto’s large moon Charon and Mike Brown paid homage to his wife Diane by naming Eris’s moon Dysnomia.
Whatever happens, it’ll be interesting to see what transpires in the final names of P4/P5 are selected. Hopefully it won’t end in a showdown pitting Trekkies against the IAU… but don’t forget, the Trekkies did keep a television series on the air and got a space shuttle re-named!
Just as anticipated, on Friday, Feb. 15, asteroid 2012 DA14 passed us by, zipping 27,000 kilometers (17,000 miles) above Earth’s surface — well within the ring of geostationary weather and communications satellites that ring our world. Traveling a breakneck 28,100 km/hr (that’s nearly five miles a second!) the 50-meter space rock was a fast-moving target for professional and amateur observers alike. And even as it was heading away from Earth DA14 was captured on camera by a team led by MIT researcher Dr. Nicholas Moskovitz using the 2.1-meter telescope at the Kitt Peak National Observatory in Tucson, AZ. The team’s images are shown above as an animated gif (you may need to click the image to play it.)
This object’s close pass, coupled with the completely unexpected appearance of a remarkably large meteor in the skies over Chelyabinsk, Russia on the morning of the same day, highlight the need for continued research of near-Earth objects (NEOs) — since there are plenty more out there where these came from.
“Flybys like this, particularly for objects smaller than 2012 DA14, are not uncommon. This one was special because we knew about it well in advance so that observations could be planned to look at how asteroids are effected by the Earth’s gravity when they come so close.”
– Dr. Nicholas Moskovitz, MIT
The animation shows 2012 DA14 passing inside the Little Dipper, crossing an area about a third the size of the full Moon in 45 minutes. North is to the left.
(For a high-resolution version of the animation, click here.)
According to the National Optical Astronomy Observatory, which operates the Kitt Peak Observatory, Dr. Moskovitz’ NSF-supported team “are analyzing their data to measure any changes in the rotation rate of the asteroid after its close encounter with the Earth. Although asteroids are generally too small to resolve with optical telescopes, their irregular shape causes their brightness to change as they rotate. Measuring the rotation rate of the asteroid in this way allows the team to test models that predict how the earth’s gravity can affect close-passing asteroids. This will lead to a better understanding of whether objects like 2012 DA14 are rubble piles or single solid rocks.
“This is critical to understanding the potential hazards that other asteroids could pose if they collide with the Earth.”
So just how close was DA14’s “close pass?” Well, if Earth were just a few minutes farther along in its orbit, we would likely be looking at images of its impact rather than its departure.*
Although this particular asteroid isn’t expected to approach Earth so closely at any time in the foreseeable future — at least within the next 130 years — there are lots of such Earth-crossing objects within the inner Solar System… some we’re aware of, but many that we’re not. Identifying them and knowing as many details as possible about their orbits, shapes, and compositions is key.
Even this soon after the Feb. 15 flyby observations of 2012 DA14 have provided more information on its orbit and characteristics., allowing for fine-tuning of the data on it.
According to the Goldstone Radar Observatory web page, the details on 2012 DA14 are as follows:
Semimajor axis 1.002 AU
Eccentricity 0.108
Inclination 10.4 deg
Perihelion distance 0.893 AU
Aphelion distance 1.110 AU
Absolute magnitude (H) 24.4
Diameter ~50 meters (+- a factor of two)
Rotation period ~6 h (N. Moskovitz, pers. comm.)
Pole direction unknown
Lightcurve amplitude ~1 mag (N. Moskovitz, pers. comm.)
Spectral class Ld (N. Moskovitz, pers. comm.)
Goldstone is currently conducting radar observations on the asteroid. A radar map of its surface and motion is anticipated in the near future.
Also, in an encouraging move by international leaders in the field, during the fiftieth session of the Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space, currently being held from at the United Nation Office in Vienna, near-Earth objects are on the agenda with a final report to be issued by an Action Team. Read the report PDF here.
*According to astronomer Phil Plait, while the orbits of Earth and DA14 might intersect at some point, on the 15th of February 2013 the asteroid slipped just outside of Earth’s orbit — a little over 17,000 miles shy. “It was traveling one way and the Earth another, so they could not have hit each other on this pass no matter where Earth was in its orbit,” he wrote in an email. Still, 17,000 miles is a very close call astronomically, and according to Neil deGrasse Tyson on Twitter, it “will one day hit us, like the one in Russian [sic] last night.” When? We don’t know yet. That’s why we must keep watching.
On this day 36 years ago, two astronauts aboard the space shuttle Enterprise took the ship out for its initial test flight. It landed on the back of a 747 before undertaking a series of free flights starting in June that year.
Enterprise was designed as a test ship only, and was never intended to fly in space. Instead, it was used for a series of flying and landing approach tests to see how well the shuttle maneuvered during the landing. The astronauts first flew a series of “captive” flights aboard the 747, then cut the test shuttle loose for five free flights over several weeks.
What lessons were learned and what design changes did NASA implement from the Enterprise test program? And how did Enterprise help shape the future of the space shuttle program? A few clues emerge from the program’s final evaluation report, which was released in February 1978.
– Stopping a hydrazine leak. Hydrazine was used as a fuel for the maneuvering thrusters on the space shuttle, but the chemical is toxic and shouldn’t be exposed to humans. During the first captive flight, an auxiliary power unit was turned on about 18 minutes in. That was part of the plan, but the next part wasn’t: NASA observed fuel was being used much faster than expected in the next 25 minutes. It turned out that a bellows seal in the fuel pump had failed and caused “significant hydrazine leakage” in the shuttle’s aft bay.
– Preventing brake trouble or ‘chattering’. The first indication of trouble came after the second free flight. The astronauts felt a “chattering” (low-frequency vibration) sensation during braking as they were slowing down on the runway. This 16-hertz vibration happened again during “hard” braking on Flight 3. In light of the vibration, the brake control was modified and the astronauts did not feel the vibrations on Flights 4 and 5.
– Minimizing computer vibration. Enterprise’s Computer 2 fell out of sync with its fellow computers as the shuttle separated from the 747 on Flight 1, causing several computer errors. (The other three redundant computers effectively voted the computer off the island, to use Survivor parlance, and the flight carried on.) Ground tests of similar units revealed that the solder keeping the computer attached to the shuttle cracked when subjected to a slight vibration for a long period of time. NASA modified the attachments and the computers were just fine on Flight 2.
– Astronaut training. The astronauts experienced several control problems during Enterprise’s fifth free landing, when they deployed the speed brake to compensate for a landing that was a little faster than planned. As the pilot tried to control the shuttle’s sink rate, the elevons (a control surface for pitch and roll) were elevated more than usual, causing the shuttle to gently head back into the air and roll to the right before landing again. The astronauts could not see any unusual changes in pitch because the nose of the shuttle was not visible from the cockpit. Further, the center of gravity for the pitch changes was so close to the cockpit that the astronauts could not feel the sensation. “The pilot was unaware of any problem other than that he was landing long and trying to get the vehicle on the ground near the desired touchdown spot,” the NASA report stated. Several recommendations came out of this incident, such as more simulations of landings, modifying the flight control system, and stating that speed brakes should not be used just before landing.
Bottom line, though, was NASA said the approach and landing tests accomplished all objectives. The authors of the report called for modifications to these problems and a few others, but said as soon as these situations were addressed the shuttle was performing well enough for further flights. You can read the whole report here.
Enterprise is now on display at the Intrepid Air & Space Museum in New York, but is temporarily closed to the public as the shuttle undergoes repairs from damage incurred during Hurricane Sandy.
And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.
With all this talk lately of rocks whizzing by Earth (or crashing through the atmosphere), it’s remarkable that we didn’t even know of space rocks a few centuries ago. The first asteroid, 1 Ceres, was discovered in 1801.
Dial back a few centuries, and we were still in the realm of a perfect universe with the Earth at the center. William Shakespeare’s (1564-1616) plays are full of these references. Universe Today recently stumbled across a 1964 Irish Astronomical Journal paper replete with examples.
Shakespeare was born about 20 years after Nicolaus Copernicus, whose book De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres) laid out the case for the Sun-centered solar system. It took a while for Copernicus’ theories to take hold, however.
While bearing in mind that Shakespeare often wrote about historical personages, one passage from Troilus and Cressida demonstrates an example of the characters speaking of the Sun following the other planets in circles around the Earth.
The heavens themselves, the planets, and this centre,
Observe degree, priority and place.
Insisture, course, proportion, season, form,
Office, and custom, in all line of order:
And therefore is the glorious planet Sol
In noble eminence enthroned and sphered
Amidst the other …
An Earth-centered solar system had its problems when predicting the paths of the planets. Astronomers couldn’t figure out why Mars reversed in its path in the sky, for example.
The real explanation is the Earth “catching up” and passing Mars in its orbit, but astronomers in Shakespeare’s time commonly used “epicycles” (small circles in a planet’s orbit) to explain what was going on. Shakespeare wrote about this problem in Henry VI:
Mars his true moving, even as in the heavens,
So in the earth, to this day is not known.
However, the Bard displayed a more modern understanding of the Moon’s movement around the Earth, the paper points out. The Moon’s distance varies in its orbit, a fact spoken about in Othello, although note that Shakespeare attributes madness to the moon’s movements:
It is the very error of the moon;
She comes more near the earth than she was wont
And makes men mad.
For more examples — including what Shakespeare thought about astrology — you can check out the paper here.
What happens when you give 1,000,000 particles their own gravity and spring repulsion and send them out to play? Watch the video above and find out.
This was created by David Moore, a self-taught computer programmer, aspiring physicist and student at San Diego Miramar College. It’s a custom code made with SDL/C++ and 8 days of render time. According to David there’s a bug at the end “where particles can get arbitrarily high energy… but before that it’s very physically accurate!”
It’s fascinating to watch the attraction process take place — one might envision a similar process occurring in the early Universe with the formation of the first galaxies and galactic clusters out of a hot, uniform state. Plus it’s great to see young talented minds like David’s working on such projects for fun!
Wouldn’t you love to wake up to this gorgeous view of our home planet as a big hand waves a friendly good morning ?!
Well, having survived high speed wayward Asteroids and Meteors these past few days, the human crew circling Earth aboard the International Space Station (ISS) is game to snatch a flying Space Dragon before too long.
NASA will dispatch astronaut fun to orbit in the form of the privately built SpaceX Dragon in a tad less than two weeks time that the crew will ensnare with that robotic hand from Canada and join to the ISS.
On March 1 at 10:10 AM EST, a Space Exploration Technologies (SpaceX) Falcon 9 rocket is slated to blast off topped by the Dragon cargo vehicle on what will be only the 2nd commercial resupply mission ever to the ISS.
The flight, dubbed CRS-2, will lift off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying about 1,200 pounds of vital supplies and science experiments for the six man international crew living aboard the million pound orbiting outpost.
The ISS would plummet from the sky like a flaming, exploding meteor and disintegrate without periodic and critical cargo and fueling resupply flights from the ISS partner nations.
There will be some heightened anticipation for the March 1 SpaceX launch following the premature shutdown of a 1st stage Merlin engine during the last Falcon 9 launch in 2012.
The solar powered Dragon capsule will rendezvous with the ISS a day later on March 2, when NASA astronauts Kevin Ford and Tom Marshburn will reach out with the Canadian built robotic marvel, grab the Dragon by the proverbial “tail” and attach it to the Earth-facing port of the station’s Harmony module.
The Dragon will remain docked to the ISS for about three weeks while the crew unloads all manner of supplies including food, water, clothing, spare parts and gear and new science experiments.
Then the astronauts will replace all that cargo load with numerous critical experiment samples they have stored during ongoing research activities, as well as no longer needed equipment and trash totaling about 2300 pounds, for the return trip to Earth and a Pacific Ocean splashdown set for March 25 – as things stand now.
SpaceX is under contract to NASA to deliver about 44,000 pounds of cargo to the ISS during a dozen flights over the next few years at a cost of about $1.6 Billion.
SpaceX comprises one half of NASA’s Commercial Resupply Services program to replace the cargo up mass capability the US lost following the retirement of NASA’s space shuttle orbiters in 2011.
SpaceX also won a NASA contract to develop a manned version of the Dragon capsule and aims for the first crewed test flight in about 2 to 3 years – sometime during 2015 depending on the funding available from NASA.
The US is now totally dependent on the Russians to loft American astronauts to the ISS on their Soyuz capsules for at least the next 3 to 5 years directly as a result of the shuttle shutdown.
Along with SpaceX, Orbital Sciences Corp also won a $1.9 Billion cargo resupply contract from NASA to deliver some 44,000 pounds of cargo to the ISS using the firm’s new Antares rocket and Cygnus capsule – launching 8 times from a newly constructed pad at NASA’s Wallops Island Facility in Virginia.
The maiden launch of Orbital’s Antares/Cygnus system has repeatedly been delayed – like SpaceX before them.
NASA hopes the first Antares/Cygnus demonstration test flight will now occur in March or April. However, the Antares 1st stage hot fire test scheduled for earlier this week on Feb. 13 had to be aborted at the last second due to a technical glitch caused by a low nitrogen purge pressurization.
For the SpaceX launch, NASA has invited 50 lucky social media users to apply for credentials for the March 1 launch
Watch for my upcoming SpaceX launch reports from the Kennedy Space Center and SpaceX launch facilities.