Will there come a time when we on Earth can look up at the Moon and know that people are living there permanently?
40 years ago today, humans left the Moon for the last time during our visits during the Apollo program. Author Andrew Chaikin has been creating a series of videos on why space exploration is important, and to mark the 40th anniversary of the last human footsteps on the moon, he looks back at Apollo 17’s explorations and explains why he believes the Moon is the solar system’s “jewel in the crown,” beckoning us to return.
“The Moon is an ideal place for future astronauts to tackle the enormous challenges of living on other worlds,” Chaikin says, “a kind of outward-bound school for learning to live off-planet that is just three days away from home.”
The GRAIL mission will come to a dramatic end on Monday as the two spacecraft will be commanded to crash into the rim of an unnamed crater near the Moon’s north pole. This is all according to plan, as the two spacecraft are running out of fuel after being in lunar orbit since New Year’s Day 2012.
“We successfully completed our primary science mission,” said Principal Investigator Maria Zuber, “ and, frankly, in my wildest dreams I don’t think this mission could have gone any better than it has. But when you orbit a planetary body that has lumpy gravity field, you use a lot of fuel.”
On Dec. 17 at about 5:28 EST, the spacecraft dubbed Ebb will undergo a controlled impact into a 2 km high “mountain, a rim of a crater that has been buried in ejecta near north pole of the Moon (coordinates are 75.62°N, 26.63°W). About 30 seconds later Flow will impact, about 40 km apart.
Both spacecraft will hit the surface at 3,760 mph (1.7 kilometers per second). No imagery of the impact is expected because the region will be in shadow at the time.
These maps of Earth’s moon highlight the region where the twin spacecraft of NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission will impact on Dec. Image credit: NASA/GSFC
Additionally, Gruber said that while they hope the Lunar Reconnaissance Orbiter will be able to observe the impact region (at the very least image the region both before and after impact), they don’t expect to there to be a “flash” visible from Earth, and do not believe there will be a significant chance of doing science by kicking up volatiles like LCROSS did, mostly because of the GRAIL spacecraft small size (each about the size of a washing machine) and because of the low angle of impact. The spacecraft have been at a low orbit averaging about 11 km above the surface this week, to be able to map at a high resolution before the fuel ran out.
They chose a mountain-side “since we’re coming in at angle of 1.5 degrees, it would only have left “skid marks” on level surface,” Zuber said. “There was interest in the team in impacting a structure, or a wall, so we could learn about mechanical properties of a crater rim. We’ll be looking at the rim of the crater and understanding how much is intact rock and how much is broken up. It will be very low probability but high scientific payoff if it works, if any volatiles they would be liberated from the impacts.”
The twist on this observation, Zuber said, is this crater is in sunlight most of the time, so if any volatiles come out, it would be surprising.
GRAIL project manager David Lehman said that Friday morning (December 14) the spacecraft will each be executing a maneuver will targeting the impact site, that will also position them to avoid what are called “historic heritage sites,” where the US and Russians have put soft landers on the Moon.
Then they’ll turn off the science instruments, followed by a series of engineering demonstrations to help with future missions over the weekend. About 54 minutes before impact, they’ll burn the remaining fuel to complete the last maneuver.
Lehman said there is a bit of challenge in hitting the crater rim. “We need to clear a ridge and then keep from going through a gap in the rim, because otherwise it would keep going and hit the far side of the Moon.”
Lehman added he was sad to see the mission end. “I’m kind of hoping tonight that a gas station will pull up to our spacecraft and refuel it.”
During their prime mission, from March through May, Ebb and Flow collected data while orbiting at an average altitude of 34 miles (55 kilometers). Their altitude was lowered to 14 miles (23 kilometers) for their extended mission, which began Aug. 30 and sometimes placed them within a few miles of the moon’s tallest surface features.
The duo’s successful prime and extended science missions generated the highest-resolution gravity field map of any celestial body. The map will provide a better understanding of how Earth and other rocky planets in the solar system formed and evolved.
“It is going to be difficult to say goodbye,” said Zuber. “Our little robotic twins have been exemplary members of the GRAIL family, and planetary science has advanced in a major way because of their contributions.”
We’ve all seen the classic science fiction space explosions, full of flames and loud sounds. Beautiful on the screen but, totally lacking in any kind of… science. What’s wrong with science fiction? What would chemical and nuclear explosions really look like? What would we hear? And what are some natural explosions that nature detonates in space?
Winter Milky Way Geminids on December 12, 2012. Credit: John Chumack
The Geminid Meteor Shower is underway, with the peak on December 13th and 14th! SpaceWeather.com is reporting that international observers are counting as many as 50 meteors per hour as Earth plunges into a stream of debris from rock comet 3200 Phaethon. Astrophotographer John Chumack in Ohio, USA took the image of a bright fireball last night (Dec. 12/13) and said he was seeing one or two meteors every minute or so, describing the sky show as “definitely one of the best Geminid showers I’ve seen in over 20 years!”
John also compiled a video, below.
So if you’ve got clear skies, get out there and look up! The best time to look will be after dark on Thursday, December 13 and before dawn on Friday, December 14. The Geminids are notably one of the most reliable meteor showers, and this year the timing is great as the new Moon won’t intefer with the shower. Astronomers from McDonald Observatory at the University of Texas predicts skywatchers can expect to see dozens of meteors per hour.
Additionally, NASA says that for the first time, Earth might also pass through the tail of another object, comet Wirtanen, which could possibly provide even more meteors in the sky. No one is really sure what kind of meteor action this comet will produce, but Bill Cooke of NASA’s Meteoroid Environment off says even if the new shower is a dud, the Geminids should be great.
For the Geminids, meteors will appear to originate from the constellation Gemini, although they should be visible all over the sky. If Wirtanen does contribute to the shower, they may appear to come from the constellation Pisces.
If you’ve got cloudy skies or its too cold outside, there are a few alternatives:
You can follow along via Twitter and MeteorWatch. All you need to do is check for the #meteorwatch hashtag, and people will be posting descriptions and images.
You can also “listen” to the meteor shower: The Air Force Space Surveillance Radar is scanning the skies above Texas. When a meteor or satellite passes over the facility–ping!–there is an echo. Check out SpaceWeatherRadio for the broadcast.
NGC 3627 glows in the combined light of Hubble, Chandra, Spitzer and the Very Large Telescope in this image. Astronomers conducted a survey of 62 galaxies, including NGC 3627 to study monster black holes at their centers.
It’s not just pretty, it’s science. Like a starry watercolor, astronomers combining light from Earth and space-based observatories found 37 new supermassive black hole candidates lurking in nearby galaxies.
Included in that survey is NGC 3627 pictured above. Astronomers combined X-ray data from NASA’s Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and optical data from the Hubble Space Telescope and the Very Large Telescope. The other images give the galaxy context but it’s the ghostly blue images from Chandra that show super bright in the X-ray images; X-ray light powered by material falling into a monster black hole.
Gas and dust slowly spins around the black hole creating a flattened disk, or accretion disk. As material falls inward, it heats up and releases large amounts of energy that shine brightly in the ultraviolet region of the spectrum.
NGC 3627, located about 30 million light-years from Earth, was just one of a survey of 62 nearby galaxies using archived data from Chandra and data from the Spitzer Infrared Nearby Galaxy Survey. Of those, 37 galaxies contained bright X-ray sources, indicating active black holes at their cores. Scientists believe that seven of those sources are new supermassive black hole candidates.
Combining ultraviolet and infrared observations confirm previous Chandra results that found that there may be many more galaxies powered by monster black holes than believed previously through optical surveys. Scientists say in the paper that low-levels of black hole activity previously may have been hidden by dust or washed out by the bright light of the galaxy.
Image caption: Bright X-ray sources glow a ghostly blue in this image in NGC 3627 from NASA’s Chandra X-ray Observatory. A study confirms previous Chandra results that indicate that more galaxies powered by monster black holes populate the cosmos.
This is awesome! It is the first footage of one orbiting robotic spacecraft taken by another orbiting robotic spacecraft at Earth’s moon. “Flow,” one of two satellites making up NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission, captured this video of NASA’s Lunar Reconnaissance Orbiter (LRO) as it flew by at a distance of about 20 kilometers (12 miles) on May 3, 2012. LRO is the single bright pixel that moves from top left to bottom right. The Moon’s south polar region is in the background, much of which is in darkness.
This footage was taken by Flow’s “MoonKam” camera, which is an educational camera run by the GRAIL team and Sally Ride Science.
NASA is trying to make sure that no one is taking the 2012 doomsday nonsense seriously, and just put out this video today detailing how a gigantic “killer solar flare” just ain’t gonna happen. Dr. Alex Young from the Goddard Space Flight Center explains how the Sun’s regular 11-year solar cycle is expected to peak in 2013 and 2014, not on December 21 of this year. Plus, this current solar cycle has been kind of a dud as far as wild activity goes, and scientists are not expecting the peak of this cycle to even be as strong as the previous one, which was rather mild.
Solar prominence in H alpha, with Earth scale model. Credit: John Brady.
Not to mention, Earth’s atmosphere keeps us well protected here on Earth. The only thing we do have to be concerned with is how solar flares and coronal mass ejections (CMEs) can damage satellites and even impact the power grid on Earth; additionally astronauts in Space to have to be specially protected as they are outside of the protection of the atmosphere.
Shot from the Arctic Circle in Canada, this beautiful display of the Aurora Borealis will put you in the holiday mood (I’m sure Santa’s workshop is just beyond one of those mountains in the background!) National Geographic photographer Mike Theiss said the northern lights started around 11:30pm and continued on until around 3am. “The lights were dancing, rolling and twisting and at times looked like they were close enough to touch,” he said.
Researcher Stephen Anthony works with the new reactor prototype that could turn trash into gas. Image credit: NASA/Dmitri Gerondidakis
It probably won’t be able to fuel Doc Brown’s flux capacitor on his DeLorean time machine, but NASA researchers are hoping a new device that will be tested on the International Space Station can turn trash into power. The Trash to Gas Reactor is a miniature version of large waste incineration facilities on Earth that generate electricity or fuel. This could help with the accumulating trash on the ISS and be used on future missions beyond Earth orbit, as well as help the trash problem in areas of the world where there are neither large power plants nor garbage processing facilities.
“Not only will the effort on this help space missions but also on Earth because we have enough problems dealing with our own trash,” said Anne Caraccio, a chemical engineer working on the project.
The prototype of the Trash to Gas Reactor is a meter-long (3 foot-long) device that looks strikingly similar to the “Mr. Fusion” reactor in the second “Back to the Future” movie. Just like Doc Brown and Marty, astronauts can throw in things like food wrappers, used clothing, food scraps, tape, packaging and other garbage accumulated by the crew and the reactor will turn it into potential power, such as methane gas, or even oxygen or water.
The team developing the reactor is hoping to have their prototype ready to fly on the ISS by 2018 – which unfortunately doesn’t fit into the “Back to the Future” timeline: Emmett Brown travels to 2015 where he gets his Mr. Fusion and changes the future. But perhaps its Earth-bound counterpart could be ready in two years, in time for the Doc’s arrival from 1985.
OK, back to reality now, even though this does have a science fiction element to it…
A team led by Paul Hintze at the Kennedy Space Center has built an 80-pound small reactor to test theories about incinerating a variety of trash ranging from used clothes to uneaten food. The reactor holds more than three quarts of material and burns at about 1,000 degrees F, about twice the maximum temperature of an average household oven. It’s expected to take astronauts four hours to burn a day’s worth of trash from a crew of four.
The team estimates that during the course of a year in space – one half the length of time a mission to Mars is expected to take – trash processing for a crew of four would create about 2,200 pounds of methane fuel, enough to power a launch from the lunar surface, Hintze said.
“The longer the mission, the more applicable this technology is,” Hintze said. “If you’re just doing a two-week mission, you wouldn’t want to take along something like this because you wouldn’t get anything out of it.”
Converting garbage into fuel also would keep astronauts from turning their cramped space capsule into an orbiting landfill.
Paul Hintze is the researcher leading the trash-to-gas project at NASA’s Kennedy Space Center in Florida. Image credit: NASA/Dmitri Gerondidakis
The experimental version of the reactor is made of steel, but the team expects to employ a different alloy for future versions, something that might be lighter but just as strong in order to withstand the high temperatures needed to break down the materials and destroy potential microbes.
One of the issues the team is working on is making sure that no smell or potential hazardous gases are created as a by-product in the closed environment of the space station or a spacecraft on its way to deep space.
“On Earth, a little bit of an odor is not a problem, but in space a bad smell is a deal breaker,” Hintze said.
Right now trash in the ISS is stuffed into the Progress resupply ship, which burns up in the atmosphere during re-entry. This new reactor could turn the trash into something valuable in space.
This image from NASA’s Cassini spacecraft shows a vast river system on Saturn’s moon Titan. It is the first time images from space have revealed a river system so vast and in such high resolution anywhere other than Earth. Image Credit: NASA/JPL-Caltech/ASI
Titan is appearing more Earth-like all the time (yes, a very cold, and early version of Earth), as now the Cassini spacecraft has spotted what appears to be a miniature extraterrestrial version of the Nile River: a river valley on Saturn’s moon Titan that extends from what looks like ‘headwaters’ out to a large sea. Not only is it a riverbed, but it appears to be filled with liquid; likely very cold hydrocarbons such as ethane or methane.
Scientists deduce that the river is filled with liquid because it appears dark along its entire extent in the high-resolution radar image, indicating a smooth surface.
It is the first time images have revealed a river system this vast and in such high resolution anywhere beyond Earth.
“Though there are some short, local meanders, the relative straightness of the river valley suggests it follows the trace of at least one fault, similar to other large rivers running into the southern margin of this same Titan sea,” says Jani Radebaugh, a Cassini radar team associate at Brigham Young University, USA. “Such faults – fractures in Titan’s bedrock – may not imply plate tectonics, like on Earth, but still lead to the opening of basins and perhaps to the formation of the giant seas themselves.”
While the Earthly Nile River is 6,650 kilometers (4,132 miles) long, Titan’s big river is about 400 km long.
Titan is the only other world we know of that has stable liquid on its surface. While Earth’s hydrologic cycle relies on water, Titan’s equivalent cycle involves hydrocarbons.
Images from Cassini’s visible-light cameras in late 2010 revealed regions that darkened after recent rainfall.
Cassini’s visual and infrared mapping spectrometer confirmed liquid ethane at a lake in Titan’s southern hemisphere known as Ontario Lacus in 2008.
“This radar-imaged river by Cassini provides another fantastic snapshot of a world in motion, which was first hinted at from the images of channels and gullies seen by ESA’s Huygens probe as it descended to the moon’s surface in 2005,” said Nicolas Altobelli, ESA’s Cassini Project Scientist.