Incredible Raw Image of Saturn’s Swirling North Pole

Ok, are you ready for this?

I know… WOW.

This swirling maelstrom of clouds is what was seen over Saturn’s north pole earlier today, November 27, by NASA’s Cassini spacecraft. This is a raw image, acquired in polarized light, from a distance of 238,045 miles (383,097 kilometers)… all I did was remove some of the hot pixels that are commonly found on Cassini images taken with longer exposures.

Again… WOW.

My attempt at a color composite can be seen below, plus another treat:

It’s rough, and a little muddy because the clouds were moving between image channels (not to mention the blue channel image was rather underexposed) but here’s a color-composite of the same feature, made from images taken from a slightly different perspective:

Color composite of Saturn’s north polar vortex

Pretty darn cool… Cassini does it yet again!

The images above show an approximately 3,000-4,000-km-wide cyclone above Saturn’s north pole. Saturn is also known to have a long-lived hexagonal jet stream feature around its north pole as well, but that is not shown in those images as it runs along a lower latitude. Instead, you can see that HERE:

Saturn’s northern hexagon

Captured with a wider angle, in this image the hexagon structure can be made out as well as the cyclone, which sits at the center just over the pole. Saturn’s hexagon is about 25,000 km (15,500 miles) in diameter… large enough to fit almost four Earths inside. This image was also acquired today.

An RGB composite of this feature is below:

Saturn’s northern hexagon – color composite

It’s been a few years since we’ve gotten such a good look at Saturn’s north pole… thanks to Cassini’s new orbital trajectory, which is taking it high above the ring plane and poles of Saturn, we now have the opportunity to view the gas giant’s dynamic upper latitudes again. I’m sure this is just a taste of what’s to come!

(Image credit: NASA/JPL/Space Science Institute. Color composites by Jason Major)

Mars Dust Storm Likely Not Going Global

A regional dust storm visible in the southern hemisphere of Mars in this nearly global mosaic of observations made by the Mars Color Imager on NASA’s Mars Reconnaissance Orbiter on Nov. 25, 2012, has contracted from its size a week earlier. Image credit: NASA/JPL-Caltech/MSSS

Good news for the spacecraft sitting on or orbiting Mars: a dust storm on the Red Planet that looked as though it could spread around the entire planet now appears to be abating rather than going global, NASA says.

“During the past week, the regional storm weakened and contracted significantly,” said Bruce Cantor of Malin Space Science Systems, San Diego. Cantor uses the Mars Color Imager camera on NASA’s Mars Reconnaissance Orbiter to monitor storms on the Red Planet.

Recent images and data from the Environmental Monitoring Station (REMS) on the Curiosity rover have also shown a hazy atmosphere and air pressure changes in the vicinity of Gale Crater.

Part of gigantic panorama from Curiosity, showing an increasingly hazy view off in the distance, likely because of a dust storm. Credit: NASA/JPL/MSS, with image editing by Stuart Atkinson. See the full panorama here.

“We are getting lots of good data about this storm,” said Mark Richardson of Ashima Research, Pasadena, California, a co-investigator both on REMS and on the Mars Reconnaissance Orbiter’s Mars Climate Sounder instrument, which has been detecting widespread effects of the current storm on atmospheric temperatures.

Here’s a look at the growing dust storm from the Mars Color Imager on NASA’s Mars Reconnaissance Orbiter on Nov. 18, 2012 to compare with the lead image:

Credit:NASA/JPL-Caltech/MSSS

Researchers anticipate that the unprecedented combination of a near-equatorial weather station at ground level, and daily orbital observations during Mars’ dust-storm season, may provide information about why some dust storms grow larger than others.

This is good information to have for any potential future human visitors to Mars.

Source: JPL

Does the Universe Have a Purpose?

An intersection of two of my favorite entities (Minute Physics and Neil deGrasse Tyson) now covers a topic that has been on my mind lately: does the Universe — and therefore humanity — have a purpose?

deGrasse Tyson was asked by the Templeton Foundation to answer this question and poses here that if there is a purpose, the cosmic environment has a strange way of showing it.

What do you think?

Continue reading “Does the Universe Have a Purpose?”

The Man Who Shoots Space: Interview with Thierry Legault

Thierry Legault with the equipment he uses for satellite images. Images courtesy of Thierry Legault.

We’ve written many articles to share the incredible astrophotography of Thierry Legault, and have also interviewed him extensively about his work. If you’ve enjoyed his imagery and stories, you’ll appreciate this new video interview from VICE which shows Legault at work, and allows him to tell his story in his own words.

[/caption]

If you aren’t familiar with the work of Legault, he has taken images such as the space shuttle and space station as they transited across the Sun, the first-ever ground-based image of astronaut in spacewalk, and images of spy satellites in orbit. He lives in the suburbs of Paris, but will easily travel 3,000 and 4,000 kilometers — and sometimes to another continent — to capture a specific image.

And usually, the events he captures last only about a half-second and he never sees them live with his own eyes.

“For transits I have to calculate the place, and considering the width of the visibility path is usually between 5-10 kilometers, but I have to be close to the center of this path,” Legault explained in a previous interview with UT, “because if I am at the edge, it is just like a solar eclipse where the transit is shorter and shorter. And the edge of visibility line of the transit lasts very short. So the precision of where I have to be is within one kilometer.”

Legault studies maps, and has a radio synchronized watch to know very accurately when the transit event will happen.

“My camera has a continuous shuttering for 4 seconds, so I begin the sequence 2 seconds before the calculated time,” he said. “I don’t look through the camera – I never see the space station when it appears, I am just looking at my watch!”

For a transit event, he gets get a total of 16 images – 4 images every second, and only after he enlarges the images will he know if he succeeded or not.

“There is a kind of feeling that is short and intense — an adrenaline rush!” Legault said.

Enjoy the new video interview, and see Legault’s imagery at his website.

Inspiring New ISS Timelapse: Further Up Yonder

As humble as it may be, the International Space Station is our long-awaited outpost in space; a foothold and gateway to the cosmos. This stirring and poignant new ISS timelapse reminds us of our accomplishments so far while urging us on to keep exploring. This video was compiled by film-making student Giacomo Sardelli, who says, “People on Earth must understand that they have to get rid of the concept of borders on our planet if they want to follow the astronauts to new worlds in outer space.”

In the first part of the video, while the astronauts and cosmonauts are speaking, a day passes on Earth, from dawn to sunset. Then a “gateway” of sorts appears to open with a burst of light. “The ISS then gains speed and goes faster and faster, the astronauts are leaving our planet which they see spinning faster and faster, merging earth, oceans and people together, ready to follow them, Further Up Yonder,” writes Sardelli.

Beautiful.

Further Up Yonder from Giacomo Sardelli on Vimeo.

Unraveling the Secrets of Type Ia Supernovae: a New Two-Minute Thesis

The folks over at PHD Comics have put together a new video in their Two-Minute Thesis series, this one featuring Ph.D candidate Or Graur of the University of Tel Aviv and the American Museum of Natural History discussing the secret lives — and deaths — of astronomers’ “standard candles” of universal distance, Type Ia supernovae.

Judging distances across intergalactic space isn’t easy, so in order to figure out how far away galaxies are astronomers have learned to use the light from Type Ia supernovae, which flare up with the brilliance of 5 billion Suns… and rather precisely so.

Type Ia supernovae are thought to be created from a pairing of two stars: one super-dense white dwarf which draws in material from a binary companion until a critical mass — about 40% more mass than the Sun – is reached. The overpacked white dwarf suddenly undergoes a rapid series of thermonuclear reactions and explodes in an incredibly bright outburst of material and energy.

But exactly what sorts of stellar pairs lead to Type Ia supernovae and how frequently they occur aren’t known, and that’s what Ph.D candidate Or Graur is aiming to learn more about.

Read more: A New Species of Type Ia Supernova?

“We don’t really know what kind of star it is that leads to these explosions, which is kind of embarrassing,” says Graur. “The companion star could be a regular star like our Sun, a red giant or supergiant, or another white dwarf.”

Because stars age at certain rates, by looking deeper into space with the Hubble and Subaru telescopes Graur hopes to determine how often and when in the Universe’s history Type Ia supernovae occur, and thus figure out what types of stars are most likely responsible.

“My rate measurements favor a second white dwarf as the binary companion,” Graur says, “but the issue is far from settled.”

Watch the video for the full story, and visit PHD TV and PHD Comics for more great science illustrations.

Video: PHDComics. Animation: Jorge Cham. Series Producer: Meg Rosenburg. Inset image: merging white dwarfs causing a Type Ia supernova. (NASA/CXC/M Weiss)

Lighting Up Mercury’s Shadowy North Pole

Part of a stereographic projection of Mercury’s north pole

Talk about northern exposure! This is a section of a much larger image, released today by the MESSENGER team, showing the heavily-cratered north pole of Mercury as seen by the MESSENGER spacecraft’s Mercury Dual Imaging System (MDIS) instrument.

See the full-size image below:

Many MDIS images were averaged together to create a mosaic of Mercury’s polar region, which this stereographic projection is centered on. MESSENGER is at its lowest altitude as it passes over Mercury’s northern hemisphere — about  200 kilometers (124 miles), which is just a little over half the altitude of the ISS.

The largest centrally-peaked crater near the center is Prokofiev, named after a 20th-century Russian composer. Approximately 110 km (68 mi.) in diameter, its permanently-shadowed interior is home to radar-bright deposits that are thought to contain water ice.

Even though Mercury is almost three times closer to the Sun than Earth is and hosts searing daytime temperatures of 425ºC (800ºF), there’s virtually no atmosphere to hold or transmit that heat. Nighttime temperatures can reach as low as -185ºC (-300ºF), and since a day on Mercury is 176 Earth days long it gets very cold for quite a long time!

Also, because Mercury’s axis of rotation isn’t tilted like Earth’s, low elevation areas near the poles receive literally no sunlight. Unless vaporized by a meteorite impact any ice gathered inside these deep craters would remain permanently frozen.

Here’s an orthographic projection of the image above, showing what the scene would look like on Mercury — that is, if it was ever fully lit by the Sun, which it isn’t.

Many of the craters on Mercury’s north pole have recently been named after famous artists, authors and composers, such as Kandinsky, Stieglitz, Goethe, and even one named after J.R.R. Tolkien. You can see an annotated image showing the names of Mercury’s north polar craters here.

Read More: “The Hobbit” Author Gets a Crater on Mercury

On November 29, NASA will host a news conference at 2 p.m. EST to reveal new observations from MESSENGER, the first spacecraft to orbit Mercury. The news conference will be carried live on NASA Television and the agency’s website… you can tune in on NASA TV here. 

Image credits: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Win a Copy of The Year in Space: 2013 Calendar

Every year, Steve Cariddi releases the wonderful Year in Space Calendar, and the new edition for 2013 is even better, with amazing pictures, cool history and handy space facts for the upcoming year.

Seriously, this calendar is beautiful. There are more than 100 gorgeous photos of space, Moon phases for every day, daily space facts and historical references. And the calendar is huge, much larger than a traditional wall calendar.

Every month you’ll see:
– An in-depth exploration of human space flight, planetary exploration, or deep sky wonders
– Multiple images and detailed captions
– A mini-biography of famous astronomer, scientist, or astronaut related to the topic
– Background info and fun facts
– A sky summary of where to find naked-eye planets
– Space history dates
– Major holidays (U.S. and Canada)
– Daily Moon phases graphically displayed

And thanks to the folks at Year in Space, we’ve got 5 copies of The Year in Space: 2013 Calendar to give away to Universe Today readers – a $12.95 value.

In order to be entered into the draw, just put your email address into the box below before Friday, November 30th, 2012. We’ll send you a confirmation email, so you’ll need to click that to be entered into the draw.

[giveaway]

We’re only going to use these email addresses for Universe Today giveaways/contests and announcements. We won’t be using them for any other purpose, and we definitely won’t be selling the addresses to anyone else. Once you’re on the giveaway notification list, you’ll be able to unsubscribe any time you like.

Astrophoto: Beam Me Up!

Light beams and the Milky Way. Credit: Peter Greig (St1nkyPete on Flickr)

This great shot of the Milky Way includes some mysterious beams of light. But astrophotographer Peter Greig supplies the festive explanation: “This is a shot I took in Soisdorf, Germany earlier this year,” he writes. “The beams of light on the right are coming from a carnival in a nearby village!”

This photo was taken on September 7, 2012 using a Canon EOS 550D.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Timelapse From Inside a Telescope

This timelapse is different than most because it allows you to see the actions of the South African Large Telescope (SALT) from a unique point of view: the camera is mounted on the mirror structure, but also visible is the awesome field of view. Dr. Bruno Letarte compiled this video from 3 consecutive nights observing in July 2012 showing SALT in action. He also provides a tour of the inside of the telescope as well.

Additionally, Letarte provides detailed info of what is being observed, what scientist or team is doing the observing, and additional details of what is actually happening. If you want a more traditional timelapse of the night sky, see below for Letarte’s Volume I of this pair of videos. It shows a stunningly beautiful look at the southern sky, and points out several of the constellations and other objects that are visible.
Continue reading “Timelapse From Inside a Telescope”