How Long is a Day on Mercury?

1/3 the distance from the Sun than Earth, it should be no surprise that a day on Mercury is a real scorcher with temperatures soaring over 400 ºC. But in addition to its solar proximity it also has an extremely slow rotation: a single day on Mercury is 58.6 Earth days long… and you thought your Mondays lasted forever!

To be even more precise, for every 2 Mercury years, 3 Mercury days pass — a 3:2 spin-orbit resonance, caused by the planet’s varying elliptical orbit. (This also makes for some interesting motions of the Sun in Mercury’s sky.)

To illustrate this, UK’s The Open University has published a new video in their 60 Second Adventures in Astronomy series… check it out above (and see more of their excellent and amusing animations here.)

Video: The Open University. Narrated by David Mitchell.

What’s Up in the Night Skies for January 2013?

Jane Houston Jones from JPL provides a video preview of the night skies in the first month of the new year. There will be plenty of planetary conjunctions with the Moon: Saturn, Venus, Mars and Jupiter will all be snuggling up with the Moon throughout the month. Jane also suggests using NASA’s Eyes on the Solar System to keep track of where all the different missions are throughout the solar system. If you haven’t yet checked out this amazing site, it is an interactive 3-D “universe” where you can explore the cosmos from your computer. You can fly along with almost any NASA mission, hop on an asteroid, see the entire Solar System moving in real time, or re-live the Mars Curiosity landing. But you have the option of controlling when and where you are. It’s fully addictive!

White House Petition: Could we Build the Starship Enterprise?

Could we build a version of the Starship Enterprise over the next 20 years? Credit: BuildTheEnterprise.org

Earlier this year, an engineer who goes by the name of BTE Dan proposed building a full-sized, ion-powered version of a Constitution-Class Enterprise – from the original Star Trek – saying it could be built with current technology and could be completed within 20 years. Now, BTE Dan has started a White House petition — not to build the Enterprise but to just do a feasibility study and conceptual design of the USS Enterprise interplanetary spaceship. As of this writing, the petition has 1,414 signatures of the 25,000 needed by January 21, 2013 to be considered by the Obama administration.

The petition reads:

We have within our technological reach the ability to build the 1st generation of the USS Enterprise. It ends up that this ship’s inspiring form is quite functional. This will be Earth’s first gigawatt-class interplanetary spaceship with artificial gravity. The ship can serve as a spaceship, space station, and space port all in one. In total, one thousand crew members & visitors can be on board at once. Few things could collectively inspire people on Earth more than seeing the Enterprise being built in space. And the ship could go on amazing missions, like taking the first humans to Mars while taking along a large load of base-building equipment for constructing the first permanent base there.

See the petition and sign it here.

BTE Dan told Universe Today earlier this year that what he really is hoping for is to find a segment of scientists and engineers in the space industry to take an active interest and contribute to the ideas on his website, BuildTheEnterprise.org to help move the concept forward.

“I have been getting many offers of help from engineers outside the space industry, and that’s great,” he said via email. “But also what is needed are some experienced space engineers who adopt a can-do attitude about the concept of the Gen1 Enterprise.”

BTE Dan prefers to remain anonymous at this point, and his biggest concern has been that the scientists and engineers at NASA and their space contractors were going to be hostile about the idea, as his first brush with them did not go well.

Diagram of a proposed current generation of a Starship Enterprise. Credit: BuildTheEnterprise.org

“I am an outsider poking around in their sandbox, and human nature is that people don’t like that,” he said, noting that he knows his design may have fatal flaws, but that is why he is looking for assistance.

“There is a lot of waste heat to get rid of, today’s ion propulsions engines need major advances, and perhaps stability problems will be found with the gravity wheel,” he said.

When Universe Today broke the story of the BuildTheEnterprise concept in May of this year, it went viral and BTE Dan’s website crashed under the traffic.

“I really did not expect this at all,” he said at the time. “I did not plan for this level of web traffic!” He has since made upgrades to handle more traffic.

His website is complete with conceptual designs, ship specs, a funding schedule, and almost every other imaginable detail of how the Enterprise could be built. It would be built entirely in space, have a rotating gravity section inside of the saucer, and be similar in size with the same look as the USS Enterprise that we know from Star Trek.

The White House takes petitions on many topics at the “We the People” website and will consider them if they receive 25,000 signatures. Earlier this year, a petition to build a Death Star space station by 2016 received over 32,000 signatures, but so far there has not been an official response about it from the White House.

Is This Icy “Mega” Meteorite Really From Outer Space?

Earlier today, Euronews reported an icy “mega meteorite” fall in a farmer’s field in the Hrira region of Morocco. The farmer found the chunk of supposed space ice and put it in his freezer for later investigation by scientists, who apparently confirmed that it is in fact from space.

But… really?

Continue reading “Is This Icy “Mega” Meteorite Really From Outer Space?”

Curiosity Rover Report: At Grandma’s House

MSL team member Colette Lohr, the Tactical Uplink Lead, provides the latest video update on the Curiosity rover. The rover is at a location fittingly dubbed “Grandma’s House” during the holidays, and there should be many more adventures during 2013.

Curiosity Scans ‘Yellowknife Bay’ on Sol 130. NASA’s Curiosity rover celebrated her 1st Christmas on the Red Planet at ‘Yellowknife Bay’ and is searching for her 1st rock target to drill into for a sample to analyze. She snapped this panoramic view on Dec. 17 which was stitched together from navigation camera (Navcam) images. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

“Jewel in the Night:” Original Music and Pictures from a Space Station Christmas

Canadian astronaut Chris Hadfield in the Cupola of the International Space Station. Credit: NASA/CSA

If you celebrate Christmas here on Earth, you may have a tree, stockings, and music. The crew on the International Space Station had those as well. Now in space as a member of the Expedition 34/35 crew, Canadian astronaut Chris Hadfield continues to share his experiences via social media, as he did during all of his training. Before his flight, Hadfield said he would be recording music on the ISS, and above is his first recording from the ISS, a song he wrote titled “Jewel in the Night.” Listen closely, and you can hear the slight buzz of the station’s fans in the background.

Below are pictures from the ISS crew’s holiday celebration:

“Music on High – playing Christmas carols while floating over the eastern Mediterranean. Miraculous,” Tweeted Chris Hadfield.

“Our tree is up – on the ceiling! The beauty of a weightless Christmas,” said Hadfield

“Our stockings are hung by the Node 3 hatch with care, in hope that St Nicklaus has a big red spacesuit,” said Hadfield via Twitter.

See more images and keep track of Hadfield’s mission via his Twitter and Facebook pages.

Curiosity Celebrates 1st Martian Christmas at Yellowknife Bay

Image Caption: Curiosity Scans ‘Yellowknife Bay’ on Sol 130. NASA’s Curiosity rover celebrated her 1st Christmas on the Red Planet at ‘Yellowknife Bay’ and is searching for her 1st rock target to drill into for a sample to analyze. She snapped this panoramic view on Dec. 17 which was stitched together from navigation camera (Navcam) images. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Today (Dec. 25) Curiosity celebrates her 1st Christmas on Mars at a spot called ‘Yellowknife Bay’. It’s Sol 138 and nearly 5 months since the pulse pounding landing on Aug. 6, 2012 inside Gale Crater. The robot is in excellent health.

Meanwhile her older sister Opportunity will soon celebrate an unfathomable 9 Earth years on Mars in a few short weeks on Jan. 24, 2013 – on the other side of the planet.

NASA’s Curiosity rover reached the shallow depression named ‘Yellowknife Bay’ on Sol 130 (Dec. 17, 2012) after descending about 2 feet (0.5 m) down a gentle slope inside a geologic feature dubbed ‘Glenelg’. See our panoramic mosaics from Yellowknife Bay – above and below for a context view.

The science team is searching for an interesting rock for the inaugural use of the high powered hammering drill.

According to a new report in SpaceRef, the drilling has been delayed due to concerns that frictional heating may potentially cause liquification of the rock to a gooey “Martian Honey” that could potentially clog and seriously damage the sample handling sieves and mechanisms. So the team is carefully re-evaluating the type of rock target and the drilling operation procedures before committing to the initial usage of the percussive drill located on the turret at the terminus of the robotic arm.

The team chose to drive to ‘Yellowknife Bay’ because it features a different type of geologic terrain compared to what Curiosity has driven on previously. The ‘Glenelg’ area lies at the junction of three different types of geologic terrain and is Curiosity’s first extended science destination.

Curiosity arrived at the lip of Yellowknife Bay on Sol 124 and entered the basin on Sol 125 (Dec. 12) and snapped a scouting panoramic view peering into the inviting locale. The rover is also using the APXS X-ray mineral spectrometer, ChemCam laser and MAHLI hand lens imager to gather initial science characterization data.

Curiosity peaks around Yellowknife Bay on Sol 125, Dec 12, 2012. The rover continued driving inside the basin in search of 1st rock drill target. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

So far the rover has traversed a total driving distance of some 0.43 mile (700 meters).

Most of the science and engineering team is getting a much needed break to spend time with their families after uploading 11 Sols worth of activities ahead of time to keep the robot humming during the Christmas holiday season. A skeleton crew at JPL is keeping watch to deal with any contingencies.

One of the top priorities is acquiring a high resolution 360 degree Mastcam color panorama. This will be invaluable for selection of the very 1st rock target to drill into and acquire a sample from the interior – a feat never before attempted on Mars.

“We decided to drive to a place with a good view of the outcrops surrounding Yellowknife Bay to allow good imaging of these outcrops before the holiday break,” says rover science team member Ken Herkenhoff. “As the images are returned during the break, we can use them to help decide where to perform the first drilling operation.”

The team expects to choose a drill target sometime in January 2013 after a careful selection process.

The 7 foot (2 m) long robotic arm will deliver that initial, pulverized rock sample to inlet ports on the rover deck for analysis by the high powered duo of miniaturized chemistry labs named Chemin & SAM.

Image Caption: Curiosity deploys robotic arm on Sol 129 and examines rock with APXS and MAHLI science instruments to characterize rock and soil composition. This composite mosaic was stitched from Navcam images from Sol 129 (Dec. 16) and earlier sols- and shows the location of the Chemin sample inlet port on the rover deck. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity will spend at least another month or more investigating Glenelg before setting off on the nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp.

Image caption: Scanning Mount Sharp from Yellowknife Bay on Sol 136. This photo mosaic assembled from Mastcam 100 camera images was snapped by Curiosity on Sol 136 (Dec. 23) – from her current location. It shows a portion of the layered mound called Mount Sharp, her main destination. Acquiring a 360 high resolution color panorama from Yellowknife Bay is a high priority task for the rover during the Christmas holiday season. Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer

As the Martian crow flies, the breathtaking environs of Mount Sharp are some 6 miles (10 km) away.

The mission goal is to search for habitats and determine if Mars ever could have supported microbial life in the past or present during the 2 year primary mission phase.

Ken Kremer

Image Caption: Curiosity Traverse Map, Sol 130. This map traces where Curiosity drove between landing at a site named “Bradbury Landing,” and the position reached during Sol 130 (Dec. 17, 2012) at a spot named “Yellowknife Bay” which is inside an area called “Glenelg”. The inset shows the most recent legs of the traverse in greater detail. Credit: NASA/JPL-Caltech/Univ. of Arizona

A Color View of Darling Dione

Color-composite of Dione made from raw Cassini images acquired on Dec. 23, 2012. (NASA/JPL/SSI. Composite by J. Major.)

Although made mostly of ice and rock, Saturn’s moon Dione (pronounced dee-oh-nee) does have some color to it, as seen in this color-composite made from raw images acquired by Cassini on December 23.

700 miles (1120 km) wide, Dione is covered pole-to-pole in craters and crisscrossed by long, bright regions of “wispy line” terrain — the reflective faces of sheer ice cliffs and scarps that are too steep for darker material drifting in from Saturn’s E ring to remain upon.

The composite  was assembled from raw images captured in red, green and blue visible light wavelengths by Cassini from a distance of 154,869 miles (249,238 km).

The view above looks at a region on Dione’s mid-northern hemisphere. The bright-walled crater in the center surrounded by warmer-hued terrain is named Creusa, and the long rift system next to it is Tibur Chasmata, which runs north-to-south. Dione’s north pole is to the upper left.

Dione’s heavily cratered areas are most common on its trailing hemisphere. Logically, a moon’s leading hemisphere should be the more heavily cratered, so it has been hypothesized that a relatively recent impact spun Dione around 180 degrees. The moon’s small size mean that even a modest-scale impact could have done the job.

Relative sizes of Earth, Moon and Dione (J. Major)

Dione orbits Saturn at a distance of 209,651 miles (377,400 km), closer than our Moon is to us.

See more images and news from the Cassini mission here. And for more on Dione, see some of my previous posts on Lights in the Dark.

SpaceX Grasshopper Takes Off and Lands Vertically in New 12-Story Hop

SpaceX recently released video of the latest test of their Grasshopper Vertical Take Off and Landing Vehicle, where it rose 40 meters (131 feet), hovered and landed safely on the pad using closed loop thrust vector and throttle control.

The test flight took place on December 17, 2012 at SpaceX’s rocket development facility in McGregor, Texas. The goal of Grasshopper is to eventually create a reusable first stage for SpaceX’s Falcon 9 rocket, which would be able to land safely instead of falling back into the ocean and not being usable again.

SpaceX CEO Elon Musk Tweeted that they strapped a 6-ft (2 meter) cowboy dummy to the side of the rocket “to provide a little perspective on the size of Grasshopper.”

See the pictures below:

SpaceX said the total test duration was 29 seconds. Grasshopper stands 10 stories tall and consists of a Falcon 9 rocket first stage, Merlin 1D engine, four steel landing legs with hydraulic dampers, and a steel support structure.

Cowboy dummy riding on the SpaceX Grasshopper. Via Elon Musk

“Cowboy riding the rocket no problemo,” Tweeted Elon Musk

Artist’s rendering of the SpaceX Grasshopper’s vertical landing. Credit: SpaceX

Astrophoto: Widefield, Narrowband View of the Crab Nebula by Nick Howes

Crab Nebula in a widefield, narrowband image. Credit: Nick Howes

This gorgeous shot of the Crab Nebula, or M1, by astronomer Nick Howes shows the famous nebula in a different light than the usual full spectrum views we’ve seen from the likes of the Hubble Space Telescope. Narrowband filters are designed to capture specific wavelengths of light, and since the Crab Nebula is emitting its own light rather than reflecting light from another source, it is a perfect candidate for imaging in narrow, or a limited part of the spectrum.

This nebula is the wreckage of an exploded star that emitted light which reached Earth in the year 1054. It is located 6,500 light-years away in the constellation Taurus. At the heart of an expanding gas cloud lies what is left of the original star’s core, a superdense neutron star that spins 30 times a second. With each rotation, the star swings intense beams of radiation toward Earth, creating the pulsed emission characteristic of spinning neutron stars (also known as pulsars).

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.