Satellite Views: Will Hurricane Sandy Turn into ‘Frankenstorm’?

Hurricane Sandy made landfall on Cuba early Thursday Oct. 25, 2012 as strong Category 2. Credit: NOAA/National Hurricane Center

Meteorologists keeping an eye on Hurricane Sandy say the storm threatens to move up along the east coast of the United States and could mix with a wintery storm coming from the west to form a monster storm that has been informally dubbed “Frankenstorm.” The hurricane could reach the US coast by this weekend and when the two storms collide, it could continue to pound the eastern seaboard well into the week of Halloween.

Hurricane Sandy is now in the Caribbean as a Category 2 storm coastal areas from Florida to Maine will feel some effects, forecasters predict. The mix of the two storms could cause weather problems in the Washington DC area to New York city, some of the most populous areas of the US.

Satellite image of then Tropical Storm Sandy taken on October 23, 2012 as it was over the Caribbean Sea taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite. NASA image courtesy Jeff Schmaltz, LANCE MODIS Rapid Response Team at NASA GSFC.

Forecasters are saying this could be a major mess, with a 90 percent chance that the East will get steady gale-force winds, heavy rain, flooding and maybe snow.

While no one can positively predict what Hurricane Sandy will do and how the two storms might mesh into one monster storm, the Washington Post’s Capital Weather Gang has outlined the possible scenarios from worst case to where the storms collide and remained parked over the region for days, to best case, where Sandy heads to the northeast sparing the East Coast from a direct hit.

We’ll post additional updated satellite views as they become available.

Sources: NASA Earth Observatory, CBS News, Climate Central
, NOAA

New Updates for our Mobile App: Phases of the Moon

Phases of the Moon

Hi everyone, I just wanted to let you know that we’ve released several updates for both the Android and iPhone versions of the Universe Today mobile app: Phases of the Moon.

This is our handy mobile app that shows you a photorealistic view of the Moon’s current phase. You can seek forward and backwards in time, and drag the phases of the Moon around like you’re spinning a ball.

It’s both beautiful, and functional, and we’re really happy with it. And the people who have purchased the app on the Google Play store are really happy too. Check out the average 4.9 star ratings.

What’s New on Android
On Android, we’ve added several features, like Moon rise/set times, the distance to the Moon, updated second by second, and the ability to seek the next full Moon/new Moon. We’ve got a cool desktop widget and the ability to rotate into landscape mode.

What’s New on iPhones
For iPhones, we’ve completely rebuilt the app from scratch in native C code for iOS. This was an enormous amount of work, but it’s totally worth it.

Just like the Android version, you can drag the Moon’s terminator back and forth, pulling it through its phases. It’s useful – and cool. The iPhone version also has a monthly calendar view, and more.

Where you can buy it
The app is only $.99 on both the Google Play store or the iTunes store and is compatible with every device we’ve been able to get our hands on.

If you want to support Universe Today, buy a copy of our app, and tell your friends, it’ll really help us out.

Fraser Cain
Publisher, Universe Today

P.S. We’ve got an iPad version in development too, which should be available in a few weeks.

Exploded Rocket Fragments Could Endanger ISS and Future Missions

The International Space Station will have to look out for new debris from an exploded Russian rocket (NASA image)

Traveling through low-Earth orbit just got a little more dangerous; a drifting Russian Breeze M (Briz-M) rocket stage that failed to execute its final burns back on August 6 has recently exploded, sending hundreds of shattered fragments out into orbit.

Russia and the U.S. Defense Department (JFCC-Space) have stated that they are currently tracking 500 pieces of debris from the disintegrated Breeze M, although some sources are saying there are likely much more than that.

After a successful liftoff via Proton rocket on August 6 from the Baikonur Cosmodrome, the Breeze M upper stage’s engines shut off after only 7 seconds as opposed to the normal 18 minutes, leaving its fuel tanks filled with 10 to 15 tons of hydrazine and nitrogen tetroxide propellants. Its payloads, the Indonesian Telkom 3 and the Russian Express-MD2 communications satellites, were subsequently deployed into the wrong orbits as the Breeze M computer continued functioning.

Although originally expected to remain intact for at least another year, the rocket stage “violently disintegrated” on October 16. Evidence of the explosion was first observed by astronomer Robert McNaught at Australia’s Siding Springs Observatory, who counted 70 fragments visible within the narrow field-of-view telescope he was using for near-Earth asteroid observations.

The exact cause of the explosion isn’t known — it may have been sparked by an impact with another piece of space junk or the result of stresses caused by the Breeze M’s eccentric orbit, which varied in altitude from 265 to 5,015 kilometers (165 miles to 3,118 miles) with an inclination of 49.9 degrees.

This was the third such breakup of a partially-full Breeze M upper stage in orbit, the previous events having occurred in 2007 and 2010, and yet another Breeze M still remains in orbit after a failed burn in August 2011.

Most of the latest fragments are still in orbit at altitudes ranging from 250 to 5,000 km (155 to 3,100 miles), where they are expected to remain.

“Although some of the pieces have begun to re-enter, most of the debris will remain in orbit for an extended period of time.”

– Jamie Mannina, US State Department spokesperson

According to NASA the debris currently poses no immediate threat to the Space Station although the cloud is “believed not to be insignificant.” Still, according to a post on Zarya.com the Station’s course will periodically take it within the Breeze M debris cloud, and “will sometimes spend several days at a time with a large part of its orbit within the cloud.”

Source: RT.com and SpaceflightNow.com.  Inset image: the Breeze M (Briz-M) upper stage which disintegrated on Oct. 16. (Khrunichev)

Soyuz Docks to Space Station with New Crew and 32 Fish

Three new crew members — and 32 fish — are now at the International Space Station. Kevin Ford, Oleg Novitskiy and Evgeny Tarelkin joined their Expedition 33 crewmates after docking the Soyuz TMA-06M spacecraft to the Poisk module at 12:29 UTC (8:29 a.m. EDT) Thursday. They join Commander Suni Williams and Flight Engineers Aki Hoshide and Yuri Malenchenko who have been on board since July 17. Hatches between the International Space Station and the Soyuz will open later today after pressure and leak checks.


32 Asian medaka fish were also launched along with the crew on Tuesday from the from the Baikonur Cosmodrome, Kazakhstan. No word yet if all the fish survived the launch, but they will be placed in a new aquarium in the Japanese Kibo lab module for research on how the fish react to microgravity and space radiation. It should also be fun for the astronauts — and the public — to watch the fish swim about in the Aquatic Habitat.

The Aquatic Habitat, or AQH, is a Japanese Space Agency, or JAXA, facility that will enable the study of fish aboard the International Space Station. (JAXA)

You can read more about the Aquatic Habitat here.

Here’s Your Chance to Scream in Space

The STRaND-1 Smartphone Nanosatellite. Credit: Surry Satellite Technology

The first “Alien” movie was promoted with the celebrated tagline, “In space, no one can hear you scream.” But a group of students want to find out if this is really true, and they’re asking the public for help. Students from the University of Cambridge in the UK will be loading human screams onto a smartphone that will be launched into space in December 2012 on a nanosatellite. The screams will be played at maximum volume while the smartphone is in low Earth orbit, and at the same time as the phone will record the playback to test if it’s possible to capture the sound of screaming in space. They want the best screams possible, and so are inviting the public to submit their screams via video. There will also be public voting on the screams to determine which screams will go to space.

You know you’ve always wanted to do this…..

“Obviously, we’re not expecting to get much back, there may be some buzzing, but this is more about getting young people interested in satellites and acoustics, perhaps encouraging them to consider future study in science or engineering” said Edward Cunningham, a physics undergraduate at Churchill College and one of the members of the Cambridge University Space Flight group (CUSF).

What is actually being tested is verifying the capabilities of a smartphone to control a satellite in space. UK space company Surrey Satellite Technology and their STRaND (Surrey Training Research and Nanosatellite Demonstration) team ran a Facebook competition to find apps to go into orbit – and CUSF’s screaming app was one of the winners. STRaND-1 project is touted as the “World’s first SmartPhone Nanosatellite.”

Here’s a video showing the satellite:

The phone will run on Android’s open-source operating system, and a computer, built at the Surrey Space Centre, will test the vital statistics of the phone once in space. When all the tests are complete, the plan is to switch off the micro-computer and the smartphone will be used to operate parts of the satellite. At its lowest, the phone will orbit 400km above the Earth, roughly the same as the International Space Station.

“Modern smartphones are pretty amazing,” said Shaun Kenyon, the project manager at Surrey Satellite Technology. “We want to see if the phone works up there, and if it does, we want to see if the phone can control a satellite.”

To submit your scream, create a YouTube video and send it in at www.screaminspace.com.

Each video must be at most ten seconds long, and there will be ten winning screams which can be voted for by the public on the project’s website. Screams must be entered before midnight (UTC) on Sunday November 4, 2012. The winning videos will be announced later and loaded onto the phone for launch, which is scheduled before the end of this year.

Other winners in the STRaND-1 project were iTesa, which will record the magnitude of the magnetic field around the phone during orbit, a STRAND Data app will show satellite telemetry on the smartphone’s display which can be imaged by an additional camera on-board, and Postcards from Space and 360, a joint effort with an app that will take images using the smartphone’s camera and use the technology onboard the spacecraft to establish STRaND-1’s position.

Source: University of Cambridge
, Surrey Satellite

Astronomers Find Ultimate Oxymoron: A Small Supermassive Black Hole

There’s jumbo shrimp and accurate rumors; now there’s even a mini supermassive black hole. Astronomers have identified the smallest supermassive black hole ever observed, and while it’s considered a shrimp as far as supermassive black holes go, this guy is still pretty big: the mass of the black hole in galaxy NGC 4178 is estimated to be about 200,000 times the mass of our Sun. But it was a surprise that this galaxy had a black hole at all.

Astronomers using the Chandra X-Ray Observatory in conjunction with other observatories took a look at NGC 4178, a late-type spiral galaxy located about 55 million light years from Earth. It does not contain a bright central concentration, or bulge, of stars in its center, and so it was thought that perhaps this galaxy was one of the few that didn’t harbor a black hole.

With using Chandra’s X-Ray vision, as well as infrared data the NASA’s Spitzer Space Telescope and radio data from the Very Large Array, Nathan Secrest, from George Mason University and his team identified a weak X-ray source at the center of the galaxy, and also saw varying brightness at infrared wavelengths, suggesting that a black hole was actually in the center of NGC 4178 and was pulling in material from its surroundings. The same data also suggested that light generated by this infalling material is heavily absorbed by gas and dust and was therefore surrounding a black hole.

They were able to estimate the size of the black hole by using the known relationship between the mass of a black hole and the amount of X-rays and radio waves it generates.

While this is the lowest mass supermassive black holes ever observed, astronomers admit this is probably near the extreme low-mass end of being in the “supermassive” range. And as the team pointed out in their paper, there is increasing evidence that several late-type galaxies do host supermassive black holes, and that a classical bulge is not a requirement for a supermassive black hole to form and grow.

Read the team’s paper.

Source: NASA

Dark Matter Halos May Contain Stars

The image on the left shows a portion of our sky, called the Boötes field, in infrared light, while the image on the right shows a mysterious, background infrared glow captured by NASA’s Spitzer Space Telescope in the same region of sky.Credit: NASA/JPL-Caltech

What causes the mysterious glow of radiation seen across the entire sky by infrared telescopes? The answer may lie in a combination of concepts that are relatively new to the field of astronomy, and are somewhat controversial, too. Rogue stars that have been kicked out of galaxies may be embedded in dark matter halos that have been theorized to surround galaxies. While these dark matter halos have previously only been detected indirectly by observing their gravitational effects, they may also hold the source of the enigmatic background glow of radiation.

“The infrared background glow in our sky has been a huge mystery,” said Asantha Cooray of the University of California at Irvine, lead author of the new research published today in the journal Nature. “We have new evidence this light is from the stars that linger between galaxies. Individually, the stars are too faint to be seen, but we think we are seeing their collective glow.”

The collective glow is from the “interhalo” of dark matter halos that pervade the Universe, and may answer the big question of why the amount of light observed exceeds the amount of light emitted from known galaxies.

“Galaxies exist in dark matter halos that are much bigger than the galaxies; when galaxies form and merge together, the dark matter halo gets larger and the stars and gas sink to the middle of the halo,” said Edward L. (Ned) Wright from UCLA and a member of the team that used the Spitzer Space Telescope to seek out the source of the infrared light. “What we’re saying is one star in a thousand does not do that and instead gets distributed like dark matter. You can’t see the dark matter very well, but we are proposing that it actually has a few stars in it — only one-tenth of 1 percent of the number of stars in the bright part of the galaxy. One star in a thousand gets stripped out of the visible galaxy and gets distributed like the dark matter.”

The dark matter halo is not totally dark, Wright said. “A tiny fraction, one-tenth of a percent, of the stars in the central galaxy has been spread out into the halo, and this can produce the fluctuations that we see.”

In large clusters of galaxies, astronomers have found much higher percentages of intra-halo light, as large as 20 percent, Wright said.

For this study, Cooray, Wright and colleagues used the Spitzer Space Telescope to produce an infrared map of a region of the sky in the constellation Boötes. The light has been travelling to us for 10 billion years.

“Presumably this light in halos occurs everywhere in the sky and just has not been measured anywhere else,” said Wright, who is also principal investigator of NASA’s Wide-field Infrared Survey Explorer (WISE) mission.

“If we can really understand the origin of the infrared background, we can understand when all of the light in the universe was produced and how much was produced,” Wright said. “The history of all the production of light in the universe is encoded in this background. We’re saying the fluctuations can be produced by the fuzzy edges of galaxies that existed at the same time that most of the stars were created, about 10 billion years ago.”

The light appears at a blotchy pattern in the Spitzer images.

The new finding are at odds with a study that came out this summer. Alexander “Sasha” Kashlinsky of NASA’s Goddard Space Flight Center and his team looked at this same patch of sky with Spitzer and proposed the light making the unusual pattern was coming from the very first stars and galaxies.

In the new study, Cooray and colleagues looked at data from a larger portion of the sky, called the Bootes field, covering an arc equivalent to 50 full Earth moons. These observations were not as sensitive as those from the Kashlinsky group’s studies, but the larger scale allowed researchers to analyze better the pattern of the background infrared light.

“We looked at the Bootes field with Spitzer for 250 hours,” said co-author Daniel Stern of NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Studying the faint infrared background was one of the core goals of our survey, and we carefully designed the observations in order to directly address the important, challenging question of what causes the background glow.”

The team concluded the light pattern of the infrared glow is not consistent with theories and computer simulations of the first stars and galaxies. Researchers say the glow is too bright to be from the first galaxies, which are thought not to have been as large or as numerous as the galaxies we see around us today. Instead, the scientists propose a new theory to explain the blotchy light, based on theories of “intracluster” or “intrahalo” starlight.

The team said more research is needed to confirm these findings, adding that the James Webb Space Telescope should help.

“The keen infrared vision of the James Webb Telescope will be able to see some of the earliest stars and galaxies directly, as well as the stray stars lurking between the outskirts of nearby galaxies,” said Eric Smith, JWST’s deputy program manager at NASA Headquarters in Washington. “The mystery objects making up the background infrared light may finally be exposed.”

Sources: NASA, UCLA

Zoom Through 84 Million Stars in Gigantic New 9-Gigapixel Image

The image above is a portion of a new gigantic nine-gigapixel image from the VISTA infrared survey telescope at ESO’s Paranal Observatory of the central portion of the Milky Way Galaxy. The resolution of this image is so great, that if it was printed out in the resolution of a typical book, it would be 9 meters long and 7 meters tall! Click on the image to have access to an interactive, zoomable view of the more than 84 million stars that astronomers have now catalogued from this image. The huge dataset contains more than ten times more stars than previous studies and astronomers say it is a major step forward for the understanding of our home galaxy.

“By observing in detail the myriads of stars surrounding the centre of the Milky Way we can learn a lot more about the formation and evolution of not only our galaxy, but also spiral galaxies in general,” said Roberto Saito from Pontificia Universidad Católica de Chile, Universidad de Valparaíso, lead author of the study.

UPDATE: The image is also available on Gigapan, which provides a very smooth interface in which to explore and zoom around the image.

The dataset contains a treasure trove of information about the structure and content of the Milky Way. One interesting result revealed in the new data is the large number of faint red dwarf stars, which are prime candidates to search for small exoplanets using the transit method. Using this dataset, astronomers can also study the different physical properties of stars such as their temperatures, masses and ages.

To help analyze this huge catalogue, the brightness of each star is plotted against its color for about 84 million stars to create a color–magnitude diagram. This plot contains more than ten times more stars than any previous study and it is the first time that this has been done for the entire bulge.

This infrared view of the central part of the Milky Way from the VVV VISTA survey has been labelled to show a selection of the many nebulae and clusters in this part of the sky. Credit: ESO/VVV Consortium, Acknowledgement: Ignacio Toledo, Martin Kornmesser

“Each star occupies a particular spot in this diagram at any moment during its lifetime,” said Dante Minniti, also from Pontificia Universidad Catolica de Chile, Chile, co-author of the study. “Where it falls depends on how bright it is and how hot it is. Since the new data gives us a snapshot of all the stars in one go, we can now make a census of all the stars in this part of the Milky Way.”

Getting such a detailed view of the central region of our galaxy is not an easy task.

“Observations of the bulge of the Milky Way are very hard because it is obscured by dust,” said Minniti. “To peer into the heart of the galaxy, we need to observe in infrared light, which is less affected by the dust.”

The team used ESO’s 4.1-metre Visible and Infrared Survey Telescope for Astronomy (VISTA), which has a wide field of view. This new image is just one of six public surveys carried out with VISTA.

“One of the other great things about the VVV survey is that it’s one of the ESO VISTA public surveys. This means that we’re making all the data publicly available through the ESO data archive, so we expect many other exciting results to come out of this great resource,” said Saito.

Source: ESO

Incredible Astrophoto Mosaic: Via Láctea in Alentejo

This astounding mosaic of the Milky Way is comprised of 104 separate images and was taken in Elvas, Alentejo, Portugal by astrophotographer Miguel Claro. Visible is the arm of our galaxy the Milky Way, as well as many constellations like Cygnus, Cassiopeia, Sagittarius, and Scorpius. Look closely and find deep sky objects like Andromeda Galaxy. The image was taken in a portion of the Great Lake Alqueva Dark Sky Reserve in Portugal, a site designated as a “Starlight Tourism Destination.” The region has good atmospheric conditions for stargazing for more than 250 nights of the year, and special lodging is available just for astro-tourists.

This mosaic was taken on July 24, 2012, with a Canon 50D, 15 seg. a f/2.8, ISO 2000, Dist. Focal: 35 mm

See more of Miguel’s dark sky images at his website.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Carnival of Space #272

This week’s Carnival of Space is hosted by our very own John Williams at his very own Starry Critters website.

So, go visit John’s award-winning website and give him some Carnival love! –click here to read Carnival of Space #272

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.