In the Shadow of the Moon: Experience a Solar Eclipse From 37 Kilometers Up

The Moon’s shadow stretches over the Earth in this balloon-mounted camera view of the November 14 solar eclipse (Catalin Beldea, Marc Ulieriu, Daniel Toma et. al/Stiinta&Tehnica)

On November 14, 2012, tens of thousands of viewers across northeastern Australia got a great view of one of the most awe-inspiring sights in astronomy — a total solar eclipse. Of course many fantastic photos and videos were taken of the event, but one team of high-tech eclipse hunters from Romania went a step further — or should I say higher — and captured the event from a video camera mounted on a weather balloon soaring over 36,800 meters (120,000 feet) up!

Their video can be seen below:

During a solar eclipse the Moon passes in front of the disk of the Sun, casting its shadow upon the Earth. Any viewers within the darkest part of the shadow — the umbra — will experience a total eclipse, while those within the wider, more diffuse shadow area along the perimeter — the penumbra — will see a partial eclipse.

By launching a weather balloon carrying a wide-angle camera into the stratosphere above Queensland, eclipse hunter and amateur astronomer Catalin Beldea, ROSA research scientist Florin Mingireanu and others on the team were able to obtain their incredible video of the November 14 total eclipse from high enough up that the shadow of the Moon was visible striking Earth’s atmosphere. Totality only lasted a couple of minutes so good timing was essential… but they got the shot. Very impressive!

The mission was organized by teams from the Romanian Space Agency (ROSA) and  Stiinta&Tehnica.com, with the video assembled by Daniel Toma and posted on YouTube by editor-in-chief Marc Ulieriu. Music by Shamil Elvenheim.

Everybody Chill, NASA Says: No Martian Organics Found

Curiosity maneuvering her robotic arm and conducting a close-up examination of windblown ‘Rocknest’ sand dune. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Relax everyone. There are no little green men or even a hint of organics on Mars… not yet, anyway.

“Everybody, chill,” Tweeted the Curiosity rover today. “After careful analysis, there are no Martian organics in recent samples.”

Update: And also, the Curiosity rover did not find plastic Mardi Gras beads on Mars either. More about that below.

Rumor and speculation abounded (and yes, we admit being part of that) after an interview with Mars Science Laboratory scientist John Grotzinger indicated something “earth-shaking” could be announced soon. “This data is gonna be one for the history books. It’s looking really good,” Grotzinger was quoted by NPR.

Over a week later, NASA finally issued a statement that “speculation that there are major new findings from the mission at this early stage are incorrect,” and said that a news conference from the Fall Meeting of the American Geophysical Union (AGU) on Monday, December 3 will be an update about first use of the rover’s full array of analytical instruments to investigate a drift of sandy soil.

“One class of substances Curiosity is checking for is organic compounds — carbon-containing chemicals that can be ingredients for life. At this point in the mission, the instruments on the rover have not detected any definitive evidence of Martian organics,” the press release said.

The discussion on Twitter is that NASA perhaps didn’t do enough last week to quell the onslaught of conjecture and speculation. But most people in the US were scurrying off for the Thanksgiving holiday and perhaps didn’t notice a Tweet from the Curiosity Rover:

“What did I discover on Mars? That rumors spread fast online. My team considers this whole mission ‘one for the history books’.”

JPL’s press spokesperson Guy Webster told Universe Today’s Ken Kremer as much last week, saying “As for history books, the whole mission is for the history books. John was delighted about the quality and range of information coming in from SAM during the day a reporter happened to be sitting in John’s office last week. He has been similarly delighted by results at other points during the mission so far.”

So, while it won’t be “big” news, you may want to tune into the press conference anyway at 9 a.m. PST Monday, Dec. 3. Audio and visuals from the briefing also will be streamed online at: http://www.ustream.tv/nasajpl .

Bummed? NASA stressed today that Curiosity is less than four months into a two-year prime mission to investigate whether conditions in Mars’ Gale Crater may have been favorable for microbial life. While Curiosity is exceeding all expectations, and has already has found an ancient riverbed, there’s no earth-shaking news to report at this time.

But don’t be surprised if there are some remarkable discoveries still to come.

And about those plastic beads…

As a prank, someone put up a very convincing-looking JPL knock-off webpage saying the rover had found plastic beads on Mars, and a la The Onion, supposedly quoted real scientists. One look at the picture, however and it becomes obvious this is a fake, plus the writer puts Curiosity at Endeavour Crater, where the Opportunity rover is located. Phil Plait does his normal great job of explaining it all, so check out his post at his new home at Slate.

Fake beads on Mars. Image credit: Xevier Jenks

In the meantime, the Curiosity rover shared this cute video that also speculates a bit about what could be found on Mars:

A Colorful and Unexpected Reversal at Titan

This artist’s impression of Saturn’s moon Titan shows the change in observed atmospheric effects before, during and after equinox in 2009. The Titan globes also provide an impression of the detached haze layer that extends all around the moon (blue). This image was inspired by data from NASA’s Cassini mission. Image Credit: ESA

A certain slant, or shift, of light glinting off of Saturn’s moon Titan turns out to drive unexpected reversals in the moon’s atmosphere according to data from NASA’s Cassini spacecraft.

In a paper released in the November 28, 2012 issue of the journal Nature, scientists say in a press release that data from Cassini show evidence for sinking air where upwelling currents were seen earlier in the mission.

“Cassini’s up-close observations are likely the only ones we’ll have in our lifetime of a transition like this in action,” said Nick Teanby, the study’s lead author who is based at the University of Bristol, England, and is a Cassini team associate. “It’s extremely exciting to see such rapid changes on a body that usually changes so slowly and has a ‘year’ that is the equivalent of nearly 30 Earth years.”

Of the eight planets and dozens of moons in our solar system, just Earth, Venus, Mars and Titan have both a solid surface and a substantial atmosphere.

Cassini offers scientists a unique perspective during this change of seasons. The pole experiencing winter is typically pointed away from Earth because of its orbit around Saturn. Cassini provides scientists a platform to watch the atmosphere change over time and study the moon from angles impossible from Earth. It arrived at the ringed planet in 2004. Models of Titan’s atmosphere have predicted changes for two decades but Cassini is just now seeing new circulation patterns arise.

“Understanding Titan’s atmosphere gives us clues for understanding our own complex atmosphere,” said Scott Edgington, Cassini deputy project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “Some of the complexity in both places arises from the interplay of atmospheric circulation and chemistry.”

While scientists recently have watched the formation of haze and a vortex over Titan’s south pole, other Cassini instruments, such as the composite infrared spectrometer (CIRS), have gathered data tied more to the circulation and chemistry of Titan’s orangish atmosphere especially at higher altitudes. The CIRS instrument also reveals subtle changes in vertical winds and global circulation. The instrument shows that atmospheric circulation extends about 100 km, or 60 miles, higher than expected. This is important in explaining the orangish tint to Titan’s atmosphere. A haze layer, first detected by Voyager 1, may be a region rich in small haze particles that combine to form larger aggregates that descend deep into the atmosphere giving the moon its characteristic color.

Scientists have narrowed down the atmospheric reversal to about six months near the August 2009 equinox when the Sun was shining directly on Titan’s equator.

“Next, we would expect to see the vortex over the south pole build up,” said Mike Flasar, the CIRS principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Md. “As that happens, one question is whether the south winter pole will be the identical twin of the north winter pole, or will it have a distinct personality? The most important thing is to be able to keep watching as these changes happen.”

Second image caption: This true color image captured by NASA’S Cassini spacecraft before a distant flyby of Saturn’s moon Titan on June 27, 2012, shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere. Image Credit: NASA/JPL-Caltech/Space Science Institute

Source: NASA/Jet Propulsion Laboratory

Water Ice and Organics Found at Mercury’s North Pole

A radar image of Mercury’s north polar region is shown superposed on a mosaic of MESSENGER images of the same area. All of the larger polar deposits are located on the floors or walls of impact craters. Deposits farther from the pole are seen to be concentrated on the north-facing sides of craters. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory

Over 20 years ago, radar-bright materials were seen in the north polar region on Mercury, and since then scientists have postulated that water ice could be hiding there in permanently shadowed regions. The latest data from the MESSENGER spacecraft – now orbiting the planet closest to the Sun – confirms that Mercury indeed does hold water ice as well as organic material within permanently shadowed craters at its north pole. Scientists today said that Mercury could hold between 100 billion to 1 trillion tons of water ice at both poles, and the ice could be up to 20 meters deep in places. Additionally, intriguing dark material which covers the ice could hold other volatiles such as organics.

The MESSENGER team published three papers this week in the journal Science, which present three new lines of evidence that water ice dominates the components inside the craters on Mercury’s north pole.

“Water ice passed three challenging tests and we know of no other compound that matches the characteristics we have measured with the MESSENGER spacecraft,” said MESSENGER Principal Investigator Sean Solomon at a briefing today. “These findings reveal a very important chapter of the story of how water ice has been delivered to the inner planets by comets and water rich asteroids over time.”

MESSENGER arrived at Mercury last year and data from the spacecraft’s neutron spectrometer and laser altimeter were used to make the observations at the planet’s north pole.

A layer of water ice several meters thick is illustrated in white. Abundant hydrogen atoms within the ice stop the neutrons from escaping into space. A signature of enhanced hydrogen concentrations (and, by inference, water ice) is a decrease in the rate of MESSENGER’s detection of neutrons from the planet. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Neutron spectroscopy measures average hydrogen concentrations within Mercury’s radar-bright regions, and scientists were able to derive the water ice concentrations from the hydrogen measurements.

“The neutron data indicate that Mercury’s radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 20 centimeters thick that is less rich in hydrogen,” said David Lawrence, a MESSENGER Participating Scientist based at the Johns Hopkins University Applied Physics Laboratory and the lead author of one of the papers. “The buried layer has a hydrogen content consistent with nearly pure water ice.”

This image shows sunlight that reaches the Prokofiev crater floor and rim. The north-facing portions of the rim and interior remain in perpetual shadow, as do those of numerous other craters. Click on the image watch a movie which simulates approximately one half of a Mercury solar day (176 Earth days) and uses the digital terrain model derived from MLA measurements. Credit: NASA Goddard Space Flight Center/Massachusetts Institute of Technology/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

Data from MESSENGER’s Mercury Laser Altimeter (MLA) — which has fired more than 10 million laser pulses at Mercury to make detailed maps of the planet’s topography — corroborate the radar results and Neutron Spectrometer measurements of Mercury’s polar region. Gregory Neumann of the NASA Goddard Flight Center, lead author of the second paper said the team used topographic data to develop illumination models for Mercury north polar craters, revealing irregular dark and bright deposits at near-infrared wavelength near Mercury’s north pole.

“The real surprise is that there were dark areas surrounding bright areas that were more pervasive than radar bright areas,” said Neumann at Thursday’s briefing. “They are a blanket that protects the bright volatiles that lie underneath.”

Neumann said that impacts of comets or volatile-rich asteroids could have provided both the dark and bright deposits, a finding corroborated in a third paper led by David Paige of the University of California, Los Angeles.

Paige and his colleagues provided the first detailed models of the surface and near-surface temperatures of Mercury’s north polar regions that utilize the actual topography of Mercury’s surface measured by MLA. The measurements “show that the spatial distribution of regions of high radar backscatter is well matched by the predicted distribution of thermally stable water ice,” he said.

A map of “permafrost” on Mercury showing the calculated depths below the surface at which water ice is predicted to be thermally stable. The grey areas are regions that are too warm at all depths for stable water ice. The colored regions are sufficiently cold for subsurface ice to be stable, and the white regions are sufficiently cold exposed surface ice to be stable. The thermal model results predict the presence of surface and subsurface water ice at the same locations where they are observed by Earth-based radar and MLA observations. Credit: NASA/UCLA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

According to Paige, the dark material is likely a mix of complex organic compounds delivered to Mercury by the impacts of comets and volatile-rich asteroids, the same objects that likely delivered water to the innermost planet. The organic material may have been darkened further by exposure to the harsh radiation at Mercury’s surface, even in permanently shadowed areas.

This dark insulating material is a new and intriguing piece of the story of Mercury that MESSENGER is seeking to unravel, said Solomon, and raises questions about what types of organics could be found there. Solomon added that Mercury may now become an object of interest for astrobiology, but said in no uncertain terms that none of the scientists think there is life on Mercury. This could, however, provide information about the rise of organics on Earth.

Additionally, the scientist said there is zero chance of liquid water on Mercury, even though temperatures in some regions would be conducive to liquid water. But with no atmosphere on Mercury, water wouldn’t stick around for long. “It would be ice or vapor really fast,” said Paige.

This schematic of MESSENGER’s orbit illustrates some of the challenges to acquiring observations of Mercury’s north polar region. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Solomon said that obtaining these measurements has not been easy and has not been quick. “Even at highest latitudes reached by MESSENGER, the spacecraft must look at an oblique angle to look at the north polar regions,” he said.

During its primary orbital mission, MESSENGER was in a 12-hour orbit and was at an altitude between 244 and 640 km at the northernmost point in its trajectory. Since April 2012, MESSENGER has been in an 8-hour orbit, shown above, and it has been at an altitude between 311 and 442 km at the northernmost point in its trajectory. Even from these high-latitude vantages, Mercury’s polar deposits fill only a small portion of the field of view of many of MESSENGER’s instruments.

But despite the challenges, Solomon said, the one and a half years of MESSENGER in orbit have now yielded clear results.

See more images and videos from the briefing here.

Sources: MESSENGER, NASA

Saturn’s Strange Hexagon – In Living Color!

Color-composite Cassini image of Saturn’s northern hexagon (NASA/JPL/SSI/Jason Major)

Cassini sure has been busy these past few days! After returning some mind-blowing images of the swirling 3,000-km-wide cyclone over Saturn’s north pole the spacecraft pulled back to give a wider view of the ringed giant’s upper latitudes, revealing one of its most curious features: the northern hexagon.

The image above is a color-composite made from raw images acquired by Cassini on November 28 from a distance of 379,268 miles (610,373 kilometers) away. Because the color channels were of a much lower resolution than the clear-filter monochrome image, the color is approximate in relation to individual atmospheric details. Still, it gives an idea of the incredible variation in hues around Saturn’s northern hemisphere as well as clearly showing the uncannily geometric structure of the hexagon.

(Can I get another “WOW”?)

Made of a band of upper-atmospheric winds, for some reason at this latitude the stream forms a six-sided hexagonal shape. The entire structure is about 25,000 km across — large enough for four Earths to fit inside! The polar cyclone can be seen at the very center.

First seen by Voyagers 1 and 2 over 30 years ago the hexagon appears to be fixed with Saturn’s rotation rate, which is a remarkably speedy 0.44 Earth-days (about 10.5 hours.)

“This is a very strange feature, lying in a precise geometric fashion with six nearly equally straight sides,” said atmospheric expert and  Cassini team member Kevin Baines back in 2007. “We’ve never seen anything like this on any other planet. Indeed, Saturn’s thick atmosphere where circularly-shaped waves and convective cells dominate is perhaps the last place you’d expect to see such a six-sided geometric figure, yet there it is.”

As scientists puzzled over the mechanisms behind the geometric feature, they came to the conclusion that not only is it a very natural occurrence, it’s also something that is not uncommon in fluid dynamics… apparently its sides are bound by the eddying storms. (Read more in this article by Nicole Gugliucci.)

Here are some more raw images from Cassini’s Nov. 28 pass:

Amazing! Here we are well over 8 years after arriving at Saturn and Cassini is still astounding us almost daily with views of the ringed world. (I knew it was my favorite planet for a reason!)

As always, stay tuned to Universe Today for more!

Image credits: NASA/JPL/Space Science Institute. Color-composite by Jason Major.

 

Full Moon and Friends, November 28, 2012

The full Moon rising with Jupiter and Aldebaran on November 28, 2012 in North Carolina, USA. Credit: Tavi Greiner.

The full Moon is a-rising tonight, and it is not alone. There are lots of other bright and beautiful stars and planets out there — some snuggling right up together — and already we’ve got astrophotographers out there capturing the views. Above, Tavi Greiner had a gorgeous view of the Moon, along with bright Jupiter and Aldebaran. November’s full Moon is known as the “Beaver Moon,” or “Frosty Moon,” and this year it is the smallest full Moon of 2012, since the Moon is at apogee, the farthest distance in its orbit around the Earth. There was also a penumbral lunar eclipse earlier today, depending on where you are…

See more below:

The Moon, along with Jupiter and its moons. Credit: Kevin Gassen

“This is a composite of two images of the Moon and Jupiter, taken in Central Texas, November 28th, with my Canon T2i,” writes Kevin Gassen. “The images were taken less than a minute apart, one each with the proper settings to capture the moon and Jupiter as seen. The images were combined in Photoshop Elements 6 with only minor contrast adjustments to the moon. Relative sizes were unchanged.”

Moon – Jupiter Conjunction, November 28, 2012. Credit: Gustavo Sanchez

Speaking of bright Jupiter, here’s a great view of the giant planet in all its glory near the Moon.

Corona around the Full Moon November 27, 2012. (The Pleiades are in amongst the clouds, too). Credit: Sculptor Lil

Visibility of penumbral lunar eclipse of November 28, 2012. Image Credit: Fred Espenak

The penumbral eclipse of the Moon occurred during the early dawn on Wednesday morning for western North America, and during the middle of the night for the longitudes of Australia and Japan, in late evening of the 28th local date for China and Southeast Asia, and early that evening for India. Eastern Canada and the USA couldn’t see it at all as it occurred after Moonset.

Saturn, Venus, & Mercury Conjunction on 11-28-2012. Credit: John Chumack

And early this morning John Chumack was out to capture a plethora of planets together. Saturn, Venus, and Mercury Conjunction – Planetary Alignment on 11-28-2012 06:39am E.S.T. Venus is the brightest between the house and tree , Saturn right above Venus, and Mercury is below in between the power lines.

We’ll add more images as they come in!

And if you want to know when the next full Moon is coming up, check out our Phases of the Moon app on either Google Play or the iTunes Store, and help support Universe Today.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Searching out Sagan in Ithaca

Taking a break from reading Pale Blue Dot in Carl Sagan’s hometown of Ithaca, New York. (Elizabeth Howell)

I never knew of Carl Sagan as a living human being, as I missed him by mere months. I read Pale Blue Dot sometime in 1997, if my memory serves, sometime after the movie Contact (based on his book) came out in theaters and I asked my parents what the “FOR CARL” dedication was at the end of the movie.

At a time when I was all awkward teenagerhood, Sagan’s writing showed me a Universe of beauty. Not organized beauty, to be sure, but a destination worth exploring. Worth learning more about, even from a humble perch on Earth.

Sagan had a bit of everything in him: a knowledge of philosophy and history, an influence on early NASA missions, an ability to take the Universe and make it homey enough to show on television screens and in books.

His formative research years were at Cornell University in Ithaca, New York. More than 15 years after his death, he’s actually pretty easy to find in that town.

Carl Sagan’s grave in Lakeview Cemetery in Ithaca, New York, adorned with blue marbles. It’s between the two trees in this map. (Elizabeth Howell)

The exterior of the Space Sciences building at Cornell University, where Carl Sagan spent his most influential research years. (Elizabeth Howell)

Carl Sagan’s picture at the Sciencenter in Ithaca. He was a founding member of the science museum’s advisory board. (Elizabeth Howell)

Our Sun shining upon an exhibit of Neptune in Ithaca’s Planet Walk. The 1200-meter walk has the distances of all the planets in the solar system to scale. The exhibition was created in honor of Carl Sagan’s memory, and has a podcast available that is narrated by one of his students: Bill Nye, the Science Guy. (Elizabeth Howell)

“Oddball” Galaxy Contains the Biggest Black Hole Yet

Image of lenticular galaxy NGC 1277 taken with Hubble Space Telescope. (NASA/ESA/Andrew C. Fabian)

It’s thought that at the heart of most if not every spiral galaxy (as well as some dwarf galaxies) there’s a supermassive black hole, by definition containing enormous amounts of mass — hundreds of millions, even billions of times the mass of our Sun packed into an area that would fit inside the orbits of the planets. Even our own galaxy has a central SMBH — called Sgr A*, it has the equivalent of 4.1 million solar masses.

Now, astronomers using the Hobby-Eberly Telescope at The University of Texas at Austin’s McDonald Observatory have identified what appears to be the most massive SMBH ever found, a 17 billion solar mass behemoth residing at the heart of galaxy NGC 1277.

Located 220 million light-years away in the constellation Perseus, NGC 1277 is a lenticular galaxy only a tenth the size of the Milky Way. But somehow it contains the most massive black hole ever discovered, comprising a staggering 14% of the galaxy’s entire mass.

“This is a really oddball galaxy,” said Karl Gebhardt of The University of Texas at Austin, a team member on the research. “It’s almost all black hole. This could be the first object in a new class of galaxy-black hole systems.”

The study was led by Remco van den Bosch, who is now at the Max Planck Institute for Astronomy (MPIA).

It’s estimated that the size of this SMBH’s event horizon is eleven times the diameter of Neptune’s orbit — an incredible radius of over 300 AU.

How the diamater of the black hole compares with the orbit of Neptune (D. Benningfield/K. Gebhardt/StarDate)

Although previously imaged by the Hubble Space Telescope, NGC 1277’s monster black hole wasn’t identified until the Hobby-Eberly Telescope Massive Galaxy Survey (MGS) set its sights on it during its mission to study the relationship between galaxies and their central black holes. Using the HET data along with Hubble imaging, the survey team calculated the mass of this black hole at 17 billion solar masses.

“The mass of this black hole is much higher than expected,” said Gebhardt, “it leads us to think that very massive galaxies have a different physical process in how their black holes grow.”

To date, the HET team has observed 700 of their 800 target galaxies.

In the video below, Remco van den Bosch describes the discovery of this unusually super supermassive black hole:

Read more on the UT Austin’s McDonald Observatory press release here, or this press release from the Max Planck Institute for Astronomy.

International Space Station Making New Solar Observations

The International Space Station. Credit: NASA

This weekend the International Space Station will turn itself to face the Sun, enabling ESA’s SOLAR instrument to capture an entire rotation of the solar surface. This is the first time the Station has changed attitude for scientific reasons alone.

This instrument has been on the ISS since 2008, and for the first time will record a full rotation of the Sun. It began this effort on November 19, 2012, and on December 1, the Station will spend two hours turning about 7 degrees so that observations can continue. It will hold this angle for ten days before returning to its original attitude.

“We want to record a complete rotation of the Sun and that takes around 25 days,” said Nadia This, operations engineer at the Belgian User Support and Operations Centre that controls SOLAR.

SOLAR needs to be in direct view of the Sun to take measurements but the Space Station’s normal orbit obscures the view for two weeks every month.

All the international partners had to agree on changing the ISS’s orientation.

However, moving a 450-ton orbital outpost the size of a city block isn’t a simple undertaking. Aside from calculating the correct orbit to keep SOLAR in view of the Sun, other factors need to be taken into account such as ensuring the solar panels that power the Station also face the Sun. Additionally, communication antennas need to be reoriented to stay in contact with Earth and other scientific experiments must be adjusted.

The SOLAR instrument located on the exterior of the Columbus module on the ISS. Credit: ESA

The SOLAR instrument was originally designed to last about 18 months, but has been going strong for 5 years. It is installed on the outside of the ESA’s Columbus module.

The SOLAR payload consists of three instruments to the solar spectral irradiance throughout virtually the whole electromagnetic spectrum.

The three complementary solar science instruments are:

SOVIM (SOlar Variable and Irradiance Monitor), which covers near-UV, visible and thermal regions of the spectrum.
SOLSPEC (SOLar SPECctral Irradiance measurements) covers the 180 nm – 3 000 nm range.
SOL-ACES (SOLar Auto-Calibrating Extreme UV/UV Spectrophotometers) measures the EUV/UV spectral regime.

Scientists say SOLAR’s observations are improving our understanding of the Sun and allowing scientists to create accurate computer models and predict its behavior.

Source: ESA

Incredible Raw Image of Saturn’s Swirling North Pole

Ok, are you ready for this?

I know… WOW.

This swirling maelstrom of clouds is what was seen over Saturn’s north pole earlier today, November 27, by NASA’s Cassini spacecraft. This is a raw image, acquired in polarized light, from a distance of 238,045 miles (383,097 kilometers)… all I did was remove some of the hot pixels that are commonly found on Cassini images taken with longer exposures.

Again… WOW.

My attempt at a color composite can be seen below, plus another treat:

It’s rough, and a little muddy because the clouds were moving between image channels (not to mention the blue channel image was rather underexposed) but here’s a color-composite of the same feature, made from images taken from a slightly different perspective:

Color composite of Saturn’s north polar vortex

Pretty darn cool… Cassini does it yet again!

The images above show an approximately 3,000-4,000-km-wide cyclone above Saturn’s north pole. Saturn is also known to have a long-lived hexagonal jet stream feature around its north pole as well, but that is not shown in those images as it runs along a lower latitude. Instead, you can see that HERE:

Saturn’s northern hexagon

Captured with a wider angle, in this image the hexagon structure can be made out as well as the cyclone, which sits at the center just over the pole. Saturn’s hexagon is about 25,000 km (15,500 miles) in diameter… large enough to fit almost four Earths inside. This image was also acquired today.

An RGB composite of this feature is below:

Saturn’s northern hexagon – color composite

It’s been a few years since we’ve gotten such a good look at Saturn’s north pole… thanks to Cassini’s new orbital trajectory, which is taking it high above the ring plane and poles of Saturn, we now have the opportunity to view the gas giant’s dynamic upper latitudes again. I’m sure this is just a taste of what’s to come!

(Image credit: NASA/JPL/Space Science Institute. Color composites by Jason Major)