Why Did the Space Shuttle Cross the Road?

Space Shuttle Endeavour on the streets of Los Angeles. Credit: Scott Maxwell

Why did Space Shuttle Endeavour cross the road? To get to the California Science Center, of course! About midnight local time, Endeavour began a 19-km (12-mile), two-day trip down the streets of LA as it moves from the Los Angeles International Airport to the its permanent museum home at the California Science Center. Thousands of people took the opportunity to see the rare sight of a space shuttle traveling down a street and waited in the predawn darkness to get a glimpse of the slow-moving shuttle — which topped out at speeds of 3.2 km/h (2 mph) instead of its usual 28,000 km/h (17,500 mph) when the space shuttle was in Earth orbit. Lots of onlookers snapped photos, including Scott Maxwell from JPL, one of the Mars rover drivers, who generously shared a few of his pictures, as its not everyday we get to see such sights. “Astonishingly, I think Endeavour was even slower than the rovers,” Scott said via Twitter. “Not when in motion, but it took *lots* of breaks.”

See more images from Scott and NASA below:

“Maybe this panorama will give you a sense of the excited, bustling crowd around Endeavour,” said photographer Scott Maxwell.

See Scott’s Twitter feed for more images and comments about his early-morning shuttle-watching experience.

There were lots of Tweets about Endeavour’s journey, but this might be the best picture showing the shuttle in amongst the regular goings on in LA:

The space shuttle Endeavour is seen atop the Over Land Transporter (OLT) after exiting the Los Angeles International Airport on its way to its new home at the California Science Center in Los Angeles, Friday, Oct. 12, 2012. Credit: NASA/Bill Ingalls

The driver of the Over Land Transporter, who uses a joy stick to control the shuttle, is seen as he maneuvers the space shuttle Endeavour on the streets of Los Angeles. Credit: NASA/Bill Ingalls.

To make room for the five-story-tall shuttle and its 24-meter (78-foot) wingspan, about 400 trees were chopped down, overhead wires were raised, and steel plates were laid down to protect the streets and underground utilities.

Endeavour will mostly travel on wide boulevards. The cost of the move is estimated at $10 million.

You can read more details in this Yahoo News article.

And I totally stole the headline from NASA’s Bob Jacobs from his comments on Twitter.

Cookie Monster Crater on Mercury

Big Bird has been grabbing the headlines lately, and its time for another Muppet to get a little face time. So, here’s Cookie Monster’s face, plastered across the surface of Mercury. Well, it looks like it, anyway. This is an image from the MESSENGER spacecraft, orbiting Mercury, and the folks at Goddard Space Flight Center suggested this superposition of younger craters on older craters (in this case two smaller and shadowed craters that look like googly eyes placed on the rim of an older crater) appears to resemble everyone’s favorite blue, Sesame Street, cookie-loving monster.

While most of us can enjoy this image for the pareidolia effect of seeing a familiar face (and start salivating about cookies), what scientists are looking at here are craters. Specifically in this image, the Law of Superposition allows scientists to determine which surface features pre- and postdate others, leading to a better understanding of the geological history of different regions of Mercury’s surface.

Or, in Sesame Street lingo, which comes first?

Also, C is for crater.

The MESSENGER spacecraft acquired this image on August 29, 2012.

Image credit: Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington. Click image for access to higher resolution versions.

Hat Tip: @NASAGoddard

Titan’s Surface the “Consistency of Soft, Damp Sand”

Artist depiction of Huygens landing on Titan. Credit: ESA

Artist concept of the Huygens probe landing on the surface of Titan. Credit: ESA

Even though the Huygens probe landed on Titan back in 2005 and transmitted data for only about 90 minutes after touchdown, scientists are still able to eke information out about Titan from the mission, squeezing all they can from the data. The latest information comes from reconstructing the way the probe landed, and an international group of scientists say the probe “bounced, slid and wobbled” after touching down on Saturn’s moon, which provides insight into the nature of the Titan’s surface.

“A spike in the acceleration data suggests that during the first wobble, the probe likely encountered a pebble protruding by around 2 cm from the surface of Titan, and may have even pushed it into the ground, suggesting that the surface had a consistency of soft, damp sand,” describes Dr. Stefan Schröder of the Max Planck Institute for Solar System Research, lead author of a paper recently published in Planetary and Space Science.

An animation of the landing is below.

Schröder and his team were able to reconstruct the landing by analyzing data from different instruments that were active during the impact, and in particular they looked for changes in the acceleration experienced by the probe.

The instrument data were compared with results from computer simulations and a drop test using a model of Huygens designed to replicate the landing.

The scientists think that Huygens landed in something similar to a flood plain on Earth, but that it was dry at the time. The analysis reveals that, on first contact with Titan’s surface, Huygens dug a hole 12 cm deep, before bouncing out onto a flat surface.

The probe, tilted by about 10 degrees in the direction of motion, then slid 30–40 cm across the surface.

It slowed due to friction with the surface and, upon coming to its final resting place, wobbled back and forth five times. Motion subsided about 10 seconds after touchdown.

Earlier studies of data from Huygens determined the surface of Titan to be quite soft. The new study goes one step farther, the team said, to demonstrate that if something put little pressure on the surface, the surface was hard, but if an object put more pressure on the surface, it sank in significantly.

“It is like snow that has been frozen on top,” said Erich Karkoschka, a co-author at the University of Arizona, Tucson. “If you walk carefully, you can walk as on a solid surface, but if you step on the snow a little too hard, you break in very deeply.”

Had the probe impacted a wet, mud-like substance, its instruments would have recorded a “splat” with no further indication of bouncing or sliding. The surface must have therefore been soft enough to allow the probe to make a sizable depression, but hard enough to support Huygens rocking back and forth.

This raw image was returned by the Descent Imager/Spectral Radiometer camera onboard the European Space Agency’s Huygens probe after the probe descended through the atmosphere of Titan. It shows the surface of Titan with ice blocks strewn around. Credit: ESA/NASA/University of Arizona

“We also see in the Huygens landing data evidence of a ‘fluffy’ dust-like material – most likely organic aerosols that are known to drizzle out of the Titan atmosphere – being thrown up into the atmosphere and suspended there for around four seconds after the impact,” said Schröder.

Since the dust was easily lifted, it was most likely dry, suggesting that there had not been any rain of liquid ethane or methane for some time prior to the landing.

“You don’t get rain very often on Titan,” said Karkoschka, explaining that heavy downpours of liquid methane may occur decades or centuries apart. “When they do occur, they carve the channels we see in the pictures Huygens recorded as it approached the surface. The top layer at the landing site was completely dry, suggesting it hadn’t rained in a long time,” he added.

Karkoschka said that when Huygens landed, its downward-shining lamp warmed up the ground and caused methane to evaporate,” Karkoschka explained. “That tells us that just below the surface, the ground probably was wet.”

It has been suggested in earlier studies that the Huygens probe landed near the edge of one of Titan’s hydrocarbon lakes. Several hundred lakes and seas have been observed with the Cassini orbiter’s radar instruments, but with surface temperatures of minus 179 degrees Celsius (minus 290 degrees Fahrenheit), Titan does not have bodies of water. Instead, liquid hydrocarbons in the form of methane and ethane are present on the moon’s surface, with complex carbons making up dunes and other features on the surface.

Source: ESA

Can a New Camera Unravel the Nature of Dark Energy?

The 570 megapixel Dark Energy Camera. Credit: Fermilab

Scientists have great expectations for the newly operational Dark Energy Camera, which may significantly advance our understanding of the mysterious force expanding the Universe at an ever accelerating rate. Find out more about this highly anticipated new camera and what it is expected to reveal during live webcast from the Kavli Foundation. You’ll be able to ask questions to Fermilab scientists Brenna Flaugher, project manager for the Dark Energy Camera, and Joshua Frieman, director of the Dark Energy Survey. The webcast will be on October 12, 10-10:30 am PDT (17:30 UTC). Viewers may submit questions via Twitter using the #KavliAstro hashtag, or email to [email protected].

Watch the webcast below, or at this link.

If you miss the webcast live, afterwards you’ll be able to watch a replay on the player below, as well.

The new camera is mounted on the Blanco 4-meter telescope at the National Science Foundation’s Cerro Tolollo InterAmerican Observatory (CTIO) in Chile.

It is the widest field optical imager in astronomy today, and is capable of detecting light from over 100,000 galaxies up to 8 billion light years away. The instrument is composed of an array of 62 charged-coupled devices, and new technology will allow scientists from around the world to investigate the studies of asteroids in our solar system to the understanding of the origins and the fate of the Universe.

It is expected that in just over five years, astronomers will be able to create detailed color images of one-eighth of the sky, to discover and measure 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae.

“The Dark Energy Camera will solve the mystery of dark energy in a systematic manner,” said Andrea Kunder of CTIO in a podcast on 365 Days of Astronomy. “The idea is to observe four different probes of dark energy. You can’t see dark energy so there are four different probes of dark energy that DECam will be observing. First, DECam will observe type Ia supernova and baryon acoustic oscillations and this will be to constrain the expansion of the universe. And then galaxy clusters and weak lensing will also be observed to measure both the expansion of the universe and the growth of large scale structures. Then we can compare the results from these first two probes and the last two probes and this can reveal our understanding of gravity and intercomparisons of the results will provide cross checks and bolster confidence in the findings.”

Asteroid 2012 TC4 to Buzz Earth on October 12

Asteroid 2012 TC4 as seen by the Remanzacco Observatory team of Ernesto Guido, Giovanni Sostero, Nick Howes on Oct. 9, 2012.

Asteroid 2012 TC4 will give Earth a relatively close shave on October 12, 2012, passing at just a quarter of the distance to the orbit of the Moon. Discovered by Pan-STARRS observatory in Hawaii just last week on October 4, 2012, and it will pass by at about 88,000 kilometers (59,000 miles) away. Estimates on the size of this space rock vary from 17 to 30 meters, but NASA has indicated they will have telescopes trained on the asteroid as it makes its near Earth flyby — closest approach is just before 06:00 UTC (2:00 a.m. EDT) on Friday. Radar measurements can provide more details on the asteroid’s size and orbital characteristics.

NASA’s Asteroid Watch has assured there is no chance this asteroid will hit Earth.

The Slooh Space Camera is providing live coverage RIGHT NOW (at the time of this posting) on Thursday, October 11th, live on Slooh.com, free to the public, starting at 2:30 p.m. PDT / 5:30 p.m. EDT / 21:30 UTC — accompanied by real-time discussions with Slooh President, Patrick Paolucci; Slooh Outreach Coordinator, Paul Cox; and Astronomy Magazine columnist, Bob Berman.

Viewers are in for a special treat as asteroid TC4 will be in the same field of view as the planet Neptune during Slooh’s live coverage.

According Astro Bob, at around the time of closest approach, 2012 TC4 will be sailing through the stars of Sagittarius at approximately one degree (two full moon diameters) every 5 minutes.

This asteroid will reach the magnitude 13.7 on October 12 around 02:00 UTC, according to the Remanzacco Observatory team of Ernesto Guido, Giovanni Sostero, Nick Howes.

You can see an animation of Remanzacco’s observations here.

A view of the orbital parameters of asteroid 2012 TC4 from JPL.

Stunning New Panorama Shows the Hazy Distant Hills of Mars

This beautiful new panorama of the Curiosity rover’s view in Gale Crater of the distant hazy hills beyond that seem to call out, begging for exploration. “FINALLY, a spaceprobe takes a picture that shows Mars as it has burned in my mind all these years,” said Stuart Atkinson via Twitter, who created this mosaic from four separate raw color images taken by the rover. The images, just uploaded today to Earth, were taken on Sol 50 (Sept. 26, 2012) by the right MastCam on Curiosity. This provides a glimpse at the depth and distances the rover’s cameras can see, with those beckoning hills and the rim of Gale Crater off in the distance. The rover is looking towards the northeast.

Click the image to see the full, large view of the panorama. Almost enough to make you get those hiking boots out from the back of the closet!

Stu not only stitched together this image but also wrote a new poem about “The Watching Hills.”

An excerpt:

If you’d stood here a billion years ago,
Perhaps two, waves would have lapped gently
Around your feet – maybe higher,
Maybe rolled in slow martian motion past your knees,

And looking down you’d have seen stream-
Polished stones swimming past your boots,
Tumbling over and over and over…

…… all gone now.

Read the entire lovely poem here.

ORBCOMM Satellite Launched by Falcon 9 Has Fallen to Earth

The OG2 satellite being prepared for testing. Credit: ORBCOMM

The satellite that was launched to orbit as a secondary payload by the SpaceX Falcon 9 rocket on October 7, 2012 has deorbited, falling back to Earth. The ORBCOMM OG2 satellite was a prototype communications satellite that was launched along with the Dragon capsule for the CRS-1 resupply mission to the International Space Station. The satellite was sent into the wrong orbit as a result of “a pre-imposed safety check required by NASA,” ORBCOMM said today in a press release, after the engine anomaly where one of the rocket’s nine Merlin engines, Engine 1, lost pressure suddenly and an engine shutdown command was issued. The rocket was prevented from performing a second burn for safety reasons and the satellite was left in a lower orbit than intended.

“The safety check was designed to protect the International Space Station and its crew,” the ORBCOMM press release said. “Had ORBCOMM been the primary payload on this mission, as planned for the upcoming launches, we believe the OG2 prototype would have reached the desired orbit.”

ORBCOMM had said earlier they were checking into the possibility of whether onboard propulsion could be used to boost the OG2 into a higher orbit, but obviously that was unsuccessful. They did say today, however that while the OG2 was in orbit for its much-shortened time frame, they were able to obtain engineering data and “made significant strides in testing various hardware components,” including an antenna that was deployed and basic functions of the satellite that were successfully turned on.

The company added that with the verifications they were able to achieve, they can now forge ahead and focus on completing and launching the more OG2 satellites, and they plan on using SpaceX to deliver them to orbit. But next time the satellites will be the primary mission payloads on two planned Falcon 9 launches, one in mid-2013 and another in 2014, putting them directly into their operational orbit.

“We appreciate the complexity and work that SpaceX put into this launch,” stated Marc Eisenberg, ORBCOMM’s CEO. “SpaceX has been a supportive partner, and we are highly confident in their team and technology.”

The OG2 satellite was supposed be in a final 750×750 km orbit, but the company didn’t verify the orbit it did end up in. According to Jonathan’s Space Report, OG2 was ejected at 0137 UTC into a 203×323 km orbit, instead of its planned 350×750 km insertion orbit. Another satellite tracker, T.S. Kelso said via Twitter that it was in a 318 x 194km orbit.

A call to ORBCOMM to verify the orbit and location of de-orbit wasn’t immediately returned.

Huge Volcano Plume Seen from Space

The Shiveluch volcano as seen by the Aqua satellite on October 6, 2012. Credit: NASA

It’s almost like this volcano has an on/off switch. The Shiveluch Volcano in the northern Russian peninsula of Kamchatka had been quiet, and an earlier image taken by NASA’s Terra satellite (below) at about noon local time (00:00 UTC) on October 6, 2012, showed a quiet volcano with no activity. But just two hours later when the Aqua satellite passed over the area, the volcano had erupted and sent a plume of ash over about 90 kilometers (55 miles). Later, a local volcanic emergency response team reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit.

The same volcano seen by the Terra satellite just two hours earlier on the same day. Credit: NASA

Shiveluch is one the biggest and most active volcanoes in this region and rises 3,283 meters (10,771 feet) above sea level. NASA’s Earth Observatory website says Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. It has had numerous eruptions the past 200 years, but has been active during much of its life – estimates are the volcano is 60,000 to 70,000 years old.

The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Another eruption started in 1999 and lasted for over 10 years.

Source: NASA Earth Observatory

Nearby Exoplanet Could Be Covered With Diamond

Illustration of 55 Cancri e, a super-Earth that’s thought to have a thick layer of diamond (Yale News/Haven Giguere)

If diamonds are forever then this planet should be around for a very, very long time; it appears to be literally made of the stuff.

55 Cancri e — an exoplanet discovered in 2004 — is more than twice Earth’s diameter and over eight times more massive, making it a so-called “super Earth.” Earlier this year it made headlines by being the first Earth-sized exoplanet whose light was directly observed via the infrared capabilities of NASA’s Spitzer Space Telescope.

Using information about 55 Cancri e’s size, mass and orbital velocity, as well as the composition of its parent star 55 Cancri (located 40 light years away in the constellation Cancer) a research team led by scientists from Yale University created computer models to determine what the planet is most likely made of.

They determined that 55 Cancri e is composed primarily of carbon (as graphite and diamond), iron, silicon carbide, and possibly some silicates. The researchers estimate that at least a third of the planet’s mass — the equivalent of about three Earth masses — could be diamond.

“This is our first glimpse of a rocky world with a fundamentally different chemistry from Earth. The surface of this planet is likely covered in graphite and diamond rather than water and granite.”

– Nikku Madhusudhan, Yale postdoctoral researcher and lead author

So what would one expect to find on a world made of diamond?

“On this planet there would basically be a thin layer below the surface which will have both graphite and diamond,” Madhusudhan told Universe Today in an email. “But, below that there will be a thick layer (a third of the radius) with mostly diamond. For a large part the diamond will be like the diamond on Earth, except really, really pure.

“But at greater depths the diamond could also be in liquid form,” Madhusudhan added.

Scientists had previously thought that 55 Cancri e might have a lot of water — superheated water, due to the planet’s incredibly high 4,000-degree (F) temperatures — based on the assumption that its composition is similar to Earth’s. But this new research indicates that it doesn’t have much water at all.

“By contrast, Earth’s interior is rich in oxygen, but extremely poor in carbon — less than a part in thousand by mass,” said  Kanani Lee, Yale geophysicist and co-author of the paper.

This study shows that we can’t assume that planets in other systems are made of the same stuff that ours is, even if they are of similar size (and also that diamonds aren’t necessarily a valuable commodity on all worlds!)

The team’s paper “A Possible Carbon-rich Interior in Super-Earth 55 Cancri e” was accepted for publication in the journal Astrophysical Journal Letters. Read more on Yale News here.

Top image by Haven Giguere. Inset image shows visible location of 55 Cancri, by Nikku Madhusudhan using Sky Map Online. 

BepiColombo – Mission to Mercury

Caption: BepiColombo’s components separating at Mercury. Image Credit: Astrium

BepiColombo, due to launch in 2015, will be only the third spacecraft to visit Mercury and the first to be sent by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). Currently undergoing tests at ESA’s European Space Research and Technology Centre (ESTEC) in the Netherlands. Here are the details and objectives of this joint mission to our innermost planet which hopes to give us the best understanding of Mercury to date

As the innermost of the terrestrial planets Mercury has an important role in showing us how planets form, yet it is the least explored planet in the inner Solar System. NASA sent Mariner 10 in 1974–5 and MESSENGER flew passed the planet 3 times in 2008 and 2009, before going into orbit around it last year. Being in close proximity, the Sun’s enormous gravity makes placing a spacecraft into a stable orbit, a challenge.

Professor Giuseppe (Bepi) Colombo (1920–1984) was the Italian mathematician and scientist who developed the gravity-assist maneuver and helped NASA to devise the trajectory of Mariner 10. The spacecraft that bears his name comprises three components: the Mercury Transfer Module (MTM) and the two probes: Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO) It will take 6 years to make the journey from Earth to Mercury using solar-electric propulsion and gravity assists from the Earth and Venus, before eventual gravity capture at Mercury.

The transfer module will then separate and the orbiters will use rocket engines and a technique called ‘weak stability boundary capture’ to enter polar orbits around Mercury. MPO will enter a 2.3 hour period polar orbit and MMO a 9.3 hour period polar orbit. MPO is a 357 kg spacecraft in the shape of a flat prism will carry an imaging system consisting of a wide-angle and narrow angle camera, an infrared spectrometer, an ultraviolet spectrometer, gamma, X-ray, and neutron spectrometers, a laser altimeter, an ion and neutral spectrometer, a near-Earth object telescope and detection system, and radio science experiments. During the 1 year nominal mission it will map the entire surface in different wavelengths, and hopes to find water ice in polar craters permanently in shadow from the Sun’s rays.MMO is a flat cylinder with a mass of about 250 kg and will carry fluxgate magnetometers, charged particle detectors, a wave receiver, a positive ion emitter, and an imaging system.

The main mission objectives are: to investigate the origin and evolution of a planet close to the parent star; study Mercury’s form, interior structure, geology, composition and craters; examine the composition and dynamics of Mercury’s vestigial atmosphere (exosphere); probe the structure and dynamics of Mercury’s magnetized envelope (magnetosphere); determine the origin of Mercury’s magnetic field; investigate the composition and origin of polar deposits and perform a test of Einstein’s theory of general relativity.

In 1845, Urbain-Jean-Joseph Le Verrier, noticed that at perihelion Mercury was moving around the Sun faster than predicted by Newton’s theory of gravity. It was not understood until 1915 when Albert Einstein overhauled the theory of gravity. BepiColombo will measure Mercury’s motion more accurately than ever before and so provide one of the most rigorous tests ever of Einstein’s theory.

Find out more about the mission at ESA