Space Shuttle Endeavour Flies Over Historic Golden Gate Bridge (and some chick’s house in LA)

California was invaded by an unusual flying duo today: the Space Shuttle Endeavour sitting atop a 747 airplane, the Shuttle Carrier Aircraft. Above, you can watch it they flew over the Golden Gate Bridge in San Francisco, and below are more images and video of the flybys from various locations, including a video by GamerChick5567, who said, “IT FLEW OVER MY HOUSE!!!! :P” Endeavour made its final landing at LAX in Los Angeles, and will be transported to its permanent home at the California Science Center next month.

There is a “Spot The Shuttle” page on NASA’s Flickr stream where people have been uploading their images of the shuttle flying over, so check them out here.

Flying over Monteray Bay Aquarium:

Over Moffett Field/Ames Research Center

And here’s GamerChick5567’s video:

Space shuttle Endeavour, mounted atop a NASA 747 Shuttle Carrier Aircraft (SCA) performs a low flyby at Los Angeles International Airport, Friday, Sept. 21, 2012. Credit: NASA/Bill Ingalls. See more at NASAHQ’s photo stream on Flickr.

Weird Mars Rock Has Interesting Back Story

The rock chosen for the first contact science investigations for the Curiosity rover. Credit: NASA/JPL-Caltech

The rock chosen for the first contact science investigations for the Curiosity rover. Credit: NASA/JPL-Caltech

The Mars Science Laboratory team has identified their target for the first full-up contact science investigations using all the instruments attached to the Curiosity rover’s robotic arm. And ‘target’ is the operative word here, as this rock will be shot with Curiosity’s laser to help determine it chemical makeup. Interestingly, it has an unusual pyramid shape, and it was described as a “cool-looking rock sitting out on the plains of Mars,” by MSL project scientist John Grotzinger. But the rock now has a name, and while we don’t know everything about it yet, like its namesake, this rock likely has a very interesting back story.


The rock has been dubbed “Jake Matijevic,” named for the surface operations systems engineer for all the Mars rover missions so far. But unfortunately, Matijevic passed away at age 64 just days after Curiosity touched down on Mars last month. Matijevic was one of the original technology developers for rovers on Mars — figuring out how to link the mechanics, avionics and all the systems together. He led the surface operations for the Sojourner rover in 1996, worked for years with the Spirit and Opportunity rovers, and was instrumental in getting the Curiosity rover ready for its mission.

Matijevic originally was a mathematician and he developed the Matijevic Theorem, which MSL’s John Cook described as “an obscure mathematical theorem” but others have said it was “one of the most beautiful results of recent years in commutative algebra.”

“To honor Jake and his contributions we’ve named the first rock where we’re going to do contact science after him,” said Grotzinger.

The rock named Jake is about 25 centimeters (10 inches) tall and 40 cm (16 in) wide at the base, so it’s not a very large rock, nor is it very eccentric. It likely is a shapely lump of basic basalt ejecta. It is uniform in color and is actually similar in size, shape and composition to the first rock studied by the Spirit rover over eight years ago. But being a rather ordinary rock is a good thing, said Grotzinger.

“The science team has had interest for some time to find a rock that is relatively uniform in composition to do comparisons,” between the ChemCam (the laser-zapper tool) and the Alpha Particle X-ray Spectrometer (APXS), Grotziner said, to calibrate both instruments, especially the ChemCam, which is a new version of an instrument that is on the MER rovers.

“Here we get to really test a comparison between something that is tried and true with the latest and greatest technology,” he said.

Grotziner noted that most of the terrain they are seeing so far in Gale Crater has a rather uniform surface soil with some bedrock peeking out occasionally. But darker rocks like Jake, just sitting on the surface, are not quite so common. So how did Jake get there?
“Our general consensus is that it might be a piece of secondary of impact ejecta, maybe from an impact somewhere else, maybe outside of Gale Crater,” Grotziner said, “where a rock was thrown into Gale Crater and it has just sat there for a long time. It appears to have weathered more slowly than the stuff that’s around it, so that means it’s probably a harder rock.”

So a rock blasted from a huge impact on another location on Mars ends up sitting in Gale Crater where the Curiosity rover is going to zap it with a laser.

Oh, the stories this rock will be able to tell. And hopefully the instruments on Curiosity will allow the rock to divulge its secrets.

This map shows the route driven by NASA’s Mars rover Curiosity through the 43rd Martian day, or sol, of the rover’s mission on Mars (Sept. 19, 2012). Credit: NASA/JPL-Caltech/Univ. of Arizona

What Caused the Recent Explosion at Jupiter?

An impact on Jupiter captured about 6:35 am on Sept. 10, 2012 from Dallas, Texas USA. Credit: George Hall.

A bright flash was spotted on Jupiter early on the morning of September 10, 2012, and astronomers were hoping to later see an impact “scar” which would provide more information about the object that slammed into the giant gas planet. Was it a comet, asteroid or a smaller meteor? But alas, no impact scar or debris field showed up on Jupiter’s face and the nature of this explosion may remain a mystery.

“By performing spectroscopic measurement of the debris field we hope to be capable of determining the nature of the impactor,” SETI astronomer Franck Marchis told Universe Today via email. “Without debris field it is virtually impossible since the bolide burned in the upper atmosphere. One day we may be capable of recorded a spectrum of the meteor itself (during the impact) but right now we don’t have such capabilities.”

The flash was first spotted by Dan Peterson, an amateur astronomer from Racine, Wisconsin who saw the flash as he was looking through a telescope, but he wasn’t recording his observations. He posted about his sighting on the Association of Lunar & Planetary Observers message board (ALPO), reporting the explosion, which occurred inside the southern edge of Jupiter’s northern equatorial belt of clouds.

Astrophotographer George Hall of Dallas, Texas happened to be shooting video of Jupiter at the time – although he wasn’t actually watching Jupiter himself. When he heard about Petersen’s visual, Hall reviewed his video and saw he had captured the flash at 6:35 a.m. CDT.

Video © George Hall. All rights reserved, used with permission.

Many astronomers were waiting for the next day when the impact region would be visible again to look for a debris field, as the explosion looked very similar to an impact that occurred in June 2010, which left an impact scar that was visible for several hours.

However, astronomer Mike Wong from the University of California, Berkeley had stayed up all night to estimate the amount of energy delivered by this fireball. As he posted on his blog, he predicted “that this event is too small to create a visible impact scar.”

He ended up being right.

Since there was no impact scar, the space telescopes like Hubble weren’t activated to take a look.

But some ground-based telescopes, like NASA’s Infrared Telescope Facility did take a look. Astronomer Glenn Orton, a senior research scientist at the Jet Propulsion Laboratory used the IRTF 3-meter telescope to look at Jupiter in the near-infrared, but came up empty in finding any debris or scar.

Observations of Jupiter taken with the IRTF telescope and the SpeX guide camera. The dark circle indicates the location of the flash observed on September 10 2012 (credit: G. Orton, Jet Propulsion Laboratory)

Orton was quoted in an article on ABC that he thinks a frozen comet may be the culprit.

“Most things in that part of the solar system are called Jupiter-family comets,” Orton said. “They’re ice balls that move in and have started co-orbiting around Jupiter.”

But Marchis said that since the object appears to have not entered the inner part of the planet atmosphere, the IR observation confirms that it was most likely a meteor.

And another scientist, Dr. Tony Phillips, an astronomer and the person behind Spaceweather.com, was interviewed on NPR’s Science Friday last week and he said the explosion was probably a small asteroid hitting Jupiter, but added, “We’ll probably never know for sure,”

But whatever it was, the event demonstrates how different astronomy is now from what it was just a few years ago.

“What is remarkable today is that amateur astronomers can detect such an event, and by using modern communication tools, the world of astronomers is instantaneously aware of it,” Marchis said. “Our solar system is full of those transient events (impact, volcanoes, storms), their early detection and monitoring is a great opportunity to characterize these planets or satellites, shining light on area of these bodies that cannot be seen when they are in their calm state.”

But there were a few dissenters, too. A small number of those posting on the astronomy community message boards said that since there wasn’t any scar visible, that the event really didn’t happen, and that Hall and Petersen were just seeing things. This may have been fueled by an initial discrepancy between Hall and Petersen’s timing report, but it was solved when Petersen found out that his clock was running 26 seconds fast. Others came up with different ideas about what it might have been, which included light from one of Jupiter’s moons, Adrastea, which was entering the eastern limb of Jupiter at about the same the time, to other, more wilder notions that might have involved alien spaceships.

But most astronomers concur the event did occur.

“Two observers reported the same event at almost the same time does not look to me that we could argue about the genuineness of the event,” Marchis said, noting that previous events like this have occurred in the past, with no impact scars. “Several events were observed in 1981 and 2010 as well and there were no scar as well. We can simply assume that the impactor was too small to reach the inner part of Jupiter atmosphere. It burned before reaching the lower deck because it was relatively small.”

Phillips mentioned that years ago, astronomers were skeptical that impacts like this happened in the Solar System today, but that all changed when Comet Shoemaker-Levy 9 impacted Jupiter in 1994, and with hundreds of telescopes watching the event, including the Hubble Space Telescope, “we got to see what a comet impact looked like, and analyze the chemical signature,” Phillips said.

But in this case, astronomers will very likely never know what caused the flash on Jupiter on September 10, 2012. But don’t worry – this won’t be the last time something like this happens. Marchis said in a comment on his blog that based on the current observations, it’s estimated that 50 meteors like this — or ones even more energetic — could be seen on Jupiter per year. We just don’t happen to catch very many of them in the act of occurring.

And if you’re excited about seeing explosions on other worlds, Jupiter isn’t the only place this happens. All our planets and moons get smacked occasionally, as the impact craters on the rocky bodies can attest. The best place to see this happening might be our own Moon. If you have a big enough telescope, you can join a group run through the Marshall Space Flight Center that has been watching the dark terrain of the Moon. They have observed over 260 explosions in the past 7 years.

Marchis said a better organized network of amateur astronomers watching Jupiter is important.

“I think it is important to organize a network of small telescopes that will monitor continuously Jupiter over a long period of time to be capable of estimating the flux of meteors in the outer part of the solar system, helping us to better estimate the age of icy satellite surface of Jupiter but also Saturn,” he said via email. “This is something we could do by combining professional and amateur astronomer efforts.”

Look for future updates as astronomers are trying to organize such a network.

Astrophoto: Crescent Moon Crossing

Astrophotographer Ken Lord caught an airplane crossing in front of a setting crescent Moon in British Columbia, Canada. Credit: Ken Lord

The things you can see out your door! On a previous image in this sequence, Ken Lord from British Columbia, Canada said he stuck his head out the door and happened to see a great view of the setting crescent Moon, so he ran and got his camera, took a few shots, and then managed to capture an airplane crossing directly in front of the beautiful crescent. Ken notes the mountains on the horizon are on Vancouver Island.

He used a Canon T1i, 170mm, 0.8 second exposure, ISO3200, F5.6. See more of Ken’s images at his Flickr page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Saturn Shows Off Its Shadow

Take a look up at the enormous shadow cast by Saturn onto its own rings in this raw image, acquired by NASA’s Cassini spacecraft on September 18, 2012.

Cassini captured this image from below Saturn’s ring plane at a distance of 1,393,386 miles (2,242,437 kilometers). It shows not only the gas giant’s shadow but also the wispy nature of the rings, which, although complex, extensive and highly reflective (the light seen on Saturn above is reflected light from the rings!) they are still very thin — less than a mile (about 1 km) on average and in some places as little as thirty feet (10 meters) thick.

Seen in the right light, some of the thin innermost rings can seem to nearly disappear entirely — especially when backlit by Saturn itself.

Views like the one above are once again possible because of Cassini’s new orbit, which takes it high above and below the ring plane, providing a new perspective for studying Saturn and its moons. Ultimately by next April the spacecraft will be orbiting Saturn at an inclination of about 62 degrees — that’d be like an orbit around Earth that goes from Alaska to the northernmost tip of Antarctica. (Find out how Cassini alters its orbit here.)

With this viewpoint Cassini will get some great views of Saturn’s north and south poles, which are gradually moving into their summer and winter seasons, respectively, during the ringed planet’s 29.5-Earth-year orbital period.

After more than 8 years in orbit Cassini is still fascinating us with enthralling images of Saturn on a regular basis. Read more about the Cassini mission here.

Cassini spots shepherd moons Pan (within the Encke Gap) and Prometheus (along the inner edge of the F ring) in an image acquired on Sept. 18, 2012

Images: NASA/JPL/Space Science Institute.

Shuttle Endeavour Lands for the Final Time at Edwards Air Force Base

En route to its final home in Los Angeles, space shuttle Endeavour is taking a victory tour of sorts through the southern part of the US. Yesterday, the shuttle took off from Kennedy Space Center, mounted atop the Shuttle Carrier Aircraft (SCA), and landed in Ellington Field near Johnson Space Center in Houston, flying over the Houston area to allow crowds of people to see the unusual spectacle of the shuttle and the 747 aircraft flying together low over the city. Today, the duo made a flyover of Tucson, Arizona, a request of space shuttle commander Mark Kelly so that his wife and former senator Gabrielle Giffords could watch — along with thousands of others in the Tucson area.

@ShuttleCDRKelly posted this picture on Twitter of himself and Gabrielle Giffords watching Endeavour fly over Tucson, Arizona.

Before flying over Houston, Endeavour and the SCA made low passes over NASA’s Stennis Space Center near Bay St. Louis, Mississippi, and Lockheed Martin’s Michoud Assembly Facility on the east side of New Orleans, where the shuttle’s external fuel tanks were built.

Following an overnight stay at Edwards Air Force Base on Thursday, the SCA and Endeavour will salute the surrounding area early Friday, Sept. 21 with a low flyby northbound to Sacramento and the San Francisco Bay area. Then, the aircraft will travel south, making a pass over NASA’s Ames Research Center, Vandenberg Air Force Base and NASA’s Jet Propulsion Laboratory before heading into the Los Angeles area.

Finally, the SCA and Endeavour will land about noon PDT at Los Angeles International Airport, for an arrival ceremony before Endeavour is taken off the SCA and transported to its permanent home at the California Science Center next month.

There is a “Spot The Shuttle” page on NASA’s Flickr stream where people have been uploading their images of the shuttle flying over, so check them out here.

This video shows excited students and faculty at the University of Arizona watching the shuttle fly over campus:

Next SpaceX Launch to ISS Set for October 7

SpaceX’s Falcon 9 rocket with a Dragon spacecraft is rolled out to the company’s launch pad in Cape Canaveral, Florida.
Credit: SpaceX

There will be more Dragons in space! The SpaceX Dragon’s next launch to the International Space Station has been scheduled for Sunday, October 7, 2012, NASA and SpaceX announced today. This will be the first of 12 contracted flights by SpaceX to resupply the space station and marks the second trip by a Dragon to the station, following a successful demonstration mission in May.

NASA said they have confirmed the status and readiness of the Falcon 9 rocket and its Dragon cargo spacecraft for the SpaceX CRS-1 mission, as well as the space station’s readiness to receive Dragon.

Dragon will be filled with about 450 kg (1,000 pounds) of supplies. This includes materials to support the 166 investigations planned for the station’s Expedition 33 crew, including 63 new science investigations. The Dragon will return about 330 kg (734 lbs) of scientific materials, including results from human research, biotechnology, materials and educational experiments, as well as about 230 kg (504 lbs) of space station hardware.

Materials being launched on Dragon will support experiments in plant cell biology, human biotechnology and various materials technology demonstrations, among others. One experiment, called Micro 6, will examine the effects of microgravity on the opportunistic yeast Candida albicans, which is present on all humans. Another experiment, called Resist Tubule, will evaluate how microgravity affects the growth of cell walls in a plant called Arabidopsis. About 50 percent of the energy expended by terrestrial-bound plants is dedicated to structural support to overcome gravity. Understanding how the genes that control this energy expenditure operate in microgravity could have implications for future genetically modified plants and food supply. Both Micro 6 and Resist Tubule will return with the Dragon at the end of its mission.

Expedition 33 Commander Sunita Williams of NASA and Aki Hoshide of the Japan Aerospace Exploration Agency will use the CanadArm2 to grapple the Dragon following its rendezvous with the station on Wednesday, Oct. 10. They will attach the Dragon to the Earth-facing port of the station’s Harmony module for a few weeks while crew members unload cargo and load experiment samples for return to Earth.

Dragon is scheduled to return in late October, and splash down via parachute in the Pacific Ocean off the coast of southern California.

Endeavour Departs Kennedy Forever for California Home

Image caption: Endeavour departs Kennedy Space Center forever on Sept 19 on last flight of NASA’s Space Shuttle Program. Credit: Ken Kremer

Under cloudy skies at first light, Space Shuttle Endeavour departed NASA’s Kennedy Space Center in Florida early Wednesday morning, Sept. 19, at about 7:22 a.m. EDT marking the final flight of NASA’s storied shuttle program.

The 100 ton Endeavour was secured atop NASA’s specially modified 747 Shuttle Carrier Aircraft for the cross-country ferry flight to California and Los Angeles International Airport.

The farewell flight went off without a hitch following two days of weather related delays. The shuttle & 747 Shuttle Carrier Aircraft (SCA) Jumbo Jet were in tip top shape.

Image caption: Endeavour’s Final Takeoff atop modified Boeing 747 from the Kennedy Space Center on Sept. 19 to California home. Credit: Ken Kremer – www.kenkremer.com

Hordes of local spectators and excited tourists from several continents caught a magnificent last glimpse of the piggybacked pair as they flew two looping north-south farewells over the Florida Space Coast making a low pass over nearby beaches, Patrick Air Force Base, Cape Canaveral Air Force Station, Kennedy Space Center Visitor Complex, and the shuttle landing runway at Kennedy before leaving the area to a mix of emotions both happy and sad.

Then all of a sudden after some 25 minutes, the dynamic duo disappeared without warning into the hazy clouds, flying on a north east heading and across the Florida panhandle.

After making low-level passes over NASA’s Stennis Space Center in southwest Mississippi and the Michoud Assembly Facility in New Orleans, Endeavour touched down at the Johnson Space Center at about 10:40 a.m. at Houston’s Ellington Field for a curtailed overnight stay.

Image caption: Endeavour departs Kennedy Space Center on Sept 19 on last flight accompanied by T-38 training jet. Credit: Ken Kremer

21 years after rolling out from the Palmdale assembly facility in California where she was constructed, Endeavour landed at Edwards Air Force Base at 3:50 p.m. EDT today, Sept. 20.

Early Friday morning (Sept. 21), Endeavour and the SCA will take flight on a victory lap initially heading north for low level passes over Sacramento and the San Francisco Bay area including the Golden Gate bridge – akin to the April 2012 flight of Enterprise over NYC. Then the pair will turn south and pass over NASA’s Ames Research Center, Vandenberg Air Force Base and NASA’s Jet Propulsion Laboratory before heading into the Los Angeles area and landing at Los Angeles International Airport.

In October, Endeavour will be towed over 2 days through the streets of Inglewood and Los Angelos to begin a new mission inspiring future explorers at her permanent new home at the California Science Center.

Endeavour was NASA’s youngest orbiter and flew 25 missions and traveled 122,883,151 miles during 299 days in space.

NASA’s trio of shuttle orbiters were forcibly retired in July 2011 following the successful STS-135 mission to the International Space Station.

Ken Kremer

Image caption: Endeavour prepares for final takeoff from the Shuttle Landing Facility at KSC. Credit: Brent Houston

Image caption: STS-130 astronaut Kay Hire greets space enthusiasts at the shuttle landing strip during the flyaway of Endeavour. Credit: Klaus Krueger

Ken Kremer with Space Shuttle Endeavour and the 747 Shuttle Carrier Aircraft (SCA) at the Shuttle Landing Facility at the Kennedy Space Center for final flyaway departure in September 2012 reporting for Universe Today. Credit: Brent Houston

Dawn Finds Asteroid Vesta is Rich in Hydrogen

This map from NASA’s Dawn mission shows the global distribution of hydrogen on the surface of the giant asteroid Vesta. Credit: NASA/JPL-Caltech/UCLA/PSI/MPS/DLR/IDA

This map from NASA’s Dawn mission shows the global distribution of hydrogen on the surface of the giant asteroid Vesta. Credit: NASA/JPL-Caltech/UCLA/PSI/MPS/DLR/IDA

The giant asteroid Vesta appears to have a bellyful of hydrogen. Data from the Dawn spacecraft reveals hydrated minerals in a wide area around Vesta’s equator. While Dawn did not find actual water ice, there are signs of hydrated minerals such as hydroxyl in the giant asteroid’s chemistry and geology.

“The source of the hydrogen within Vesta’s surface appears to be hydrated minerals delivered by carbon-rich space rocks that collided with Vesta at speeds slow enough to preserve their volatile content,” said Thomas Prettyman, lead scientist for Dawn’s gamma ray and neutron detector (GRaND) from the Planetary Science Institute.


A pitted terrain – looking much like potholes – mark where the volatiles, perhaps both hydroxyl and water, released from hydrated minerals boiled off.

Hydroxyl has recently been found on the Moon in permanently shadowed craters at the lunar poles, and so the Dawn scientists thought there might be a chance that water ice may have hunkered down near the surface around the giant asteroid’s poles, as well. But unlike Earth’s Moon, however, Vesta has no permanently shadowed polar regions, and so the strongest signature for hydrogen actually came from regions near the equator. And there, water ice is not stable.

Two papers were published this week in the journal Science that are based on observations from the low-altitude mapping orbit of the Dawn mission, an orbit which averaged about 210 km (130 miles) above the surface. Dawn left Vesta earlier this month, and is now on its way to its second target, the dwarf planet Ceres.

In addition to the paper authored by Prettyman and his team, a complementary paper, led by Brett Denevi, a Dawn participating scientist based at the Johns Hopkins University Applied Physics Laboratory describes the presence of pitted terrain created by the release of the volatiles.

In some cases, other space rocks crashed into these deposits later at high speed. The heat from the collisions converted the hydrogen bound to the minerals into water, which evaporated. The holes that were left as the water escaped stretch as much as 0.6 miles (1 kilometer) across and go down as deep as 700 feet (200 meters). Seen in images from Dawn’s framing camera, this pitted terrain is best preserved in sections of Marcia crater.

A distinctive “pitted terrain” observed by NASA’s Dawn mission on Vesta has also been seen on Mars. Credit: NASA/JPL-Caltech/University of Arizona/MPS/DLR/IDA/JHUAPL

“The pits look just like features seen on Mars, but while water was common on Mars, it was totally unexpected on Vesta in these high abundances,” said Denevi. “These results provide evidence that not only were hydrated materials present, but they played an important role in shaping the asteroid’s geology and the surface we see today.”

GRaND’s data are the first direct measurements describing the elemental composition of Vesta’s surface. Dawn’s elemental investigation by the instrument determined the ratios of iron to oxygen and iron to silicon in the surface materials. The new findings solidly confirm the connection between Vesta and a class of meteorites found on Earth called the Howardite, Eucrite and Diogenite meteorites, which have the same ratios for these elements. In addition, more volatile-rich fragments of other objects have been identified in these meteorites, which supports the idea that the volatile-rich material was deposited on Vesta.

Source: JPL

Weekly Space Hangout – Sep. 20, 2012

Once again, it’s time for the Weekly Space Hangout – our round up of all the big space news stories that you should be aware of. This week we talked about the following interesting stories in space and astronomy:

Contributors: Nicole Gugliucci, Ian O’Neill, Jason Major, Amy Shira Teitel, Nancy Atkinson

Host: Fraser Cain

We record the Weekly Space Hangout every Thursday morning live at 10:00 am Pacific / 1:00 pm Eastern as a live Google+ Hangout.

If you want to make sure you never miss an episode, put it into your calendar. Click here to see our next event on Google+.