The Most Remote Workplace on Earth

ESA’s Proba-1 satellite imaged the French-Italian Concordia base on November 21, 2012 (ESA)

Located in one of the loneliest locations on Earth, the French-Italian Concordia station was captured on high-resolution camera by ESA’s Proba-1 microsatellite last month, showing the snow-covered base and 25 square kilometers of the virtually featureless expanse of Antarctic ice surrounding it.

A cluster of scientific research buildings situated 3233 meters above sea level in the Antarctic interior, Concordia is one of the only permanently-crewed stations on the southern continent. Around 12–15 researchers and engineers spend months — sometimes over a year —  in isolation at Concordia, where during the winter months there are no deliveries, no chance of evacuation, temperatures below -80 ºC (-112 ºF) and the next closest station is 600 km (370 miles) away. It’s like working on another planet.

And that’s precisely why they’re there.

The researchers who live and work at Concordia are there because of the station’s incredible remoteness and harsh conditions. This allows them to study not only the pristine Antarctic ice beneath their feet but also how humans behave in such an environment, where a small team must learn to work together and merely venturing outside can be a hazardous task.

It’s the next closest thing to an actual outpost on Mars, or the Moon. Even the astronauts on the ISS aren’t as far removed from the rest of the world.

(Although the night sky views from Concordia can be comparably stunning.)

Concordia Base boasts some of the clearest, darkest — and coldest — skies on Earth (ESA/IPEV/PNRA – A. Salam)

Read more: Milky Way to Concordia Base… Come In, Concordia Base…

“Boredom and monotony are the enemy,” wrote ESA-sponsored medical researcher Dr. Alex Salam, regarding his 2009 13-month stay. “The darkness has a habit of sucking the motivation out of even the hardiest. But despite the effects the darkness can have on sleep, mood and cognitive performance, there is something inherently special about the Antarctic night. The heavens present a view that many stargazers can only ever dream of. You just have to try and catch a glimpse of the stars before your eyelashes freeze together!

“Seeing the station from a distance with the Milky Way towering far above it never failed to make me feel both awe inspired and simultaneously insignificant.”

And another recent long-term resident of Concordia, Dr. Alexander Kumar, who departed the base on November 15, shared this reflection as his year-long term was approaching its end:

“Concordia has, in removing me from civilisation where sometimes it is harder to step back, enabled me to see the bigger picture, provide a unique experience and reminded me of somethings, setting a course and direction for the future… I think once you come to Antarctica, drawn to it under a spell like a seaman to a mermaid, you never can break the link you form with this raw, rugged and ruthlessly beautiful and enticing continent.”

 The Sun returns to the Antarctic plateau (ESA/IPEV/PNRA – A. Salam)

“It’s the closest thing I’ll ever have to living on another planet.”

– Dr. Alex Salam

Read more about Concordia on the newly-redesigned ESA site here.

In orbit for over 11 years, Proba-1’s unique images are used by hundreds of scientific teams worldwide. To date its main Compact High Resolution Imaging Spectrometer (CHRIS) has acquired over 20,000 environmental science images used by a total of 446 research groups in 60 countries.

Evidence for Active Hollows Formation on Mercury

MESSENGER targeted-observation image of the interior of Eminescu crater

A recent image acquired by NASA’s MESSENGER spacecraft shows the interior of Eminescu, a youngish 130-km (80 mile) wide crater just north of Mercury’s equator. Eminescu made science headlines last year with MESSENGER’s discovery of curious eroded blotches called “hollows” scattered across its interior and surrounding its central peak, and now it looks like the spacecraft may have spotted some of these strange features in their earliest stages of formation along the inner edge of the crater’s rim.

First announced in September 2011, hollows have now been identified in many areas across Mercury. They had showed up in previous images as only bright spots, but once MESSENGER established orbit in March 2011 and began its high-resolution imaging of Mercury’s surface it soon became clear that these features were something totally new.

The lack of craters within hollows indicates that they are relatively young. It was suggested that they may be the result of an ongoing process on Mercury — a suggestion supported by this recent image, acquired on November 19, 2012.

In addition to the hollows seen in the smooth central part of the crater and around the base of the central peak, there are also some small bright spots visible within the knobby terrain extending from the base of the crater wall (see detail at right). These bright spots could well be very young hollows, revealing a process in action that is, as far as we know, unique to the planet Mercury.

It’s thought that hollows are formed by the solar wind constantly blasting Mercury’s surface, scouring away deposits of volatile materials in its crust that have been left exposed by impacts.

The image above shows an area about 42 km across. Read more on the MESSENGER mission site here.

 Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

 

Five Planets Around Nearby Star Tau Ceti; One in Habitable Zone

The location of Tau Ceti in the night sky. Credit: University of Hertfordshire

Look up in the sky tonight towards the southeast in the constellation Cetus. There’s a naked-eye star named Tau Ceti that lies about 12 light-years away from Earth, and astronomers have discovered a system of at least five planets orbiting Tau Ceti, including one in the star’s habitable zone.

While the recent discovery of a Earth-sized planet around the triple star system Alpha Centauri is the closest planet that has been discovered at just 4.3 light years away, this new discovery is the closest single sun-like star that we know of to host of an entire system of planets. The five planets are estimated to have masses between two and six times the mass of the Earth, making it the lowest-mass planetary system yet detected. The planet in the habitable zone of the star has a mass around five times that of Earth, making it the smallest planet found to be orbiting in the habitable zone of any Sun-like star.

“This discovery is in keeping with our emerging view that virtually every star has planets, and that the galaxy must have many such potentially habitable Earth-sized planets,” said astronomer Steve Vogt from UC Santa Cruz, coauthor of the paper describing the discovery. “We are now beginning to understand that nature seems to overwhelmingly prefer systems that have multiple planets with orbits of less than 100 days. This is quite unlike our own solar system, where there is nothing with an orbit inside that of Mercury. So our solar system is, in some sense, a bit of a freak and not the most typical kind of system that Nature cooks up.”

An artist’s impression of the Tau Ceti system. (Image by J. Pinfield for the RoPACS network at the University of Hertfordshire.)

Tau Ceti has long been a target of both detailed astronomical study and hopeful science fiction, since it is among one of the 20 closest stars to Earth. It is also easily visible to the naked eye and can be seen from both the Northern and Southern Hemisphere. During the 1960’s, Project Ozma, led by SETI’s Frank Drake, probed Tau Ceti for signs of life by studying interstellar radio waves with the Green Bank radio telescope. Science fiction authors like Robert Heinlein, Isaac Asimov and Frank Herbert used Tau Ceti as destinations and focal points in their books.

Scientists know this star has a dusty debris disk at least 10 times more massive than our solar system’s Kuiper Belt, and it has been observed long enough that no planets larger than Jupiter have been found.

An international team of astronomers from the United Kingdom, Chile, United States, and Australia, combined more than six-thousand observations from the UCLES spectrograph on the Anglo-Australian Telescope, the HIRES spectrograph on the Keck Telescope, and reanalysis of spectra taken with the HARPS spectrograph available through the European Southern Observatory public archive.

Using new techniques, the team found a method to detect signals half the size of previous observations, greatly improving the sensitivity of searches for small planets.

“We pioneered new data modeling techniques by adding artificial signals to the data and testing our recovery of the signals with a variety of different approaches,” said lead author Mikko Tuomi of the University of Hertfordshire. “This significantly improved our noise modeling techniques and increased our ability to find low-mass planets.”

Tau Ceti e is the planet in the habitable zone, and its year is about half as long as ours. An independent study of the data from the system done by Abel Méndez at the University of Puerto Rico at Arecibo says that the fifth planet, Tau Ceti f, may also be in the habitable zone.

While over 800 planets have been discovered orbiting other worlds, planets in orbit around the nearest Sun-like stars are particularly valuable to study, the team said.

“Tau Ceti is one of our nearest cosmic neighbors and so bright that we may be able to study the atmospheres of these planets in the not-too-distant future. Planetary systems found around nearby stars close to our Sun indicate that these systems are common in our Milky Way galaxy,” said James Jenkins of Universidad de Chile, a visiting fellow at the University of Hertfordshire.

The team’s paper that has been accepted for publication in Astronomy & Astrophysics.

Read the team’s paper: Signals embedded in the radial velocity noise (pdf file) or here on arVix

Sources: University of California Santa Cruz, University of Hertfordshire

International Crew Launches to Space Station

The Soyuz TMA-07M rocket launches from the Baikonur Cosmodrome in Kazakhstan on Wednesday, Dec. 19, 2012 carrying the Expedition 34 crew to the International Space Station. Credit: NASA/Carla Cioffi

Heading off just as the Sun was setting amid frigid conditions at the Baikonur Cosmodrome in Kazakhstan, a trio of international explorers launched to space, on their way to the International Space Station. Chris Hadfield of the Canadian Space Agency, Tom Marshburn of NASA, Roman Romanenko of the Russian Federal Space Agency (Roscosmos) launched Wednesday at 12:12 UTC (7:12 a.m. EST, 6:12 p.m. Baikonur time). Their Soyuz TMA-07M performed flawlessly, and the crew is expected to dock with the Rassvet module on the Russian segment of the space station at 14:12 UTC (9:12 a.m. EST) on Friday, Dec. 21.

See the launch video below:

Temperatures were below freezing, with a windchill reported of -34 C at launch time. But as Hadfield told Universe Today, the Soyuz rocket is just as robust and one of the most reliable rockets ever. “The Soyuz launches all-weather, -40 degrees to +40 degrees,” Hadfield said. “It is rugged, built on experience, and it is not delicate. I trust it with my life.”

Hadfield, Marshburn and Romanenko will join their Expedition 34 crewmates already on board the ISS — Commander Kevin Ford and Flight Engineers Oleg Novitskiy and Evgeny Tarelkin — to bring the crew back to the standard size of six.

Two minutes into flight, the Soyuz rocket’s four liquid-fueled first stage boosters were jettisoned. Via NASA TV.

Hadfield will make history on March 15, 2013 as he will become the first Canadian astronaut to take command of the ISS.

The focus of Expedition 34/35 is scientific research, with the astronauts serving as subjects for human physiology tests, including examinations of astronaut bone loss.

While not officially decided yet, Hadfield indicated a spacewalk may be in order for him and one of his ISS crewmates to perform some needed maintenance outside the space station.

Expedition 34 NASA Flight Engineer Chris Hadfield of the Canadian Space Agency (CSA), top, NASA Flight Engineer Tom Marshburn and Soyuz Commander Roman Romanenko wave farewell from the bottom of the Soyuz rocket. Credit: (NASA/Carla Cioffi)

During their stay, the crew will be busy welcoming both a Russian Progress and ESA’s ATV cargo ships, as well as two commercial resupply missions from SpaceX and the first flight of Orbital Science’s Cygnus spacecraft.

The crew also will also be conducting a wide range of physical science, Earth observation, human research and technology demonstration investigations. Experiments will investigate how fire behaves in space, which could help improve engine fuel efficiency and fire suppression methods in space and on Earth. Other research will look at fluids that change physical properties in the presence of a magnet, which could improve bridge and building designs to better withstand earthquakes. With the help of cameras set up by the crew, students on Earth are capturing photos of our planet.

For a look at the training done by Chris Hadfield in preparation for his flight, see our series “How to Train for Long Duration Space Flight.”

“One last kiss before I go – love under glass with my wife. It’s launch morning, I slept well, feel great,” Hadfield Tweeted this morning before launch.

How To Train for a Mission to the ISS: The Soyuz

Expedition 34/35: Canadian Space Agency Flight Engineer Chris Hadfield, Soyuz Commander Roman Romanenko and Flight Engineer Tom Marshburn of NASA. The crew launches on Dec. 19, 2012 at 12:12 UTC (7:12 a.m. EST). For the second half of the mission, Hadfield will become the first Canadian commander of the International Space Station. Credit: NASA

Canadian astronaut Chris Hadfield has been sharing with us how much there is to learn and the training necessary for living on the International Space Station for five months. But astronauts and cosmonauts also have to learn how to fly on the Russian Soyuz, too, as right now, there’s no other ride to the space station.

“Soyuz is a wonderful spaceship,” Hadfield told Universe Today. “It has been refined and honed and perfected for decades, as if they took an early sculpture of something and have continuously whittled away at it to make it more and more purpose-built and improved.”

A view of Hadfield inside the Soyuz simulator. Credit: NASA

The most modern version, the TMA-M, is as good as they’ve ever made it, Hadfield said, with great modifications and improvements in avionics, sensors, computing power.

“So, it is a very capable, well-designed vehicle; a tough vehicle,” he said. “That is heartening and reassuring. It has the full ability to do almost everything on its own, but also full ability for us to take over and do almost everything manually if we need to.”

“There is an unbelievable thrill in getting into your own spaceship. This is the same hatch we’ll use on the launch pad,” Hadfield said via Twitter.

It is so robust that with just a stopwatch, the crews can bring it safely back to Earth and land within a 10-km circle of where they want to touch down.

All the training is in Russian. “Russian digital motion control theory is complex,” Hadfield said. “It took a full year of intensive one-on-one study to become ready to start flying the Soyuz.” This video shows Hadfield working in the simulator:

Hadfield said that not only does he have great respect for the Soyuz, but for the training provided by the Russian Space Agency, Roscosmos.

“They simulate it well, and they load us up to our limit of what they teach us,” he said, “getting into the very esoteric and complex things that can happen.”

For example, in full-up simulations where the crew are in the pressure suits, the trainers will do things like fill the cockpit with smoke as if there was a fire on board, so the “dashboard” can’t be seen, and the crew needs to know how to keep flying.

“Centrifuges make you dizzy while they accelerate & decelerate, & REALLY mess you up when you move your head. Otherwise OK,” Hadfield Tweeted.

In this video, Hadfield explains the Soyuz centrifuge, the largest human-rated centrifuge in the world, that puts the astronauts and cosmonauts in the same environment – G-force-wise – that they will be in during the harrowing descent when they return home, plummeting through Earth’s atmosphere and experience 4-8 times the force of Earth’s gravity.

“You need to be able to understand how that feels on your body and whether you are going to be able to work in that environment,” Hadfield said.

“Hatch to Another World – what it looks like to climb into a Soyuz spaceship. We then crawl down into our seats,” Hadfield said, via Twitter.

The Soyuz rocket is just as robust and one of the most reliable rockets ever. “The Soyuz launches all-weather, -40 degrees to +40 degrees,” Hadfield said. “It is rugged, built on experience, it is not delicate. I trust it with my life.”

“It takes these 32 engines to get these 3 humans safely above the air. And that’s just the start,” Hadfield said via Twitter.

“My Soyuz Checklists – from L to R: Launch/Entry, Malfunctions, Orbital Flight. Colour-coded for easy spaceflight,” said Hadfield via Twitter.

Hadfield talks about the Russian technology for the rocket and spaceship he will be flying in:

Hadfield’s son and daughter-in-law gave him a Soyuz-like pre-flight Christmas present:

“My first Soyuz simulator! Summer 1964, nearly 5 years old. Never too early to start training,” Hadfield shared on Twitter.

Previous articles in this series:
How to Train for Long Duration Space Flight with Chris Hadfield
How to Train for a Mission to the ISS: Medical Mayhem
How to Train for a Mission to the ISS: Eating in Space

Gorgeous New Backlit View of Saturn

NASA’s Cassini spacecraft has delivered a glorious view of Saturn, taken while the spacecraft was in Saturn’s shadow. Image credit: NASA/JPL-Caltech/Space Science Institute

The Cassini team has done it again. A new 60-image mosaic of Saturn shows a back-lit view of the giant ringed world in several wavelengths, making Saturn look like a colorful holiday ornament. In October, the Cassini spacecraft was deliberately positioned within Saturn’s shadow, and the cameras were turned toward Saturn and with the Sun behind the planet.

“Of all the many glorious images we have received from Saturn, none are more strikingly unusual than those taken from Saturn’s shadow,” said Carolyn Porco, Cassini’s imaging team lead based at the Space Science Institute in Boulder, Colorado. “They unveil a rare splendor seldom seen anywhere else in our solar system.”


“Looking back towards the Sun is a geometry referred to by planetary scientists as “high solar phase;” near the center of the target’s shadow is the highest phase possible,” the Cassini team explained. Not only does this produce a stunning image, but it is very scientifically advantageous as well, as it can reveal details about both the rings and atmosphere that cannot be seen in lower solar phase.

This is a rare view, as the last time the Cassini spacecraft was able to take a backlit view of Saturn and the rings was 2006. Also captured in this image are two of Saturn’s moons: Enceladus and Tethys. Both appear on the left side of the planet, below the rings. Enceladus is closer to the rings; Tethys is below and to the left.

The black area at the top of Saturn is the planet’s shadow on the rings.

See more info about this image here, as well as get access to really huge versions so you can enjoy it in its full splendor.

One of the Largest Astronomical Images Ever Made

The northern portion of the Cygnus Loop, as seen in an enormous new panorama from the National Optical Astronomy Observatory (NOAO) and WIYN partners

Looking for a stunning new desktop image to wrap up the year? Try this: it’s an amazing panorama of the Cygnus Loop, a supernova remnant located 1,500 light-years away in the constellation (you guessed it) Cygnus. The full-size image, acquired with the wide-field Mosaic camera on the WIYN 0.9-meter telescope at Kitt Peak, Arizona, is a staggering 600 million pixels in size — over 1.68 gigabytes — making it one of the largest astronomical images ever made!

See the full image (and links to download larger versions) below:

2000-pixel-wide version of the full Cygnus Loop panorama

The entire structure of the Cygnus Loop, the gaseous remains of a supernova that occurred 5,000 – 10,000 years ago, covers an area nearly 45 times the size of the full Moon in the sky.

In the image, hydrogen alpha, sulphur, and oxygen ions correspond to the red, green, and blue color values, respectively.

“Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”

–  Dr. Richard Cool, MMT Observatory

From the NOAO press release:

Astronomers estimate the supernova explosion that produced the nebula occurred between 5,000 to 10,000 years ago. First noted in 1784 by William Herschel, it is so large that its many parts have been catalogued as separate objects, including NGC 6992, NGC 6995 and IC 1340 along the eastern (left) side of the image, NGC 6974 and NGC 6979 near the top-center, and the Veil Nebula (NGC 6960) and Pickering’s Triangle along the western (right) edge. The bright star near the western edge of the image, known as 52 Cygnus, is not associated with the supernova.

“Often, astronomical research reduces images to dry tables of numerical information that we analyze in order to more deeply understand our universe,” said Dr. Richard Cool, astronomer at the MMT Observatory in Arizona, who originally obtained the images in 2003 while still a graduate student. “Images like this are amazing because they can remind you of the big picture and beauty that surrounds us.”

This incredible image demonstrates that even relatively small telescopes are capable of producing cutting-edge research, when equipped with modern cameras.

Got bandwidth to spare? Download the full-size 1686.5 MB TIFF image here, or find other versions on the NOAO page here.

Image Credit: T.A. Rector (University of Alaska Anchorage), Richard Cool (University of Arizona) and WIYN/NOAO/AURA/NSF. Inset image: original dome of the Kitt Peak 0.9-meter telescope. (NOAO/AURA/NSF)

Update on ‘Chasing Atlantis’ Film

Atlantis lifts off for the last time in July 2011, in this shot taken by the Chasing Atlantis team. (Melanie Godecki)

They didn’t reach their money goal, but the Chasing Atlantis team still sounds pretty pleased about the result: the independent movie-making team raised $5,610 to help with the final costs of production.

As previously reported in Universe Today, the Canadian team launched an Indiegogo campaign on Nov. 5 to raise up to $15,000 from people visiting the crowdsourcing site. Indiegogo allows teams to keep all funds donated, even if the goal is not reached.

“Thank you so much for all your support, contributions, and the belief in this film. Last night, at the conclusion of our 47-day Indiegogo campaign, we raised $5,610,” the team wrote on their official blog today (Dec. 18).

The project, which was entirely self-funded before this campaign, followed the last launch of space shuttle Atlantis in 2011. The movie will include appearances from Star Trek: The Next Generation‘s Wil Wheaton as well as Chris Hadfield, who will launch to space on Expedition 34 tomorrow. He will be the first Canadian to command the International Space Station.

The team is en route to the Canadian Space Agency’s headquarters near Montreal, Quebec today for a fresh round of interviews; the agency is hosting a Hadfield launch party tomorrow. More announcements on the film’s progress will come in the next few months.

Behold! Hubble’s Heavenly Holiday “Ornament”

Planetary nebula NGC 5189 as seen by Hubble’s Wide Field Camera 3. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

It may be just a tad too big to hang on your tree but this bright, twisted planetary nebula would make a beautiful holiday ornament… if scaled a bit down to size, of course.

(Click the image to see it in its full festive glory!)

NGC 5189 is a planetary nebula that lies 1,800 light-years away in the southern constellation Musca. The gorgeous image above, acquired by Hubble’s Wide Field Camera 3 on October 8, 2012, shows the glowing streamers of oxygen, sulfur and hydrogen that are being blown far into space from the hot star star at its heart — HD 117622 (at right.)

The expelled gas forms a double structure, with a series of central blue lobes surrounded by a twisted helix of bright streamers, called radial filaments. These filaments are the result of fast-moving material from the star impacting previously expelled, slower-moving gas, which becomes visible due to ionizing radiation.

The twisted shapes — as opposed to the circular or spherical structures found in many planetary nebulae — may be the result of an unseen binary partner to HD 117622, which over time would affect its rotational orientation.

“The likely mechanism for the formation of this planetary nebula is the existence of a binary companion to the dying star,” said scientist Kevin Volk in a Gemini Observatory article from 2006. “Over time the orbits drift due to precession and this could result in the complex curves on the opposite sides of the star.”

Read more: How Much Do Binary Stars Shape Planetary Nebulae?

The surrounding stars in the image were captured in visible and near-infrared light.

Read more on the Hubble site here, and check out a video below that zooms into the region of the sky where NGC 5189 is located:

Video credit: NASA, ESA, and G. Bacon (STScI)