Stunning Star Trails Mania

You like star trails? We’ve got star trails! One of our favorite timelapse gurus, Gavin Heffernan from Sunchaser Pictures shot this stunning footage, and as he says, no special effects of any kind are needed to create star trails: just leave your shutter open and the natural rotation of Earth takes care of the rest!

But wait… there’s more!

Have you ever compared how different star trails look in the northern hemisphere compared to the southern hemisphere?

César Cantú has:

From the northern hemisphere, stars appear to move counterclockwise around the north pole of the sky; but if you stand at any point in the earth’s southern hemisphere, the stars appear to move clockwise around the south pole of the sky. César, who mans the Chilidog Observtory, took star trail footage from Mexico and Africa and combined the two to create an incredible “Hemispheric Countersense” video. See more about it here.

Combining star trails from Mexico and Africa. Credit: César Cantú

Scene from Sunchaser Star Trails. Credit: Gavin Heffernan. Footage shot in Big Bear Lake, Joshua Tree, and also Canada. Used Canon 5D & 7D, with a 24mm/1.4 lens and a 28mm/1.8.

SUNCHASER STAR TRAILS from Sunchaser Pictures on Vimeo.

Are Venus’ Volcanoes Still Active?

Artist’s impression of an active volcano on Venus (ESA/AOES)

Incredibly dense, visually opaque and loaded with caustic sulfuric acid, Venus’ atmosphere oppresses a scorched, rocky surface baking in planet-wide 425 ºC (800 ºF) temperatures. Although volcanoes have been mapped on our neighboring planet’s surface, some scientists believe the majority of them have remained inactive — at least since the last few hundreds of thousands of years. Now, thanks to NASA’s Pioneer Venus and ESA’s Venus Express orbiters, scientists have nearly 40 years of data on Venus’ atmosphere — and therein lies evidence of much more recent large-scale volcanic activity.

The last six years of observations by Venus Express have shown a marked rise and fall of the levels of sulfur dioxide (SO2) in Venus’ atmosphere, similar to what was seen by NASA’s Pioneer Venus mission from 1978 to 1992.

These spikes in SO2 concentrations could be the result of volcanoes on the planet’s surface, proving that the planet is indeed volcanically active — but then again, they could also be due to variations in Venus’ complex circulation patterns which are governed by its rapid “super-rotating” atmosphere.

“If you see a sulphur dioxide increase in the upper atmosphere, you know that something has brought it up recently, because individual molecules are destroyed there by sunlight after just a couple of days,” said Dr. Emmanuel Marcq of Laboratoire Atmosphères in France, lead author of the paper, “Evidence for Secular Variations of SO2 above Venus’ Clouds Top,” published in the Dec. 2 edition of Nature Geoscience.

“A volcanic eruption could act like a piston to blast sulphur dioxide up to these levels, but peculiarities in the circulation of the planet that we don’t yet fully understand could also mix the gas to reproduce the same result,” added co-author Dr Jean-Loup Bertaux, Principal Investigator for the instrument on Venus Express.

The rise and fall of sulphur dioxide in the upper atmosphere of Venus over the last 40 years, expressed in units of parts per billion by volume. Credits: Data: E. Marcq et al. (Venus Express); L. Esposito et al. (earlier data); background image: ESA/AOES

Because Venus’ dense atmosphere whips around the planet at speeds of 355 km/hour (220 mph), pinpointing an exact source for the SO2 emissions is extremely difficult. Volcanoes could be the culprit, but the SO2 could also be getting churned up from lower layers by variations in long-term circulation patterns.

Read: Venus Has a Surprisingly Chilly Layer

Venus has over a million times the concentration of sulfur dioxide than Earth, where nearly all SO2 is the result of volcanic activity. But on Venus it’s been able to build up, kept stable at lower altitudes where it’s well shielded from solar radiation.

Regardless of its source any SO2 detected in Venus’ upper atmosphere must be freshly delivered, as sunlight quickly breaks it apart. The puzzle now is to discover if it’s coming from currently-active volcanoes… or something else entirely.

“By following clues left by trace gases in the atmosphere, we are uncovering the way Venus works, which could point us to the smoking gun of active volcanism,” said Håkan Svedhem, ESA’s Project Scientist for Venus Express.

Read more on the ESA release here.

Carnival of Space #278

This week’s Carnival of Space is hosted by Amy Shira Teitel at her awesome Vintage Space website.

Click here to read Carnival of Space #278

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Titan Shines in Latest Cassini Shots

Color-composite raw image of Titan’s southern hemisphere. Note the growing south polar vortex. (NASA/JPL/SSI/Jason Major)

Last Thursday, November 29, Cassini sailed past Titan for yet another close encounter, coming within 1,014 kilometers (603 miles) of the cloud-covered moon in order to investigate its thick, complex atmosphere. Cassini’s Visible and Infrared Mapping Spectrometer (VIMS), Composite Infrared Spectrometer (CIRS) and Imaging Science Subsystems (ISS) instruments were all busy acquiring data on Titan’s atmosphere and surface… here are a couple of color-composites made from raw images captured in visible light channels as well as some of the more interesting monochrome raw images. Enjoy!

The structure of Titan’s upper-level hazes, which extend ten times the height of Earth’s atmosphere. (NASA/JPL/SSI)

Cassini captured this view of Titan’s crescent during its approach, from a distance of 193,460 kilometers (NASA/JPL/SSI/Jason Major)

Cassini’s continuum filter (CB3) allows it to image Titan’s surface. The dark areas are vast fields of hydrocarbon sand dunes (NASA/JPL/SSI)

These images have not been validated or calibrated by NASA or the mission team.

Read more about the T-88 flyby here.

Vote ‘Curiosity’ as TIME Person of the Year

I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year. NASA’s new Curiosity Mars rover snapped this Head and Shoulders Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Caption – I Need You ! Vote for ‘Curiosity’ as TIME magazine Person Of The Year.
NASA’s new Curiosity Mars rover snapped this Self-Portrait on Sol 85 (Nov. 1 , 2012) as Humanity’s emissary to the Red Planet in Search of Signs of Life. Mosaic Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

You can make it happen. Vote Now ! Vote Curiosity !

Vote for ‘Curiosity’ as the Time magazine Person of the Year

Make your voice heard – Help send a message to the Feds to “Save Our Science” as the Fiscal Cliff nears and threatens our Science.

Perhaps you are a doubter. Well think again. Because at this moment NASA’s Curiosity Mars rover has thrust forward into 5th Place, inching ahead of – comedian Stephen Colbert, according to the running tally at TIME’s Person of the Year website.

NASA’s SUV-sized Curiosity Mars rover is the most powerful science robot ever dispatched as Humanity’s emissary to the surface of the Red Planet. She is searching for Signs of Life and may shed light on the ultimate questions – “Are We Alone?” – “Where do We fit In?

Curiosity is NASA’s first Astrobiology mission to Mars since the twin Viking landers of the 1970’s.

TIME’s editors are soliciting your input on worthy candidates for Person of the Year, although they will choose the ultimate winner.

You have until 11:59 p.m. on Dec. 12 to cast your vote. The winner of the people’s choice will be announced on Dec. 14. The magazine itself with the ultimate winner appears on newsstands on Dec. 21

Image caption: Curiosity trundling across Mars surface inside Gale Crater on Sol 24 (Aug. 30, 2012). Colorized mosaic stitched together from Navcam images. This panorama is featured on PBS NOVA ‘Ultimate Mars Challenge’ documentary which premiered on PBS TV on Nov. 14. Credit: NASA / JPL-Caltech / Ken Kremer / Marco Di Lorenzo

Read TIME’s statement about voting for Curiosity:

You may own a cool car — you may even own a truly great car — but it’s a cinch that no matter how fantastic it is, it can never be anything more than the second best car in the solar system. The greatest of all is the Mars Curiosity rover, one ton of SUV-size machine now 160 million miles from Earth and trundling across the Martian surface. It was the rover’s landing on Mars last August that first caught people’s eyes: an improbable operation that required a hovering mother ship to lower the rover to the surface on cables like a $2.5 billion marionette. But it’s the two years of exploration Curiosity has ahead of it — with a suite of instruments 10 times as large as any ever carried to Mars before — that will make real news. NASA built the country one sweet ride, and yes, alas, it’s sweeter than yours.

Cast your vote for Curiosity now, and avoid the long lines – before it’s too late

Ken Kremer

…..

Learn more about Curiosity’s groundbreaking discoveries and NASA missions at my upcoming pair of free presentations for the general public at two colleges in New Jersey:

Dec 6: Free Public lecture titled “Atlantis, The Premature End of America’s Shuttle Program and What’s Beyond for NASA” including Curiosity, Orion, SpaceX and more by Ken Kremer at Brookdale Community College/Monmouth Museum and STAR Astronomy club in Lincroft, NJ at 8 PM

Dec 11: Free Public lecture titled “Curiosity and the Search for Life on Mars (in 3 D)” and more by Ken Kremer at Princeton University and the Amateur Astronomers Association of Princeton (AAAP) in Princeton, NJ at 8 PM – Princeton U Campus at Peyton Hall, Astrophysics Dept.

In an Isolated, Ice-Covered Antarctic Lake Far Below Freezing, Life is Found

Lake Vida lies within one of Antarctica’s cold, arid McMurdo Dry Valleys (Photo: Desert Research Institute)

Even inside an almost completely frozen lake within Antarctica’s inland dry valleys, in dark, salt-laden and sub-freezing water full of nitrous oxide, life thrives… offering a clue at what might one day be found in similar environments elsewhere in the Solar System.


Researchers from NASA, the Desert Research Institute in Nevada, the University of Illinois at Chicago and nine other institutions have discovered colonies of bacteria living in one of the most isolated places on Earth: Antarctica’s Lake Vida, located in Victoria Valley — one of the southern continent’s incredibly arid McMurdo Dry Valleys.

These organisms seem to be thriving despite the harsh conditions. Covered by 20 meters (65 feet) of ice, the water in  Lake Vida is six times saltier than seawater and contains the highest levels of nitrous oxide ever found in a natural body of water. Sunlight doesn’t penetrate very far below the frozen surface, and due to the hypersaline conditions and pressure of the ice water temperatures can plunge to a frigid -13.5 ºC (8 ºF).

Yet even within such a seemingly inhospitable environment Lake Vida is host to a “surprisingly diverse and abundant assemblage of bacteria” existing within water channels branching through the ice, separated from the sun’s energy and isolated from exterior influences for an estimated 3,000 years.

Originally thought to be frozen solid, ground penetrating radar surveys in 1995 revealed a very salty liquid layer (a brine) underlying the lake’s year-round 20-meter-thick ice cover.

“This study provides a window into one of the most unique ecosystems on Earth,” said Dr. Alison Murray, one of the lead authors of the team’s paper, a molecular microbial ecologist and polar researcher and a member of 14 expeditions to the Southern Ocean and Antarctic continent. “Our knowledge of geochemical and microbial processes in lightless icy environments, especially at subzero temperatures, has been mostly unknown up until now. This work expands our understanding of the types of life that can survive in these isolated, cryoecosystems and how different strategies may be used to exist in such challenging environments.”

Sterile environments had to be set up within tents on Lake Vida’s surface so the researchers could be sure that the core samples they were drilling were pristine, and weren’t being contaminated with any introduced organisms.

According to a NASA press release, “geochemical analyses suggest chemical reactions between the brine and the underlying iron-rich sediments generate nitrous oxide and molecular hydrogen. The latter, in part, may provide the energy needed to support the brine’s diverse microbial life.”

“This system is probably the best analog we have for possible ecosystems in the subsurface waters of Saturn’s moon Enceladus and Jupiter’s moon Europa.”

– Chris McKay, co-author, NASA’s Ames Research Center

What’s particularly exciting is the similarity between conditions found in ice-covered Antarctic lakes and those that could be found on other worlds in our Solar System. If life could survive in Lake Vida, as harsh and isolated as it is, could it also be found beneath the icy surface of Europa, or within the (hypothesized) subsurface oceans of Enceladus? And what about the ice caps of Mars? Might there be similar channels of super-salty liquid water running through Mars’ ice, with microbes eking out an existence on iron sediments?

“It’s plausible that a life-supporting energy source exists solely from the chemical reaction between anoxic salt water and the rock,” explained Dr. Christian Fritsen, a systems microbial ecologist and Research Professor in DRI’s Division of Earth and Ecosystem Sciences and co-author of the study.

“If that’s the case,” Murray added, “this gives us an entirely new framework for thinking of how life can be supported in cryoecosystems on earth and in other icy worlds of the universe.”

Read more: Europa’s Hidden Great Lakes May Harbor Life

More research is planned to study the chemical interactions between the sediment and the brine as well as the genetic makeup of the microbial communities themselves.

The research was published this week in the Proceedings of the National Academy of Science (PNAS). Read more on the DRI press release here, and watch a video below showing highlights from the field research.

Funding for the research was supported jointly by NSF and NASA. Images courtesy the Desert Research Institute. Dry valley image credit: NASA/Landsat. Europa image: NASA/Ted Stryk.)

Vision of the Future? SLS Model “Flies” in Wind Tunnel Test

NASA’s Space Launch System buffet model in NASA’s Langley Researcher Center’s Transonic Dynamics Tunnel. Image credit: NASA/LaRC

This week, researchers tested a ten-foot-long model of the new Space Launch System, NASA’s next big thing for launching humans beyond Earth orbit. The test was conducted at the Langley Research Center’s Transonic Dynamics Tunnel (TDT).

“This is a critical milestone for the design of the vehicle,” said Langley research engineer, Dave Piatak.

Data retrieved will help prepare SLS for its first mission in 2017, Exploration Mission-1 (EM-1), which will deliver an uncrewed Orion spacecraft to lunar orbit to check out the vehicle’s systems. But before SLS’s first flight, the safety vehicle must be demonstrated through analysis and testing. An important step in ensuring a safe flight to orbit is buffet wind-tunnel testing to help determine launch vehicle structural margins.

To do this, a wind-tunnel model is put through its paces at transonic and low supersonic speeds reaching up to Mach 1.2. Testing aerodynamics at these speeds is essential to understanding the structural interaction to the flow field around the vehicle and determining loads on the flight vehicle.

360 miniature sensors on the model’s surface are scanned by a data acquisition system scanning at thirteen thousand scans-per-second. Unlike the rigid SLS buffet wind-tunnel model, the real launch vehicle is quite flexible. The rocket will bend and shake in response to forces during flight, and engineers use tests like this to determine that the resulting bending loads and vibrations are within the launch vehicle’s safe limits.

NASA engineers are now analyzing the data, and will be used to help refine the design of the SLS vehicle before the full-size rocket is built for flight tests. After completing EM-1, SLS will perform its second mission in 2021, Exploration Mission-2, launching Orion with its first crew of astronauts to demonstrate orbit around the Moon.

Source: PhysOrg

Familiar Sci-Fi Faces Pitch NASA Spinoffs

Spinoffs have never been the primary reason for space exploration, but as NASA has done things that have never been done before, space-derived products and technologies have been developed, producing some side benefits. Some of these little side benefits have ended up saving lives and changing life on Earth for the better.

NASA has recently released three new videos touting the benefits provided by various space ‘byproducts,” starring three well-known faces from sci-fi shows of the past: June “Lost in Space” Lockhart, William “Captain KirK” Shatner and Wil “Acting Ensign” Wheaton. The videos mention how science fiction has become science fact, resulting in new commercial products and services that are tangible returns on investments in space technology.

Continue reading “Familiar Sci-Fi Faces Pitch NASA Spinoffs”

Gigantic Plasma Jets Pour From the Heart of Hercules A

Combined Hubble (optical) and VLA (radio) images show enormous radio jets shooting out from the galaxy Hercules A

Combined Hubble (optical) and VLA (radio) images show enormous radio jets shooting out from the galaxy Hercules A

Talk about pouring your heart out! Astronomers using Hubble’s Wide Field Camera 3 and the recently-upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico have identified gigantic jets of plasma, subatomic particles and magnetic fields blasting out of the center of Hercules A, a massive galaxy 2 billion light-years away.

The image above is a combination of optical images from Hubble and radio data gathered by the multi-dish VLA. If our eyes could see in the high-energy spectrum of radio, this is what Hercules A — the otherwise ordinary-looking elliptical galaxy in the center — would really look like.

(Of course, if we could see in radio our entire sky would be a very optically busy place!)

Also known as 3C 348, Hercules A is incredibly massive — nearly 1,000 times the mass of our Milky Way galaxy with a similarly scaled-up version of  a supermassive black hole at its center. Due to its powerful gravity and intense magnetic field Hercules A’s monster black hole is firing superheated material far out into space from its rotational poles. Although invisible in optical light, these jets are bright in radio wavelengths and are thus revealed through VLA observations.

Traveling close to the speed of light, the jets stretch for nearly 1.5 million light-years from both sides of the galaxy. Ring-shaped structures within them suggest that occasional strong outbursts of material have occurred in the past.

Announced on November 29, these findings illustrate the combined imaging power of two of astronomy’s most valuable and cutting-edge tools: Hubble and the newly-updated VLA. The video below shows how it was all done… check it out.

Read more on the NRAO press release here.

Image credits: NASA, ESA, S. Baum and C. O’Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA). Source: NRAO.

Brown Dwarfs Might Host Planets Too

This image shows the brown dwarf ISO-Oph 102, or Rho-Oph 102, in the Rho Ophiuchi star-forming region. Its position is marked by the crosshairs. This visible-light view was created from images forming part of the Digitized Sky Survey 2. Credit: ALMA (ESO/NAOJ/NRAO)/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Brown dwarfs inhabit a kind of fuzzy line between stars and planets: their mass is seemingly too small for them to be full-fledged stars and yet they are too large to be planets. These dim stars were only discovered in 1995 but current estimates say that brown dwarfs could be as numerous as normal stars in our galaxy. Now, astronomers have found a brown dwarf that has a dusty disc encircling it, just like the discs encircling regular, young stars. It contains millimeter-sized solid grains, and around other newborn stars, these discs of cosmic dust are where planets form. Astronomers say this surprising find challenges theories of how rocky, Earth-scale planets form, and suggests that rocky planets may be even more common in the Universe than expected.

Rocky planets are thought to form through the random collision and sticking together of what are initially microscopic particles in the disc of material around a star. These tiny grains are similar to very fine soot or sand. However, in the outer regions around a brown dwarf, astronomers expected that grains could not grow because the discs were too sparse, and particles would be moving too fast to stick together after colliding. Also, prevailing theories say that any grains that manage to form should move quickly towards the central brown dwarf, disappearing from the outer parts of the disc where they could be detected.

“We were completely surprised to find millimeter-sized grains in this thin little disc,” said Luca Ricci of the California Institute of Technology, USA, who led a team of astronomers based in the United States, Europe and Chile. “Solid grains of that size shouldn’t be able to form in the cold outer regions of a disc around a brown dwarf, but it appears that they do. We can’t be sure if a whole rocky planet could develop there, or already has, but we’re seeing the first steps, so we’re going to have to change our assumptions about conditions required for solids to grow,” he said.

Artist’s impression of the disc of dust and gas around a brown dwarf. Credit: ESO

Ricci and his team used the Atacama Large Millimeter/submillimeter Array (ALMA) for their observations. Even though the telescope is not completely finished yet, ALMA’s high resolution allowed the team to pinpoint carbon monoxide gas around the brown dwarf — the first time that cold molecular gas has been detected in such a disc. This discovery, along with the millimeter-size grains, suggest that the disc is much more similar to the ones around young stars than previously expected.

ALMA, located in the high-altitude Chilean desert is a collection of high precision, dish-shaped antennas that work together as one large telescope to observe the Universe in millimeter-wavelengths, enabling observations of extreme detail and sensitivity. Construction of ALMA is scheduled to finish in 2013, but astronomers began observing with a partial array of ALMA dishes in 2011.

The astronomers pointed ALMA at the young brown dwarf ISO-Oph 102, also known as Rho-Oph 102, in the Rho Ophiuchi star-forming region in the constellation of Ophiuchus. The brown dwarf has about 60 times the mass of Jupiter but only 0.06 times that of the Sun, and so has too little mass to ignite the thermonuclear reactions by which ordinary stars shine. However, it emits heat released by its slow gravitational contraction and shines dimly with a reddish color.

The astronomers were able to determine the grains in the disc are a millimeter or more in size.

“ALMA is a powerful new tool for solving mysteries of planetary system formation,” said Leonardo Testi from ESO, a member of the research team. “Trying this with previous generation telescopes would have needed almost a month of observing — impossibly long in practice. But, using just a quarter of ALMA’s final complement of antennas, we were able to do it in less than one hour!” he said.

When ALMA is completed, the team hopes to turn the telescope again towards Rho-Oph 102 and other similar objects.
“We will soon be able to not only detect the presence of small particles in discs,” said Ricci, “but to map how they are spread across the circumstellar disc and how they interact with the gas that we’ve also detected in the disc. This will help us better understand how planets come to be.”

Read the team’s paper (pdf)

Source: ESO