Global Temperatures Continue to Rise

This map represents global temperature anomalies averaged from 2008 through 2012. Credit: NASA Goddard Institute for Space Studies/NASA Goddard's Scientific Visualization Studio.

This week, scientists at NASA released their global climate analysis for 2012 which revealed that Earth continues to experience warmer temperatures than several decades ago. The past year was the ninth warmest year on record since 1880, continuing what appears to be a long-term global trend of rising temperatures. The ten warmest years in the 132-year record have all occurred since 1998, and the last year that was cooler than average was 1976. The hottest years on record were 2010 and 2005.

The analysis was done by NASA’s Goddard Institute for Space Studies (GISS) which monitors global surface temperatures on an ongoing basis, comparing temperatures around the globe to the average global temperature from the mid-20th century.

In 2012, the average temperature was about 14.6 degrees Celsius (58.3 degrees Fahrenheit). This is .55 degrees C (1.0 degree F) warmer than the mid-20th century baseline, with the global average temperature having risen about 0.8 degrees C (1.4 degrees F) since 1880. The majority of that change has occurred in the past forty years.

Additionally, last week the US National Climatic Data Center (NCDC) released their latest climate report from 2012 and found that it was the warmest year ever recorded in the contiguous United States. The average temperature for the contiguous United States for 2012 was 13 degrees C (55.3 degrees F) which was 3.2°F above the 20th century average.

The map depicts temperature anomalies, or changes, by region in 2012; while the line plot above shows yearly temperature anomalies from 1880 to 2011 as recorded by NASA GISS, the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center, the Japanese Meteorological Agency, and the Met Office Hadley Centre in the United Kingdom. NASA Goddard Institute for Space Studies.
The map depicts temperature anomalies, or changes, by region in 2012; while the line plot above shows yearly temperature anomalies from 1880 to 2011 as recorded by NASA GISS, the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center, the Japanese Meteorological Agency, and the Met Office Hadley Centre in the United Kingdom. NASA Goddard Institute for Space Studies.

The data was gathered by NASA GISS, the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center, the Japanese Meteorological Agency, and the Met Office Hadley Centre in the United Kingdom. All four institutions tally temperature data from stations around the world and make independent judgments about whether the year was warm or cool compared to other years. Though there are minor variations from year to year, all four records show peaks and valleys in sync with each other. All show rapid warming in the past few decades, and all show the last decade as the warmest.

Scientists emphasize that weather patterns cause fluctuations in average temperatures from year to year, but the continued increase in greenhouse gas levels in the atmosphere assures that there will be a long-term rise in global temperatures. Each individual year will not necessarily be warmer than the previous year, but scientists expect each decade to be warmer than the previous decade.

“One more year of numbers isn’t in itself significant,” GISS climatologist Gavin Schmidt said. “What matters is this decade is warmer than the last decade, and that decade was warmer than the decade before. The planet is warming. The reason it’s warming is because we are pumping increasing amounts of carbon dioxide into the atmosphere.”

See an interactive global temperature map from New Scientist.

Carbon dioxide traps heat and largely controls Earth’s climate. It occurs naturally but is also released by the burning of fossil fuels for energy. The level of carbon dioxide in Earth’s atmosphere has been rising consistently for decades, largely driven by increasing man-made emissions. The carbon dioxide level in the atmosphere was about 285 parts per million in 1880, the first year of the GISS temperature record. By 1960, the atmospheric carbon dioxide concentration, measured at NOAA’s Mauna Loa Observatory, was about 315 parts per million. Today, that measurement exceeds 390 parts per million.

The continental U.S. endured its warmest year on record by far, according to NOAA, the official keeper of U.S. weather records. NOAA also announced that global temperatures were 10th warmest on record by their analysis methods.

“The U.S. temperatures in the summer of 2012 are an example of a new trend of outlying seasonal extremes that are warmer than the hottest seasonal temperatures of the mid-20th century,” NASA GISS director James E. Hansen said. “The climate dice are now loaded. Some seasons still will be cooler than the long-term average, but the perceptive person should notice that the frequency of unusually warm extremes is increasing. It is the extremes that have the most impact on people and other life on the planet.”

For more explanation of how the analysis works, read World of Change: Global Temperatures (pdf).

Sources: NASA, NASA’s Earth Observatory

NASA to BEAM Up Inflatable Space Station Module

NASA Deputy Administrator Lori Garver and President and founder of Bigelow Aerospace Robert Bigelow talk while standing next to the Bigelow Expandable Activity Module (BEAM) during a media briefing on , Jan. 16, 2013. BEAM is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. Photo Credit: (NASA/Bill Ingalls)

More details have emerged on NASA’s plan to add the first commercial module to the International Space Station, an inflatable room built by Bigelow Aerospace. The Bigelow Expandable Activity Module (BEAM), which is scheduled to arrive at the space station in 2015 for a two-year technology demonstration. It will be delivered by another commercial company, SpaceX, on what is planned to be the eighth cargo resupply mission too the ISS for Dragon and the Falcon 9 rocket. Astronauts will use the station’s robotic arm to install the module on the aft port of the Tranquility node. NASA Deputy Administrator Lori Garver announced Wednesday NASA has awarded a $17.8 million contract to Bigelow Aerospace for BEAM.

“Today we’re demonstrating progress on a technology that will advance important long-duration human spaceflight goals,” Garver said. “NASA’s partnership with Bigelow opens a new chapter in our continuing work to bring the innovation of industry to space, heralding cutting-edge technology that can allow humans to thrive in space safely and affordably.”

BEAM is a cylindrical module, like all other ISS modules, and is about somewhat similar in size to the US Harmony module, as BEAM is about 4 meters (13 feet) long and 3.2 meters (10.5 feet) wide; Harmony 7.2 meters (24 ft) in length, and it has a diameter of 4.4 meters (14 ft). But weight is where the two vastly differ: Harmony weighs in 14,288 kilograms (31,500 lb), while BEAM weighs roughly 1,360 kg (3,000 pounds). And that is the big advantage of inflatable structures for use in space: their mass and volume are relatively small when launched, reducing launch costs.

The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls
The Bigelow Expandable Activity Module (BEAM) is seen during a media briefing on January 16, 2013. Credit: NASA/Bill Ingalls

Leonard David reports on Space.com that the BEAM module should be much quieter than the other modules due to the non-metallic nature of the structure.

Read: Sounds of the Space Station

After the module is berthed to the Tranquility node, the station crew will activate a pressurization system to expand the structure to its full size using air stored within the packed module.

During the two-year test period, station crew members and ground-based engineers will gather performance data on the module, including its structural integrity and leak rate. An assortment of instruments embedded within module also will provide important insights on its response to the space environment. This includes radiation and temperature changes compared with traditional aluminum modules.

BEAM will also be assessed for future habitats for long-duration space missions, said Bill Gerstenmaier, associate administrator for human exploration and operations at NASA.

Watch how the BEAM module will be attached and inflated:

Astronauts periodically will enter the module to gather performance data and perform inspections. Following the test period, the module will be jettisoned from the station, and will burn up on re-entry.

Bigelow Aerospace says the BEAM 330 module can function as an independent space station, or several of the inflatable habitats can be connected together in a modular fashion to create an even larger and more capable orbital space complex.

Bigelow also lists their radiation shielding as equivalent to or better than the other modules on the International Space Station and substantially reduces the dangerous impact of secondary radiation, while their innovative Micrometeorite and Orbital Debris Shield “provides protection superior to that of the traditional ‘aluminum can’ designs, according to the Bigelow Aerospace website.

The BEAM module docked at the International Space Station. Credit: NASA.
The BEAM module docked at the International Space Station. Credit: NASA.

Find out how Bigelow Aerospace's BEAM expandable module will enhance the living area of the International Space Station, in this SPACE.com infographic.
Source SPACE.com.

Sounds of the Space Station

Canadian Space Agency astronaut Chris Hadfield uses a camera to photograph the topography of a point on Earth from a window in the Cupola of the International Space Station. Credit: NASA

CSA astronaut Chris Hadfield strums some chords in the cupola (NASA)

You’ve probably seen plenty of photos of astronauts and cosmonauts working aboard the International Space Station, and maybe even some videos of ISS briefings and interviews and tours throughout the different modules (and perhaps even an astronaut-produced song or two.) But have you ever wondered what the average, everyday sounds inside Station are like?

If so, Canadian astronaut and Expedition 34 flight engineer Chris Hadfield has an earful for you.

To share his ISS experience past mere pixels, Hadfield has posted some recordings on Soundcloud taken from various locations around Station, giving an idea of the many ambient noises found inside humanity’s orbiting “place in space.” (But if you think it sounds anything like the bridge of the U.S.S. Enterprise, you may be in for a surprise.)

iss034e010603Here’s just a few of the recordings Hadfield has posted (you’ll have to click each to play in Soundcloud):

Ambient Noise of the Space Station

Station Noises and Sounds

Russian Segment Handrails

Soyuz Orbital Module

And here’s one that really doesn’t sound like anything on Earth: Toilet Starting on Station

So even though life on the ISS might not sound like what you’d first imagine in a spaceship or have a dramatic score to accompany its soaring adventures around the world, it certainly has a unique sound all its own (and sometimes the astronauts do get to add their own original soundtrack too.)

Space Folk

Chris may have founded a new music genre: “Space Folk”

Listen to more sounds of the Station on Chris Hadfield’s Soundcloud page here.

Inset image: Chris Hadfield poses with a Materials Science Laboratory Furnace Launch Support Structure (FLSS) in the Destiny laboratory of the International Space Station. NASA astronaut Tom Marshburn, flight engineer, uses a computer in the background.

Curiosity’s Rambling Tracks Visible from Mars Orbit

Tracks from the Curiosity rover were imaged by the HiRISE camera on the Mars Reconnaissance Orbiter on January 2, 2012. Credit: NASA/JPL/University of Arizona.

Look closely and see where the Curiosity rover has been roving about inside Gale Crater on Mars, from “Bradbury Landing” to its current location in “Yellowknife Bay.” This shot was taken by the HiRISE camera on board the Mars Reconnaissance Orbiter on January 2, 2013.

“This image shows the entire distance traveled from the landing site (dark smudge at left) to its location as of 2 January 2013 (the rover is bright feature at right),” wrote HiRISE principal investigator Alfred McEwen on the HiRISE website. “The tracks are not seen where the rover has recently driven over the lighter-toned surface, which may be more indurated [hardened] than the darker soil.”

You can compare this image to one taken on September 8, 2012 to see how much the rover has driven in Gale Crater:

Curiosity rover tracks seen from orbit by HiRISE on September 8, 2012. Credit: NASA/JPL/University of Arizona.
Curiosity rover tracks seen from orbit by HiRISE on September 8, 2012. Credit: NASA/JPL/University of Arizona.

And here’s a map of Curiosity’s travels that NASA released yesterday:

This image maps the traverse of NASA's Mars rover Curiosity from "Bradbury Landing" to "Yellowknife Bay," with an inset documenting a change in the ground's thermal properties with arrival at a different type of terrain. Image credit: NASA/JPL-Caltech/Univ. of Arizona/CAB(CSIC-INTA)/FMI.

Mission scientists said at a briefing yesterday (January 15, 2013) that between Sol (Martian day) 120 and Sol 121 of the mission — which equates to Dec. 7 and Dec. 8, 2012 — Curiosity crossed over a terrain boundary into lighter-toned rocks that correspond to high thermal inertia values observed by NASA’s Mars Odyssey orbiter. The green dashed line marks the boundary between the terrain types.

The inset graphs the range in ground temperature recorded each day by the Rover Environmental Monitoring Station (REMS) on Curiosity. Note that the arrival onto the lighter-toned terrain corresponds with an abrupt shift in the range of daily ground temperatures to a consistently smaller spread in values. This independently signals the same transition seen from orbit, and marks the arrival at well-exposed, stratified bedrock.

Sol 124 (Dec. 11, 2012) marked the arrival into an area called “Yellowknife Bay,” where sulfate-filled veins and concretions were discovered, along with much finer-grained sediments providing evidence of past water interacting with the surface.

Here’s the Mars weather report provided by REMS for Sol 158 (January 15, 2013):

Daily Weather Report
Image credit: NASA/JPL-Caltech.
Daily Weather Report. Image credit: NASA/JPL-Caltech.

A video showing the new HiRISE image of Curiosity’s tracks:

Space Station Gets a New Telescope

Canadian astronaut Chris Hadfield with the new ISERV (International Space Station SERVIR Environmental Research and Visualization System), a modified Celestron telescope for Earth observation. Credit: NASA/CSA

Astronauts on the International Space Station today are installing a new modified Celestron telescope. This won’t be used to observe the stars, but instead look back to Earth to acquire imagery of specific areas of the world for disaster analysis and environmental studies. Called ISERV (International Space Station SERVIR Environmental Research and Visualization System), it is a new remote-controlled imaging system.

“Essentially, it will be pointed out of one of the windows of the Space Station, and used for Earth imaging,” Andrea Tabor, social media coordinator for Celestron told Universe Today, “especially for natural disasters and to help countries that may not have their own Earth-observing satellites to help assess damage and assist with evacuations.”

ISERV will be installed in the Window Observational Research Facility (WORF) in the station’s Destiny laboratory.

The Celestron CPC 925, is a 9.25″ diffraction limited Schmidt-Cassegrain telescope and off-the-shelf sells for $2,500 including the mount, (just the 9.25 inch optical tube sells for $1,479). It was modified at the Marshall Space Flight Center.

“They used the fork mount that comes with it,” Tabor said, “but they just removed the tripod and replaced it with a specialized mount to anchor and stabilize it on the ISS.”

Because it is pointed out of a window and because the ISS is moving so fast, it would be difficult to align it with the sky and do any celestial imaging, Tabor said.

ISERV is the first of what is hoped to be a series of space station Earth-observing instruments, each to feature progressively more capable sensors to help scientists gain operational experience and expertise, as well as help design better systems in the future. Scientists envision that future sensors could be mounted on the exterior of the station for a clearer, wider view of Earth.

It arrived on the ISS in July of 2012 on board the Japanese HTV-3.

“It’s been up there sitting in a box, so today was unboxing and assembly day,” Tabor said. She added that they hope to post some of the first images from the telescope on their Twitter and Facebook pages.

The telescope will normally be operated by remote-controlled from Earth and so the astronauts won’t likely be working with it directly except for assessing its operation or troubleshooting any problems.

“Images captured from ISERV on the ISS could provide valuable information back here on Earth,” said Dan Irwin, SERVIR program director at Marshall. “We hope it will provide new data and information from space related to natural disasters, environmental crises and the increased effects of climate variability on human populations.”

Image via @Cmdr_Hadfield on Twitter

Dark Nebula Hides Star Birth

A new image from ESO shows a dark cloud where new stars are forming along with a cluster of brilliant stars that have already emerged from their dusty stellar nursery. Credit: ESO/F. Comeron.

Dark nebulas, or dark clouds in space are intriguing because they appear to be “holes” in the sky where there aren’t any stars. But they really are just blocking our view. Also called absorption nebulas, these dark, smokey clouds of gas and dust block light from the regions of space behind it. This new image from ESO shows a dark cloud called Lupus 3 along with a cluster of brilliant stars.

While the dark cloud and the bright cluster of stars appear to be very different, they are in fact closely linked. The cloud contains huge amounts of cool cosmic dust and is a nursery where new stars are being born. We likely wouldn’t be able to see the absorption nebula unless it was silhouetted against the much brighter region of space produced by the star cluster, since absorption nebulas do not create their own light.

As light from space reaches an absorption nebula it is absorbed by it and does not pass through. It is likely that the Sun formed in a similar star formation region more than four billion years ago. The stars seen here are probably less than one million years old.

Lupus 3 lies about 600 light-years from Earth in the constellation of Scorpius. The dark section shown here is about five light-years across.

The new picture was taken with the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile and is the best image ever taken in visible light of this little-known object.

Source: ESO

New South Pole Marker Honors Planets, Pluto, and Armstrong

The new geographic South Pole marker that stands at 90º S latitude. (Credit: Jeffrey Donenfeld)

Because the Amundsen-Scott South Pole Station sits atop a layer of moving ice almost 2 miles thick, the location of the marker for the Earth’s geographic South Pole needs to be relocated regularly. Tradition has this done on New Year’s Day, and so this past January 1 saw the unveiling of the newest South Pole marker: a beautiful brass-and-copper design created by Station machinist Derek Aboltins.

pole-marker-top-closeup-1The top of the marker has seven small discs that represent the planets in the positions they would be in on Jan. 1, 2013, as well as two larger discs representing the setting Sun and Moon. Next to the Moon disc are the engraved words “Accomplishment & Modesty,” a nod to the first man on the Moon.

“This was a reference to honor Neil Armstrong, as he passed away when I was making this section with the moon,” Aboltins said.

And for folks who might think the planet count on the new marker is one too few, a surprise has been tucked away on the reverse side.

“For those of you who still think Pluto should be a planet, you’ll find it included underneath, just to keep everyone happy,” Aboltins said. “Bring back Pluto, I say!”

And so, on the underside of the marker along with the signatures of South Pole Station researchers and workers, is one more disc — just for the distant “demoted” dwarf planet.

pole-marker-underside

Underside of the South Pole marker (Credit: Jeffrey Donenfeld)

“For those of you who still think Pluto should be a planet, you’ll find it included underneath, just to keep everyone happy!”

– Derek Aboltins, designer and machinist

(See high resolution versions of these images here.)

The marker was placed during a ceremony on the ice on Jan. 1, during which time the previous flag marker was removed and put into its new position.

8375171352_5f2b446640_b

(Photo credit: Jeffrey Donenfeld)

According to The Antarctic Sun:

“Almost all hands were present for the ceremony, including station manager Bill Coughran, winter site manager Weeks Heist, and National Science Foundation representative Vladimir Papitashvili. The weather was sunny and a warm at just below minus 14 degrees Fahrenheit.”

(Even though it’s mid-summer in Antarctica, “warm” is clearly a relative term!)

Read more about this and other Antarctic news on The Antarctic Sun site, and see more photos from Antarctica by Jeffrey Donenfeld here.

_____________________

Named for explorers Roald Amundsen and Robert F. Scott, who attained the South Pole in 1911 and 1912, the Amundsen-Scott South Pole Station stands at an elevation of 2,835 meters (9,306 feet) on Antarctica’s ice sheet, which is about 2,700 meters (9,000 feet) thick at that location. The station drifts with the ice sheet at about 10 meters (33 feet) each year. Research is conducted at the station in the fields of astronomy, astrophysics, glaciology, geophysics and seismology, ocean and climate systems, biology, and medicine.

About That ‘Flower’ on Mars….

A bright and interestingly shaped tiny pebble shows up among the soil on a rock, called "Gillespie Lake," which was imaged by Curiosity's Mars Hand Lens Imager on Dec. 19, 2012, the 132nd sol, or Martian day of Curiosity's mission on Mars. Credit: NASA / JPL-Caltech / MSSS.

The Curiosity rover is having a “field day” exploring the rocks in a shallow depression that scientists call ‘Yellowknife Bay,’ which is chock-full of light toned rocks. One small rock or feature – the size of a pebble or large grain of sand, actually – has caught the attention of many as it looks like a little flower. Keep in mind that this pebble is about 2 millimeters in size (a US dime coin is 1.35mm thick) so that’s really teeny tiny. But through the power of zooming in to the high resolution images of the Mars Hand Lens Imager, or MAHLI, there have been people who are convinced this is some sort of flora on Mars, or perhaps a fossil.

Initially, it was suggested that this could perhaps be a piece of plastic from the rover, similar to what was found earlier, but the MSL scientists quickly determined this was actually part of the rock.

Today, deputy principal investigator of MAHLI, Aileen Yingst of the Planetary Science Institute, told reporters that the big rock of which the flower is a part, named ‘Gillespie Lake,’ is a relatively dust free, coarse grained sandstone, with several larger grains in the matrix, “which are interesting because of their color, luster and shape,” she said, and this unusually shaped grain is lighter in color – almost opaque — which indicates it could be made of something different than the rest of the rock.

What is it?

“It could be a lot of things, but without some chemical information to back me up, I’d really hesitate to say what it is,” said Yingst. “I’m not trying to be cagey, I’m just trying to be clear that a light grain could be a lot of different things.”

But what really matters is what the team is finding out about this region, as those rounded grains provide a clue to the history of this area.

“They’ve been knocked around, they’ve been busted up,” said Yingst. “They’ve been rounded by some process.

This suggests that flowing water helped form this rock.

Yingst also stressed that this feature is not biological, “But it does indicate that you have a relatively diverse set of grains just in this one sample,” she said.

So, water in the past but no flowers on Mars.

The rover has also found water-deposited mineral veins that fill fissures in the rocks, such as in the image below.

The team will continue to study this area, and have chosen a rock on which to use the rover’s drill for the first time.

Light-toned veins in the rocks in Yellowknife Bay. Credit: NASA/JPL/Malin Space Science Systems.
Light-toned veins in the rocks in Yellowknife Bay. Credit: NASA/JPL/Malin Space Science Systems.

See more images from today’s briefing here.

A Hi-Res Mosaic of Mercury’s Crescent

A view of Mercury from MESSENGER’s October 2008 flyby (NASA / JHUAPL / Gordan Ugarkovic)

Every now and then a new gem of a color-composite appears in the Flickr photostream of Gordan Ugarkovic, and this one is the latest to materialize.

This is a view of Mercury as seen by NASA’s MESSENGER spacecraft during a flyby in October 2008. The image is a composite of twenty separate frames acquired with MESSENGER’s narrow-angle camera from distances ranging from 18,900 to 17,700 kilometers and colorized with color data from the spacecraft’s wide-angle camera. (North is to the right.)

Click the image for a closer look, and for an even bigger planet-sized version click here. Beautiful!

The images that made up this mosaic were taken two and a half years before MESSENGER entered orbit around Mercury on March 19, 2011 UT, becoming the first spacecraft ever to do so and making Mercury the final “classical” planet to be orbited by a manmade spacecraft.

Since that time MESSENGER has completed well over 1,000 orbits and taken more than 100,000 images of the first planet in the Solar System, which filled in most of our gaps in Mercury’s map and showed us many never-before-seen features of the planet’s Sun-scoured surface. And just this past year MESSENGER’s extended mission helped confirm what could be called its most important discovery of all: water ice on Mercury’s north pole.

2012_Year_Highlights-1This was even selected by Scientific American as one of the Top 5 Space Stories of 2012.

With all that’s been achieved by MESSENGER in 2011 and 2012, 2013 is looking to be an interesting year!

“We learned a great deal about Mercury over the past year,” said MESSENGER Principal Investigator Sean Solomon of Columbia University’s Lamont-Doherty Earth Observatory. “The team published three dozen scientific and technical papers and delivered more than 150 presentations at national and international meetings. New measurements continue to stream back from our spacecraft, and we can look forward with excitement to many additional discoveries in 2013.”

Follow the MESSENGER mission news here and see more of Gordan’s space images here.

Inset image: 12 Mercurial discoveries by MESSENGER in 2012. Click to review.

Absolutely Stunning 3-D View of a Cosmic Cloud

Melotte 15 via the Hubble Space Telescope.

To call Finnish astrophotographer J-P Metsävainio a magician is definitely not an exaggeration! Take a look at his latest handiwork, this amazing 3-D animation of Melotte 15 in the Heart Nebula, IC 1805.

Metsävainio has previously produced outstanding images in 3-D the usual way, with stereo pairs and anaglyphs, but his new experimental 3-D work is incredible!

He explained to Universe Today how he created this and other 3-D animations:

Melotte 15. Credit: J-P Metsävainio.
Melotte 15. Credit: J-P Metsävainio.

“My 3-D experiments are a mixture of science and an artistic impression,” he said via email. “I collect distance and other information before I do my 3-D conversion. Usually there are known stars, coursing the ionization, so I can place them at right relative distance. If I know a distance to the nebula, I can fine tune distances of the stars so, that right amount of stars are front and behind of the object.”

He uses a “rule of thumb” method for stars: brighter is closer, but if a real distance is known, he uses that. Many 3-D shapes can be figured out just by looking carefully the structures in nebula, such as dark nebulae must be at front of the emission nebulae in order to show up.

“The general structure of many star forming regions is very same,” Metsävainio explained. “In this image, there is a group of newly born young stars, as an open cluster inside of the nebula. The stellar wind from the stars is then blowing the gas away around the cluster and forming a kind of cavitation – or a hole — around it. The pillar-like formations in the nebula must point to a source of stellar wind, for the same reason.”

For just the observing alone, this image is forty-five 1,200 second exposures (that equals 15 hours!)

He compared his processing workflow to sculpting, and said the result is always an approximate reality.

“How accurate the final model is, depends how much I have known and guessed right,” he said. “The motivation to make those 3-D-studies is just to show, that objects in the images are not like paintings on the canvas but really three dimensional objects floating in the three dimensional space.”

Another reason he creates these time-intensive 3-D animations is because they are fun to do, in addition to the old adage of why we do anything: “Because I can,” he said.

“This generally adds a new dimension to my hobby as an astronomical imager — (Pun intended),” he said.

Here is a link to more of Metsävainio’s 3-D imagery and here is his portfolio website: http://astroanarchy.zenfolio.com/.

Use Red/Cyan 3-D glasses to see this great animation of the Moon.

Thanks to J-P Metsävainio for allowing us to share his images!