Surreal Photos: CubeSats Launched from the Space Station

Three small CubeSats are deployed from the International Space Station on October 4, 2012. Credit: NASA

Five tiny CubeSats were deployed from the International Space Station on Thursday and astronaut Chris Hadfield called the image above “surreal” on Twitter. And rightly so, as they look like a cross between Star Wars training droids and mini Borg Cubes from Star Trek. The Cubesats measure about 10 centimeters (4 inches) on a side and each will conduct a range of scientific missions, ranging from Earth observation and photography to technology demonstrations to sending LED pulses in Morse Code (which should be visible from Earth) to test out a potential type of optical communication system.

These are low-cost satellites that could be the wave of the future to enable students and smaller companies to send equipment into space. If you’re worried about these tiny sats creating more space junk, Hadfield assured that since they are very light and in such a low orbit, the Cubesat orbits will decay within a few months.

The Rubic-cube-sized Cubesats were deployed from the new Japanese Small Satellite Orbital Deployer that was brought to the space station in July by the Japanese HTV cargo carrier.

The Japanese FITSAT-1 will investigate the potential for new kinds of optical communication by transmitting text information to the ground via pulses of light set to Morse code. The message was originally intended to be seen just in Japan, but people around the world have asked for the satellite to communicate when it overflies them, said Takushi Tanaka, professor at The Fukuoka Institute of Technology.

Observers, ideally with binoculars, will be able to see flashes of light — green in the northern hemisphere, where people will see the “front” of the satellite, and red in the southern hemisphere, where the “back” will be visible.

The message it will send is “Hi this is Niwaka Japan.” Niwaka is the satellite’s nickname and reflects a play on words in the local dialect of southwestern Japan, according to an article on Discovery Space. To see the Morse Code message, the Cubesat will be near the ISS, so find out when you can see the ISS from NASA or Heaven’s Above. Find out more about the FITSAT at this website.

The other Cubesats include NASA’s TechEdSat which carries a ham radio transmitter and was developed by a group of student interns from San Jose State University (SJSU) in California with mentoring and support from staff at NASA’s Ames Research Center.

“TechEdSat will evaluate plug-and-play technologies, like avionics designed by commercial providers, and will allow a group of very talented aerospace engineering students from San Jose State University to experience a spaceflight project from formulation through decommission of a small spacecraft,” said Ames Director S. Pete Worden.

The other Cubesats include RAIKO, which will do photography from space, We Wish, an infrared camera for environmental studies, and and the F-1 Vietnam Student CubeSat which has an on-board camera for Earth observation.

See more cool-looking images and video of the deployement below (all images credit the Expedition 32 crew from the ISS/NASA):

How to Steal a Space Shuttle

For two days, from October 12 to 13, the shuttle Endeavour will be transported along 12 miles of road on the final leg of its journey to the California Science Center. During that time the orbiter will be the most publicly exposed as it’s ever been, a national treasure on the streets of LA. While this will of course be a well-orchestrated undertaking with the security of not only Endeavour but citizens and spectators being of utmost priority, one might be prompted to speculate: what if someone tried to steal the space shuttle?

And that one, in this instance, was Jalopnik.com‘s Jason Torchinsky. In his latest article, Jason describes in detail a method for snatching a spaceship — and a rather dramatic one at that, worthy of a Bondian supervillian (and requiring a similarly cinematic amount of funds.) However nefarious, fictitious, and unlikely, it’s nevertheless intriguing.

Now while we don’t encourage the theft of a space shuttle (or any federal property, for that matter) it’s a fun read… check it out.

Just keep an eye out for any suspicious Swiss skulking along Endeavour’s route…

(Image: NASA/Bill Ingalls)

Curiosity Set for 1st Martian Scooping at ‘Rocknest’ Ripple

Image caption: Context view of Curiosity working at ‘Rocknest’ Ripple. Curiosity’s maneuvers robotic arm for close- up examination of ‘Rocknest’ ripple site and inspects sandy material at “bootlike” wheel scuff mark with the APXS (Alpha Particle X-Ray Spectrometer) and MAHLI (Mars Hand Lens Imager) instruments positioned on the rotatable turret at the arm’s terminus. Mosaic was stitched together from Sol 57 & 58 Navcam raw images and shows the arm extended to fine grained sand ripple in context with the surrounding terrain and eroded rim of Gale Crater rim on the horizon. Rocknest patch measures about 8 feet by 16 feet (2.5 meters by 5 meters).See NASA JPL test scooping video below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

NASA’s Curiosity rover is set to scoop up her 1st sample of Martian soil this weekend at a soil patch nicknamed ‘Rocknest’ -see our context mosaic above – and will funtion as a sort of circulatory system cleanser for all the critical samples to follow. This marks a major milestone on the path to delivering Mars material to the sample acquisition and processing system for high powered analysis by the robots chemistry labs and looking for the ingredients of life, said the science and engineering team leading the mission at a media briefing on Thursday, Oct 4.

Since landing on the Red Planet two months ago on Aug. 5/6, Curiosity has trekked over 500 yards eastwards across Gale crater towards an intriguing area named “Glenelg” where three different types of geologic terrain intersect.

This week on Oct. 2 (Sol 56), the rover finally found a wind driven patch of dunes at ‘Rocknest’ with exactly the type of fine grained sand that the team was looking for and that’s best suited as the first soil to scoop and injest into the sample acquisition system.

See NASA JPL earthly test scooping video below to visualize how it works:

“We now have reached an important phase that will get the first solid samples into the analytical instruments in about two weeks,” said Mission Manager Michael Watkins of NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

The rover used its wheels to purposely scuff the sand and expose fresh soil – and it sure looked like the first human “bootprint” left on the Moon by Apollo 11 astronauts Neil Armstrong and Buzz Aldrin.

Curiosity will remain at the “Rocknest” location for the next two to three weeks as the team fully tests and cleans the walls of most of the sample collection, handling and analysis hardware – except for the drilling equipment – specifically to remove residual contaminants from Earth.

Image caption: ‘Rocknest’ From Sol 52 Location on Sept. 28, 2012, four sols before the rover arrived at Rocknest. The Rocknest patch is about 8 feet by 16 feet (1.5 meters by 5 meters). Credit: NASA/JPL-Caltech/MSSS

The purpose of this initial scoop is to use the sandy material to thoroughly clean out, rinse and scrub all the plumbing pipes, chambers, labyrinths and interfaces housed inside the complex CHIMRA sampling system and the SAM and CheMin chemistry labs of an accumulation of a very thin and fine oily layer that could cause spurious, interfering readings when the truly important samples of Martian soil and rocks are collected for analysis starting in the near future.

The scientists especially do not want any false signals of organic compounds or other inorganic materials and minerals stemming from Earthly contamination while the rover and its instruments were assembled together and processed for launch.

“Even though we make this hardware super squeaky clean when it’s delivered and assembled at the Jet Propulsion Laboratory, by virtue of its just being on Earth you get a kind of residual oily film that is impossible to avoid,” said Daniel Limonadi of JPL, lead systems engineer for Curiosity’s surface sampling and science system. “And the Sample Analysis at Mars instrument is so sensitive we really have to scrub away this layer of oils that accumulates on Earth.”

The team plans to conduct three scoop and rinse trials – dubbed rinse and discard – of the sample acquisition systems. So it won’t be until the 3rd and 4th soil scooping at Rocknest that a Martian sample would actually be delivered for entry into the SAM and CheMin analytical chemistry instruments located on the rover deck.

“What we’re doing at the site is we take the sand sample, this fine-grained material and we effectively use it to rinse our mouth three times and then kind of spit out,” Limonadi said. “We will take a scoop, we will vibrate that sand on all the different surfaces inside CHIMRA to effectively sand-blast those surfaces, then we dump that material out and we rinse and repeat three times to finish cleaning everything out. Our Earth-based testing has found that to be super effective at cleaning.”

Limondi said the first scooping is likely to be run this Saturday (Oct 6) on Sol 61, if things proceed as planned. Scoop samples will be vibrated at 8 G’s to break them down to a very fine particle size that can be easily passed through a 150 micron sieve before entering the analytical instruments.

The team is being cautious, allowing plenty of margin time and will not proceed forward with undue haste.

“We’re being deliberately slow and incredibly careful,” said Watkins. “We’re taking a lot of extra steps here to make sure we understand exactly what’s going on, that we won’t have to do every time we do a scoop in the future.”

Curiosity’s motorized, clamshell-shaped scoop measures 1.8 inches (4.5 centimeters) wide, 2.8 inches (7 centimeters) long, and can sample to a depth of about 1.4 inches (3.5 centimeters). It is part of the CHIMRA collection and handling device located on the tool turret at the end of the rover’s arm.

“The scoop is about the size of an oversized table spoon,” said Limonadi.

Image caption: Curiosity extends 7 foot long arm to investigate ‘Bathurst Inlet’ rock outcrop with the MAHLI camera and APXS chemical element spectrometer in this mosaic of Navcam images assembled from Sols 53 & 54 (Sept. 29 & 30, 2012). Mount Sharp, the rover’s eventual destination is visible on the horizon. Thereafter the rover drove more than 77 feet (23 meters) eastwards to reach the ‘Rocknest’ sand ripple. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

During the lengthy stay at Rocknest, the rover will conduct extensive investigations of the surrounding rocks and terrain with the cameras, ChemCam laser, DAN, RAD as well as weather monitoring with the REMS instrument.

After finishing her work at Rocknest, Curiosity will resume driving eastward to Glenelg, some 100 meters (yards) away where the team will select the first targets and rock outcrops to drill, sample and analyze.

At Glenelg and elsewhere, researchers hope to find more evidence for the ancient Martian stream bed they discovered at rock outcrops at three different locations that Curiosity has already visited.

Curiosity is searching for organic molecules and evidence of potential habitable environments to determine whether Mars could have supported Martian microbial life forms, past or present.

Ken Kremer

Image caption: Curiosity’s Travels Through Sol 56 – Oct. 2, 2012

Weekly Space Hangout – Oct. 4, 2012

It was a slow week on Space news except for the massive announcement that an ancient riverbed was discovered on the surface of Mars. We took a look at this as well as the historic 55th anniversary of Sputnik, a precise measurement of the expansion of the Universe, and more!

Stories:

Panel: Amy Shira Teitel, Nicole Gugliucci, Nancy Atkinson

Host: Fraser Cain

We record the Weekly Space Hangout every Thursday at 10am PDT / 1 pm EDT. You can watch us live on Google+, Cosmoquest, or at the Universe Today YouTube channel, or listen after as part of the Astronomy Cast podcast feed (audio only).

Click here to put the next event right into your calendar.

Rare X-Ray Nova Reveals a New Black Hole in the Milky Way

Swift J1745-26, with a scale of the moon as it would appear in the field of view from Earth. This image is from September 18, 2012 when the source peaked in hard X-rays. Credit: NASA/Goddard Space Flight Center/S. Immler and H. Krimm

Back in mid-September, the Swift satellite was going about its multi-wavelength business of watching for bursts of bright gamma-ray, X-ray, ultraviolet, or optical events in the sky, when it detected a rising tide of high-energy X-rays from a source toward the center of our Milky Way galaxy. But this was different from any other burst the satellite had detected, and after observing the event for a few days, astronomers knew this had to be a rare X-ray nova. What it meant was that Swift had detected the presence of a previously unknown stellar-mass black hole.

“Bright X-ray novae are so rare that they’re essentially once-a-mission events and this is the first one Swift has seen,” said Neil Gehrels from Goddard Space Flight Center, the mission’s principal investigator. “This is really something we’ve been waiting for.”

The object was named Swift J1745-26 after the coordinates of its sky position, the nova is located a few degrees from the center of our galaxy toward the constellation Sagittarius. While astronomers do not know its precise distance, they think the object resides about 20,000 to 30,000 light-years away in the galaxy’s inner region.

An X-ray nova is a short-lived X-ray source that appears suddenly in the sky and dramatically increases in strength over a period of a few days and then decreases, fading out over a few months. Unlike a conventional nova, where the compact component is a white dwarf, an X-ray nova is caused by material – usually gas — falling onto a neutron star or a black hole.

The rapidly brightening source triggered Swift’s Burst Alert Telescope twice on the morning of Sept. 16, and once again the next day.

Ground-based observatories detected infrared and radio emissions, but thick clouds of obscuring dust have prevented astronomers from catching Swift J1745-26 in visible light.

The nova peaked in hard X-rays — energies above 10,000 electron volts, or several thousand times that of visible light — on Sept. 18, when it reached an intensity equivalent to that of the famous Crab Nebula, a supernova remnant that serves as a calibration target for high-energy observatories and is considered one of the brightest sources beyond the solar system at these energies.

Even as it dimmed at higher energies, the nova brightened in the lower-energy, or softer, emissions detected by Swift’s X-ray Telescope, a behavior typical of X-ray novae. By Wednesday, Swift J1745-26 was 30 times brighter in soft X-rays than when it was discovered and it continued to brighten.

“The pattern we’re seeing is observed in X-ray novae where the central object is a black hole. Once the X-rays fade away, we hope to measure its mass and confirm its black hole status,” said Boris Sbarufatti, an astrophysicist at Brera Observatory in Milan, Italy, who currently is working with other Swift team members at Penn State in University Park, Pa.

Here’s usually happens in events like this: The black hole is part of a binary system with a normal Sun-like star. A stream of material flows into an accretion disk around the black hole. Usually, the disk of gas spirals in steadily to the black hole, heats up and produces a steady X-ray glow. But sometimes, for reasons unknown, the material is held up in the outer regions, held back by some mechanism, almost like a dam. Once enough gas accumulates, the dam breaks and a flood of gas surges towards the black hole, creating the X-ray nova outburst.

“Each outburst clears out the inner disk, and with little or no matter falling toward the black hole, the system ceases to be a bright source of X-rays,” said John Cannizzo, a Goddard astrophysicist. “Decades later, after enough gas has accumulated in the outer disk, it switches again to its hot state and sends a deluge of gas toward the black hole, resulting in a new X-ray outburst.”

This phenomenon, called the thermal-viscous limit cycle, helps astronomers explain transient outbursts across a wide range of systems, from protoplanetary disks around young stars, to dwarf novae — where the central object is a white dwarf star — and even bright emission from supermassive black holes in the hearts of distant galaxies.

It is estimated that our galaxy must harbor some 100 million stellar-mass black holes. Most of these are invisible to us, and only about a dozen have been identified.

Swift discovers about 100 bursts per year. The Burst Alert Telescope detects GRBs and other events and accurately determines their positions on the sky. Swift then relays a 3 arcminute position estimate to the ground within 20 seconds of the initial detection, enabling ground-based observatories and other space observatories the chance to observe the event as well. The Swift spacecraft itself “swiftly” –in less than approximately 90 seconds — and autonomously repoints itself to bring the burst location within the field of view of the sensitive narrow-field X-ray and UV/optical telescopes to observe the afterglow and gather data.

Source: NASA

Once in a Lifetime Image: Emperor Penguins Under the Aurora Australis

Emperor Penguins on the Antarctic Sea Ice Under the Aurora Australis. Credit and copyright: Stefan Christmann. Used by permission.

Photographer Stefan Christmann called this incredible Antarctic view a once in a lifetime experience.

“It was the most impressive experience to sit on the sea-ice and watch the Aurora Australis dance above the penguin colony with the sounds of the chicks and the adult penguins. I feel truly blessed for having had the opportunity to witness this once in a lifetime experience,” he told Universe Today.

Christmann is currently based in Antarctica, working at the German Antarctic research station Neumayer III. He is an “overwinterer” — scientific and technical staff who stay at the base for the entire southern winter — and will stay in Antarctica for an uninterrupted 14 months. “As a physicist, my duty is to maintain the data acquisition of our seismological and geomagnetic observatories as well as the analysis of the collected data,” Christmann said.

But he is also an accomplished photographer. His website and Facebook page are filled with beautiful nature images from around the world, and recently feature the Emperor penguins and their adorable chicks, as well as the stark beauty of the Antarctic landscape.

Originally from Germany, he studied photography in the US, and his work has now brought him to an extended stay in Antarctica.

Christmann explained the conditions and the difficulties in obtaining this shot, one he had long hoped for, the planning of it always in the back of his mind.

“The picture was taken at Atka-Bay on the sea-ice. The bay is roughly 8 km away from our station so the penguin colony is a popular destination for free-time trips. The idea of a photo of the Aurora Australis above the penguin colony had been in my head for a long time, but the conditions have to be just right –which usually never happens. You need a full Moon, high magnetic activity and a cloudless sky. Also the penguins should be standing close enough to the ice-berg. I made multiple attempts to get the photo, but we either had incoming clouds, low activity or had to cancel our stay because of wind picking up (which can be really dangerous out on the sea-ice).”

And time was short, as after he had been outside for a few hours the wind picked up and he and his accomplices had to leave the ice for safety reasons. “Otherwise we probably would have sat there all night!” Christmann said. The image was taken on October 1, 2012.

Christmann shared what equipment he uses as well as a few tips for Antarctic and cold weather photography.

“I used a Nikon D700 Fullframe DSLR with an AF-S G-Nikkor 14-24mm f/2.8. ISO settings varied with the intensity of the aurora from ISO 500-800,” he said. “F-Stops in the range of 4.0-5.6 and Exposure times from 20s to 30s. I try to keep ISO as low as possible for noise reasons and also try to limit the exposure time in order not to get star trails. It’s either super long star trails or almost star-dots, but I don’t really like the in between. A full battery charge (in my case around 2500mAh) lasts around 1h in the cold, so I had to switch batteries twice during our stay out on the ice!”

Asked what other details he felt was important to share about this image, Christmann said, “Antarctica is an incredible place where nature dwarfs anything made by humans. Hopefully people will gain even more interest in this continent and help to protect it as well as its inhabitants.”

To see more of Christmann’s work visit his website, Nature in Focus or his Facebook page, where he shares many pictures of his Antarctic adventure.

Please note: This image may not be re-posted, used or copied without the express permission of Stefan Christmann.

Two Stars Do a Short-Orbit Tango Around the Milky Way’s Black Hole

Astronomers have known for some time there was one star orbiting fairly close to the black hole at the center of our galaxy. But now another star has been found dipping close and orbiting even faster around the Milky Way’s central black hole. Astronomer Andrea Ghez from UCLA says the ability to watch these two stars in a short-period ‘tango’ around the black hole will help scientist measure the effects of space-time curvature, and they should be able to determine whether Albert Einstein was right in his prediction of how black holes could warp space and time.

“I’m extremely pleased to find two stars that orbit our galaxy’s supermassive black hole in much less than a human lifetime,” said Ghez. “It is the tango of [these stars] that will reveal the true geometry of space and time near a black hole for the first time. This measurement cannot be done with one star alone.”

There are nearly 3,000 stars that orbit somewhat close to the black hole, and most of them have orbits of 60 years or longer.
The previously known close-in star, S0-2, orbits the black hole every 15.5 years. And now, the newly found star, called S0-102, orbits the black hole in a blazing 11.5 years, the shortest known orbit of any star near this black hole.

Reconstruction of the orbits of two stars—S0-2 and S0-102—near the black hole at the Milky Way’s center. (Other stars’ orbits are also depicted by fainter lines.) The background is a real high-resolution infrared image of the region. Credit: Andrea Ghez et al./UCLA/Keck

In the same way that planets orbit around the sun, S0-102 and S0-2 are each in an elliptical orbit around the central black hole. Ghez said that the planetary motion in our solar system was the ultimate test for Newton’s gravitational theory 300 years ago, and now the motion of S0-102 and S0-2 will be the ultimate test for Einstein’s theory of general relativity, which describes gravity as a consequence of the curvature of space and time.

“The exciting thing about seeing stars go through their complete orbit is not only that you can prove that a black hole exists but you have the first opportunity to test fundamental physics using the motions of these stars,” Ghez said. “Showing that it goes around in an ellipse provides the mass of the supermassive black hole, but if we can improve the precision of the measurements, we can see deviations from a perfect ellipse — which is the signature of general relativity.”

As the stars come to their closest approach, their motion will be affected by the curvature of spacetime, and the light traveling from the stars to us will be distorted, Ghez said.

S0-2, which is 15 times brighter than S0-102, will go through its closest approach to the black hole in 2018. S0-102 makes its closest approach in 2021, so the team will be keeping an eye on these stars as they get tantalizingly close, but not close enough to get sucked in, Ghez said.

Ghez and her colleagues have been observing S0-2 since 1995. In 2000, she and her team reported — for the first time – that astronomers had seen stars accelerate around the supermassive black hole. Their research demonstrated that three stars had accelerated by more than 250,000 mph a year as they orbited the black hole. The speed of S0-102 and S0-2 should also accelerate by more than 250,000 mph at their closest approach, Ghez said.

“The fact that we can find stars that are so close to the black hole is phenomenal,” said Ghez. “Now it’s a whole new ballgame, in terms of the kinds of experiments we can do to understand how black holes grow over time, the role supermassive black holes play in the center of galaxies, and whether Einstein’s theory of general relativity is valid near a black hole, where this theory has never been tested before. It’s exciting to now have a means to open up this window.”

The research was done using the Keck Telescopes. The team’s paper was published Oct. 5 in the journal Science.

Source: UCLA

Lead image caption: The Keck I and Keck II telescopes focus on two stars orbiting Milky Way’s black hole. Background photo credit: Dan Birchall/Subaru Telescope on Mauna Kea, Hawaii. Overlay created by Professor Andrea Ghez and her research team at UCLA and are from data sets obtained with the W. M. Keck Telescopes.

Eye-Like Helix Nebula Turns Blue in New Image

A combined image of the Helix Nebula from the Spitzer Space Telescope,the Galaxy Evolution Explorer (GALEX) and the Wide-field Infrared Survey Explorer (WISE).. Credit: NASA/Caltech

The Helix Nebula has been called the “Eye of God,” or the “Eye of Sauron,” and there’s no denying this object appears to be a cosmic eye looking down on us all. And this new image – a combined view from Spitzer and GALEX — gives a blue tint to the eye that we’ve seen previously in gold, green and turquoise hues from other telescopes. But really, this eye is just a dying star. And it is not going down without a fight. The Helix Nebula continues to glow from the intense ultraviolet radiation being pumped out by the hot stellar core from the white dwarf star, which, by the way, is just a tiny white pinprick right at the center of the nebula.

The Helix nebula, or NGC 7293, lies 650 light-years away in the constellation of Aquarius. Planetary nebulae are the remains of Sun-like stars, and so one day – in about five billion years – our own Sun may look something like this — from a distance. Earth will be toast.

The team from the Spitzer Space Telescope and the Galaxy Evolution Explorer (GALEX) that cooperated to create this image describe what is going on:

When the hydrogen fuel for the fusion reaction runs out, the star turns to helium for a fuel source, burning it into an even heavier mix of carbon, nitrogen and oxygen. Eventually, the helium will also be exhausted, and the star dies, puffing off its outer gaseous layers and leaving behind the tiny, hot, dense core, called a white dwarf. The white dwarf is about the size of Earth, but has a mass very close to that of the original star; in fact, a teaspoon of a white dwarf would weigh as much as a few elephants!

The intense ultraviolet radiation from the white dwarf heats up the expelled layers of gas, which shine brightly in the infrared. GALEX has picked out the ultraviolet light pouring out of this system, shown throughout the nebula in blue, while Spitzer has snagged the detailed infrared signature of the dust and gas in red, yellow and green. Where red Spitzer and blue GALEX data combine in the middle, the nebula appears pink. A portion of the extended field beyond the nebula, which was not observed by Spitzer, is from NASA’s all-sky Wide-field Infrared Survey Explorer (WISE).

Source: JPL

Liftoff! Delta IV Launches Next Generation GPS Satellite

A Delta IV rocket launched from Florida today, sending a next-generation Global Positioning System satellite into orbit. The rocket lifted off at 12:10 UTC with the GPS IIF-3 satellite that will be part of the GPS system that is used by both civilians and the military. The new satellite will replace a 19-year-old navigation satellite in the global system that includes 31 operational satellites on-orbit which broadcast position, navigation and timing information to people around the world.

A United Launch Alliance Delta IV stands ready for launch at Space Launch complex 37 with the GPS IIF-3 satellite. Credit: ULA

The satellite, built by Boeing, is the third of 12 planned launches to provide improved GPS signals, featuring improved anti-jam technology, more precise atomic clocks, an upgraded civilian channel for commercial aviation and on-board processors that can be reprogrammed in flight, according to CBS News.

The new satellite should be operational by November.

Astrophoto: Stunning Sun Halo Revisited

When we posted an astrophoto earlier this week of a spectacular 22-degree Sun halo seen in Kuala Lumpur, we quickly got a note from Theo Wellington from Madison, Tennessee USA, who may have one-upped that image. Make that two-upped. “Not only did we have the 22 degree halo, but a circumscribed halo AND a parhelic circle as well!” Wellington wrote. “I became a distracted driver and had to pull off the road to look and photograph.” He added that Moon halo was seen the night before in the same location, as well.

What a stunning view — like a giant eyeball looking back at you!

Wellington used a Pentax K100D, 11mm fisheye lens, f13 1/4000, iso 400.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.