Book Review: “Planetfall” by Michael Benson

Review written by Lois Merritt

Armchair astronomer alert! If you love looking at the images sent back by the spacecraft traveling throughout our solar system, Planetfall by Michael Benson is truly an amazing book, with extra-amazing pictures. The large 15 X 12 inch pages provide great, eye-popping views of some of the most spectacular images of the planets, moons, and other bodies that make up our cosmic neighborhood. Benson has a knack for picking out the ‘best of the best’ from our interplanetary robotic photographers.

Each section of the book starts off with an introduction, a brief look at the area of the solar system involved in that chapter, and the probes that visited them. At the end of the book, there are full captions of each picture, including complete descriptions of what it is you are looking at and what spacecraft took it. The sections are: Earth and the Moon, The Sun, Mars, Jupiter, Saturn and the Asteroids and Comets.

The pictures come from the the latest landers and probes that have launched since the start of the 21st century. This includes Spirit and Opportunity, Cassini, Messenger, Aqua, the ISS crews, Lunar Reconnaissance Orbiter, Solar Dynamics Observatory, among others. A space enthusiast might be familiar with some of these pictures from seeing them online, but to have them bound in a large size book, where they can be examined closely, and even pulled out in some cases, is one of the things I love about this book.

The images were compiled by Michael Benson, a writer, filmmaker, and photographer, who is no stranger to astronomical imagery. His previous books include book Far Out: A Space-Time Chronicle, and Beyond: Visions of the Interplanetary Probes, which include images from previous spacecraft and ground-based observatories.

On a personal note, the Mars section was my total and utter favorite, especially given the lot of super pictures from the rovers. However, I could be a bit biased on that, given Mars has always been my favorite…

This is a great collection of images, and paging through the book is a perfect way to transport yourself whenever you need to get away from it all.

Gorgeous Glenelg – ‘Promised Land’ Panorama on Mars

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. This is a cropped version of the full mosaic as assembled from 75 images acquired by the Mastcam 100 camera. See full mosaic below. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

NASA’s 1 ton mega rover Curiosity is simultaneously eating Martian dirt and busily snapping hundreds of critical high resolution color photos of her surroundings at the gorgeous locale of tasty terrain of outcrops the scientists call the ‘Promised Land’ – a place that will help unveil the watery mysteries of ancient Mars.

11 weeks into Curiosity’s 2 year primary mission she finds herself at a spot dubbed Glenelg – her first major science destination – and which lies at the natural junction of three types of geologically varied terrain.

See our detailed color panoramic mosaics of the road ahead inside Glenelg as the robot methodically scans around at the inviting mix of geologic features never before investigated by a robotic emissary from Earth.

Glenelg offers an unprecedented opportunity for a boon of discoveries to the rover science team long before she arrives at her ultimate destination – the 3.4 mile (5.5 km) high layered mountain named Mount Sharp.

Image Caption: Panoramic mosaic shows gorgeous Glenelg snapped by Curiosity from Rocknest windblown dune on Sol 64 (Oct. 10) with eroded crater rim and base of Mount Sharp in the distance. This mosaic as assembled from 75 images acquired by the high resolution Mastcam 100 camera on Sol 64. Click to enlarge. Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Image Caption: Panorama shows beautiful vista of distant eroded rim of Gale Crater and breathtaking foreground terrain. This mosaic was assembled from high resolution Mastcam 100 images taken by Curiosity on Sol 50 (Sep. 26). Credit: NASA/JPL-Caltech/MSSS/Ken Kremer/Marco Di Lorenzo

Curiosity Project Scientist John Grotzinger scientist explained to me that the team is using the Mastcam 100 imagery to come up with options for the upcoming driving and exploration plan to be carried out over at least the next few weeks.

“We are at Glenelg and consider ourselves to be in the ‘Promised Land’. We took the images in the direction we will be traveling,” said Curiosity Project Scientist John Grotzinger of the California Institute of Technology during a media teleconference on Oct. 18.

“We mostly see outcrops there and that’s the reason we took those prioritized images,” he said about the Mastcam 100 imagery from Sols 64 and 66.

“These images will help guide us and give the team options in terms of what I am calling ‘tours’. The team comes up with hypothesis based on the images about observations they would like to make and where they would like to drive.”.

“Then we will integrate the different observations to come up with a model we hope for how the Glenelg area was put together geologically. And then that will inform ultimately our selection for which rock to drill into for the first time,” explained Grotzinger.

Image Caption: Curiosity scoops up Martian soil sample on Sol 66 (Oct 12. 2012). Navcam camera image mosaic shows the robotic arm at work during scooping operations. Curiosity later delivered the first soil sample to the circular CheMin sample inlet at the center on the rover deck. Tiny trenches measure about 1.8 inches (4.5 centimeters) wide. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Image caption: Three bite marks left in the Martian ground by the scoop on the robotic arm of NASA’s Mars rover Curiosity are visible in this image taken by the rover’s right Navigation Camera during the mission’s 69th Martian day, or sol (Oct. 15, 2012). Credit: NASA/JPL-Caltech

Curiosity is currently parked at a windblown ripple named ‘Rocknest’. It afforded the perfect type of dusty martian material to first test out the scoop and clean the sample processing system twice before finally inhaling the first sample of Martian sand into the robots Chemistry and Mineralogy (CheMin) analytical instrument several sols ago to determine what minerals it contains.

Results from the Red Planet soil poured into the CheMin experiment located on the rover’s deck are expected in the coming week or so.

Tosol is Sol 75. Curiosity has taken nearly 20,000 pictures so far and driven a total distance of about 1,590 feet (484 meters).

Ken Kremer

See more of our Curiosity Mars mosaics by Ken Kremer & Marco Di Lorenzo at NBC News Cosmic log

…..
Nov. 16: Free Public Lecture by Ken Kremer about “Curiosity and the Search for Life in 3 D” and more at Union County College and Amateur Astronomers Inc in Cranford, NJ.

Surprise! Galaxies Still Evolving in Present Universe

A giant spiral of gas dust and stars, Messier 101 spans 170,000 light-years and contains more than a trillion stars. Astronomers have uncovered a surprising trend in galaxy evolution where galaxies like M101 and the Milky Way Galaxy continued to develop into settled disk galaxies long after previously thought. Credit: NASA/ESA Hubble

Graceful in their turnings, spiral galaxies were thought to have reached their current state billions of years ago. A study of hundreds of galaxies, however, upsets that notion revealing that spiral galaxies, like the Andromeda Galaxy and our own Milky Way, have continued to change.

“Astronomers thought disk galaxies in the nearby universe had settled into their present form by about 8 billion years ago, with little additional development since,” said Susan Kassin, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Md., and the study’s lead researcher in a press release. “The trend we’ve observed instead shows the opposite, that galaxies were steadily changing over this time period.”

A study of 544 star-forming galaxies observed by the Earth-based Keck and Hubble Space Telescope shows that disk galaxies like our Milky Way Galaxy unexpectedly reached their current state long after much of the universe’s star formation had ceased. Credit: NASA’s Goddard Space Flight Center

Astronomers used the twin 10-meter earth-bound W.M. Keck Observatory atop Hawaii’s Mauna Kea volcano and NASA’s Hubble Space Telescope to study 544 star-forming galaxies. Farther back in time, galaxies tend to be very different, say astronomers, with random and disorganized motions. Nearer to the present, star-forming galaxies look like well-ordered disk-shaped systems. Rotation in these galaxies trumps other internal, random motions. These galaxies are gradually settling into well-behaved disks with the most massive galaxies always showing higher organization.

This plot shows the fractions of settled disk galaxies in four time spans, each about 3 billion years long. There is a steady shift toward higher percentages of settled galaxies closer to the present time. At any given time, the most massive galaxies are the most settled. More distant and less massive galaxies on average exhibit more disorganized internal motions, with gas moving in multiple directions, and slower rotation speeds. Credit: NASA’s Goddard Space Flight Center

The sampling of galaxies studied, from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey, ranged between 2 billion and 8 billion light-years from Earth with masses between 0.3 percent to 100 percent that of our own Milky Way Galaxy. Researchers looked at all galaxies in this time range with emission lines bright enough to determine internal motions. Researchers focused on emission lines characteristically emitted by gas within the galaxy. The emission lines not only tell scientists about the elements that make up the galaxies but also red shifting of emission lines contains information on the internal motions and distance.

“Previous studies removed galaxies that did not look like the well-ordered rotating disks now common in the universe today,” said co-author Benjamin Weiner, an astronomer at the University of Arizona in Tucson. “By neglecting them, these studies examined only those rare galaxies in the distant universe that are well-behaved and concluded that galaxies didn’t change.”

In the past 8 billion years, mergers between galaxies, both large and small, has decreased. So has the overall rate of star formation and associated disruptions due to supernovae explosions. Both factors may play a role in the newly found trend, say scientists.

The Milky Way Galaxy may have gone through the same chaotic growing and changing as the galaxies in the DEEP2 sample before settling into its present state at just about the same time the Sun and Earth were forming, say team scientists. By observing the pattern, astronomers can now adjust computer simulations of galaxy evolution until they replicate the observations. Then the hunt will be on to determine the physical processes responsible for the trend.

This cosmological simulation follows the development of a single disk galaxy throughout the life of the Universe; about 13.5 billion years. Red colors show old stars, young stars show as white and bright blue while the distribution of gas shows as a pale blue. The computer-generated view spans about 300,000 light-years. The simulation, running on the Pleiades supercomputer at NASA’s Ames Research Center in Moffett Field, California, took about 1 million CPU hours to complete. Credit: F. Governato and T. Quinn (Univ. of Washington), A. Brooks (Univ. of Wisconsin, Madison), and J. Wadsley (McMaster Univ.).

A paper detailing the findings will be published in the October 20, 2012 The Astrophysical Journal.

Source: NASA

Go Inside the Dragon Capsule with New Interactive Panorama

Wish you could be on the International Space Station right now, helping to unload the SpaceX Dragon capsule that is berthed to the Harmony Node? A new interactive panorama from SpaceX allows the closest experience of being inside Dragon. Inside, you can see all the storage compartments, and the panorama lets you zoom around inside as if you were floating in Zero-G. If you watch out the window port, the view will change from seeing Earth, to having the protective shutters closed and then (sadly) you end up back on Earth inside the SpaceX Hanger at Cape Canaveral. The panorama is a fun Friday diversion, but make sure you share it with your favorite budding astronaut — kids will love it! Click on the image above to get to the panorama, or use this link.

Mars Sample Return Mission? Naaah… Just Beam Back Martian DNA

Artist concept of a Mars Sample Return mission. Credit: Wickman Spacecraft & Propulsion.

A Mars sample return mission has long been a dream and goal of many planetary scientists. Getting Martian soil samples back here on Earth would allow them to be studied in ways rovers and landers just can’t do. Of course, the big reason for getting samples of Mars back to Earth would be to really determine if there ever was – or is — life on Mars. But a sample return mission would be “hellishly difficult,” Steve Squyres of the MER mission once said.

But forget sending a lander, scooping up samples, putting them in a capsule and somehow rocketing them back to Earth. Human genome sequencer Craig Venter wants to send a DNA sequencing machine Mars, and beam back the DNA data to Earth. Not to be outdone, Jonathan Rothberg, founder the DNA sequencing company Ion Torrent, is working on getting his Personal Genome Machine to Mars and sending back the data.

In articles in the Los Angeles Times and MIT’s Technology Review this week the two biologists seem to be in a race, of sorts, to see who could send their DNA machines to Mars first. Venter was quoted as saying, “There will be life forms there,” Venter said, and wants to build a “biological teleporter.”

Rothberg is looking to be part of a NASA-funded project at Harvard and MIT called SET-G, or “the search for extraterrestrial genomes.”

An MIT researcher involved in the project, Christopher Carr, told Technology Review that his lab is working to shrink Ion Torrent’s machine from 30 kilograms down to just three kilograms so that it can fit on a NASA rover, and they are testing how well the device can withstand the heavy radiation it would encounter on the way to Mars.

With NASA’s current budget woes, a sample return mission likely couldn’t happen until around 2030. But another Mars rover mission may be slated for 2018, if all goes well, and a DNA sequencer could potentially be part of the mission, the two biologists said. And an in-situ DNA sequencer avoids the potential pitfalls of a sample return mission.

“People are worried about the Andromeda strain,” Venter said. “We can rebuild the Martians in a P-4 spacesuit lab instead of having them land in the ocean.”

Sources: Los Angeles Times, Technology Review

Galactic Struggle Captured by Gemini Observatory

The Gemini Multi-Object Spectroraph on the Fredrick C. Gillett Gemini North Telescope on Mauna Kea in Hawaii captured this beautiful image of the ring galaxy NGC 660. The galaxy lies about 40 million light-years from Earth toward the constellation Pisces the Fishes. The field of view of the zoomed out image is 9.3×5.6 arcminutes. North is to the right and east is up. Total exposure for the image for all filters was 1,620 seconds. Credit: Gemini Observatory/AURA.

Strings of gas and dust, the wreckage of a colossal galactic struggle, lie strewn and littered about polar-ring galaxy NGC 660 in this new image from the Gemini Observatory.

Zoom around the ring of stars, stop to dive into massive star clusters and pink nebulae rich with the birth of new stars. Astronomers have found only a few of these bizarre objects. Most are made up of an early-type spiral galaxy, known as a lenticular galaxy, surrounded by a vast ring of stars extending for tens of thousands of light-years nearly perpendicular to the plane of the main galaxy. NGC 660, however, is the only polar-ring galaxy with a late-type lenticular galaxy as host.

Continue reading “Galactic Struggle Captured by Gemini Observatory”

2012 Orionid Meteor Shower Peaks This Weekend

A composite image of every meteor captured in a viewing session for the 2011 Orionid Meteor shower at Middle Falls, near Mount Shasta in California. Credit: Brad Goldpaint/Goldpaint Photography. Used by permission.

The Earth will soon be traveling through the stream of debris left behind by Halley’s Comet, providing the annual sky show called the Orionid Meteor Shower. This usually reliable meteor shower is expected to peak this coming weekend, October 20-21, 2012, and should produce about 25 meteors per hour, according to the McDonald Observatory at The University of Texas in Austin.

How can you see the show?

Northern hemisphere sky map of the Orionid meteor shower. Credit: StarDate

The meteors for the Orionid shower meteors appear to fall from above the star Betelgeuse, the bright orange star marking the shoulder of the constellation Orion, so if you live in the northern hemisphere look towards the southeast, and in the southern hemisphere look towards the northeast during the best viewing times. The best viewing times are usually about midnight to 2 am, or in the hours just before dawn in your area. The quarter Moon will have set about midnight, so it won’t be a hindrance.

As always, for the best view get away from city lights. If your backyard is lit by too many streetlights, look to go to state or city parks or other safe, dark sites. Lie on a blanket or reclining chair to get a full-sky view. If you can see all of the stars in the Little Dipper, you have good dark-adapted vision, say the folks at StarDate, a bi-monthly publication put out by the McDonald Observatory.

Note: the lead image is called ‘Nighted Vail’ by Brad Goldpaint. It is a composite consisting of every meteor captured during the night and includes the Milky Way appearing to ‘crash’ into the illuminated falls. The image was Grand Prize Winner of Outdoor Photographer Magazine’s 3rd Annual Great Outdoors Photography Contest and published in their July 2012 issue.

Source: StarDate

New ‘Shiny’ Objects Found by Curiosity Rover Are Likely Indigenous

A bright particle found inside a scoop hole created by the Curiosity rover. Credit: NASA/JPL-Caltech.

Last weekend, the Mars Curiosity rover scooped out a few “bites” in the small, sandy dune known as Rocknest and inside the second scoop hole was a small, shiny particle, as we reported earlier. This speck – and others like it in the pit — is different than the previous object that looked like plastic and may have come from the rover itself. After some analysis, the MSL science team thinks the shiny particle is just part of the soil on Mars.

“As the science team thought about it more and more, the bright object is about the same size as the granules that it’s in and it is not uniformly bright,” said John Grotziner, MSL project scientist. “We went back and forth, and the majority of the science team thinks this is indigenous to Mars.”

And so, Grotziner said, these shiny objects likely represent a science opportunity rather than an engineering hazard.

One hypothesis that the specks are natural geologic material that might have a broken-off, flat surface called a cleavage that could be reflecting sunlight, making it appear bright.

The size of the bright fleck is about 1 mm, so it is “pretty representative of other objects there,” Grotzinger said, which range from half a millimeter to 2 millimeters.

Grotzinger said they will use the ChemCam instrument to take a closer look at the shiny specks. “We are going to shoot it with ChemCam, a remote sensing tool that has spectacular spatial resolution,” he said, “and aim it right on that fleck. Then we’ll aim it on another darker grain and try to decide if it is a different class of mineral.”

Three ‘bite marks’ left in the Martian ground by the scoop on the robotic arm the Curiosity rover are visible in this image taken by the rover’s right Navigation Camera during the mission’s 69th Martian day, or sol (Oct. 15, 2012). Credit: NASA/JPL-Caltech

One way the team tested if the shiny flecks were something that may have come from the rover was that after pictures were taken of the area, they vibrated the rover for about an hour and then took more images. Nothing had changed in the surrounding area, with no additional flecks visible on the ground.

After the shiny fleck was initially seen, the team dumped out the scoop they had taken over concerns it was another foreign object, perhaps from the rover or from the Entry Descent and Landing of the rover, as was determined for previous, plastic-looking object found on Mars. But now they are planning to look closer at both the dumped-out scoop of soil and the pit to analyze the shiny flecks.

The big news that Grotzinger reported today during a press briefing was that they just received confirmation that the rover successfully placed a small sample of soil inside Chemistry and Mineralogy (CheMin) instrument and soon will be analyzing the sample to determine what minerals it contains.

“Our mobile laboratory eats dirt,” Grotzinger said, “whether we scoop it up or drill a hole in rock, that’s what keeps us going, that’s what we live on.”

They also placed a portion of the third scoop of soil taken onto the observation tray and took an image of it with the Mastcam.
“We see two components in the soil,” Grotzinger said. “One is a thin layer of lighter colored, finer grained material. Then there are some darker grains, which represent the courser fraction that is available.”

A closeup look at the sample of Martian regolith that was dumped on an observation tray on the rover. The tray is 7.8 centimeters (3 inches) in diameter. Credit: NASA/JPL-Caltech

Grotzinger said he hopes to be able to report within the week of the results of the first analysis of Martian soil from CheMin. Also, the SAM laboratory (Sample Analysis at Mars) is scheduled to take its first sample next week. SAM is a suite of instruments that investigate the past and present ability of Mars to support life.

They were slowed in slightly in getting the first sample inside ChemMin not only by the discovery of the bright flecks, but also by a safing event that took place on the Mars Reconnaissance Orbiter, which relays the data from the rover to Earth. The orbiter is now back to full functionality.

NASA’s latest report about the rover can be read here.

Our Gorgeous, Graceful, Gradient Sun

Here’s a mesmerizing video from the folks over at NASA’s Goddard Space Flight Center’s visualization studio showing the Sun in a whole new light… well, a reprocessed light anyway.

Using what’s called a gradient filter, images of the Sun can be adjusted to highlight the intricate details of its dynamic atmosphere. Magnetic activity that’s invisible to human vision can be brought into view, showing the powerful forces in play within the Sun’s corona and helping researchers better understand how it affects space weather. (Plus they sure are pretty!)

Compiled into a video, these images reveal the hidden beauty — and power — of our home star in action.

Video courtesy NASA/GSFC