Sonic-Powered Levitation Allows for Zero-G Drug Research

It’s not special effects: researchers at the U.S. Department of Energy’s Argonne National Laboratory in Illinois have developed a way to cancel out the effects of gravity, allowing liquids to be held without containers. The effect is created using sound waves emitted by an acoustic levitator — an instrument designed by NASA for simulating microgravity.

Watch the video. It’s the coolest thing you’ll see all week.

This accomplishes more than just a neat effect; by keeping liquids in place without the need for a physical container, pharmaceutical research can be performed while the drugs are still in their purest, “amorphous” state.

“Most drugs on the market are crystalline – they don’t get fully absorbed by the body and thus we aren’t getting the most efficient use out of them,” said Yash Vaishnav, Argonne Senior Manager for Intellectual Property Development and Commercialization.

When solutions come in contact with the interior surfaces of their containers, evaporation takes place, which can lead to crystallization. In order to find a way to hold liquids without anything coming in contact with them (a tricky task while under the effect of Earth’s pesky gravity) ANL X-ray physicist Chris Benmore looked to NASA’s acoustic levitator.

Using two sets of sound waves emitted at 22khz and precisely aimed at each other, a “standing wave” is established at their center. The resulting acoustic force is strong enough to counter the downward tug of gravity at certain points (at least as far as droplets of liquid are concerned.)

The liquid drugs can then be studied without the problem of crystallization, making this technological parlor trick a powerful analytical tool for pharmaceutical researchers. The ultimate goal is to learn how to reduce the amount of a particular drug but still retain the desired effects — with less of the undesired ones.

Read more here on the Argonne National Lab site.

The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’sOffice of Science.

In Fact It’s Cold As Hell: Mars Isn’t As Earthlike As It Might Look

The slopes of Gale Crater as seen by Curiosity are reminiscent of the American southwest (NASA/JPL-Caltech)

“Mars ain’t no kind of place to raise your kids; in fact it’s cold as hell” sang Elton John in “Rocket Man”, and although the song was released in 1972 — four years before the first successful landing on Mars — his weather forecast was spot-on. Even though the fantastic images that are being returned from NASA’s Curiosity rover show a rocky, ruddy landscape that could easily be mistaken for an arid region of the American Southwest one must remember three things: this is Mars, we’re looking around the inside of an impact crater billions of years old, and it’s cold out there.

Mars Exploration Program blogger Jeffrey Marlow writes in his latest “Martian Diaries” post:

Over the first 30 sols, air temperature has ranged from approximately -103 degrees Fahrenheit (-75 Celsius) at night to roughly 32 degrees Fahrenheit (0 Celsius) in the afternoon. Two factors conspire to cause such a wide daily range (most day-night fluctuations on Earth are about 10 to 30 degrees Fahrenheit). The martian atmosphere is very thin; with fewer molecules in the air to heat up and cool down, there’s more solar power to go around during the day, and less atmospheric warmth at night, so the magnitude of temperature shifts is amplified. There is also very little water vapor; water is particularly good at retaining its heat, and the dryness makes the temperature swings even more pronounced. 

In that way Mars is like an Earthly desert; even after a blisteringly hot day the temperatures can plummet at night, leaving an ill-prepared camper shivering beneath the cold glow of starlight. Except on Mars, where the Sun is only 50% as bright as on Earth and the atmosphere only 1% as dense, the nighttime lows dip to Arctic depths.

“Deserts on Earth have very extreme temperature ranges,” says Mars Science Laboratory Deputy Project Scientist, Ashwin Vasavada. “So if you take a desert on Earth and put it in a very thin atmosphere 50% farther from the Sun, you’d have something like what we’re seeing at Gale Crater.”

And although the afternoon temperatures in Gale may climb slightly above freezing that doesn’t mean liquid water will be found pooling about in any large amounts. Curiosity’s in no danger from flash floods on Mars… not these days, anyway.

With atmospheric pressure just above water’s thermodynamic triple point, and temperatures occasionally hovering around the freezing point, it is likely that local niches are seeing above-zero temperatures, and Vasavada acknowledges, “liquid water could exist here over a tiny range of conditions.” But don’t expect a Culligan water plant in Gale Crater any time soon. “We wouldn’t expect for Curiosity to see liquid water, because it would evaporate or re-freeze too quickly,” explains Vasavada. “With so little water vapor in the atmosphere, any liquid water molecules on the surface would quickly turn to gas.”

So when on Mars, drink your coffee quickly. (And pack a blanket.)

“Gale Crater may look like the dusty, basaltic basins of the American southwest, but one look at the thermometer will send you running for the winter coat.”

– Jeffrey Marlow, Martian Diaries

Read Marlow’s full article here.

Image: Sunset on Mars seen by the MER Spirit from Gusev Crater in 2005 (NASA/JPL-Caltech)

Weekly Space Hangout – Sep. 13, 2012

The Weekly Space Hangout is back from Summer hiatus, with a mountain of space news. This week we tackle:

Host: Fraser Cain

Panel: Jason Major, Dr. Nicole Gugliucci, Dr. Pamela Gay

We record the Weekly Space Hangout every Thursday at 10 am Pacific / 1 pm Eastern. Watch us live on Google+, ask your questions to the gathered space journalists.

Here’s a link to next week’s episode so you can put it in your calendar.

Say Ahhh to Mars

Take a deep breath because this new panorama from Mars enthusiast Stu Atkinson will take it away.

“Anyway, a whole bunch of these came down, like I said, and to my delight they all linked up to form a big, biiiiiiiig panoramic mosaic,” said Stu on his blog “The Gale Gazette.” “And here it is. Obviously you’ll need to click on it to enlarge it… and I’ll warn you, it’s a big image, you can kiss the next few minutes goodbye because you’ll be panning around it for a while…”

Zoom in and you can see actual rocks. Click that little button at the right of the toolbar and Mars will take over your screen.

So far, Curiosity has rolled across a barely dusty plain in Gale Crater. Here’s a look of things to come. In black-and-white image from Curiosity, there appear to be big dunes to cross to get to the foothills of Aeolis Mons, or Mount Sharp.

A black-and-white but still breathtaking view of the dusty terrain between Curiosity’s current location and the foothills of Aeolis Mons, or Mount Sharp. Credit: NASA/JPL/Stu Atkinson

Curiosity has nearly finished robotic arm tests. Once complete, the rover will be able to touch and examine its first Mars rock.

“We’re about to drive some more and try to find the right rock to begin doing contact science with the arm,” said Jennifer Trosper, Curiosity mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif, in a press release.

This image from NASA’s Curiosity rover shows the open inlet where powered rock and soil samples will be funneled down for analysis. It was taken by the Mars Hand Lens Imager (MAHLI) on Curiosity’s 36th Martian day, or sol, of operations on Mars (Sept. 11, 2012). MAHLI was about 8 inches (20 centimeters) away from the mouth of the Chemistry and Mineralogy (CheMin) instrument when it took the picture. The entrance of the funnel is about 1.4 inches (3.5 centimeters) in diameter. The mesh screen is about 2.3 inches (5.9 centimeters) deep. The mesh size is 0.04 inches (1 millimeter). Once the samples have gone down the funnel, CheMin will be shooting X-rays at the samples to identify and quantify the minerals.

Engineers and scientists use images like these to check out Curiosity’s instruments. This image is a composite of eight MAHLI pictures acquired at different focus positions and merged onboard the instrument before transmission to Earth; this is the first time the MAHLI performed this technique since arriving at Curiosity’s field site inside Gale Crater. The image also shows angular and rounded pebbles and sand that were deposited on the rover deck during landing on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT).

Two science instruments, a camera called Mars Hand Lens Imager, or MAHLI, that can take close-up color images and a tool called Alpha Particle X-ray Spectrometer (APXS) that can determine the elemental composition of a rock, also have passed tests. The instruments are mounted on a turret at the end of the robotic arm and can be placed in contact with target rocks. The adjustable focus MAHLI camera produced images this week of objects near and far; of the underbelly of Curiosity, across inlet ports and a penny that serves as a calibration target on the rover.

This close-up image shows tiny grains of Martian sand that settled on the penny that serves as a calibration target on NASA’s Curiosity rover. The larger grain under Abraham Lincoln’s ear is about 0.2 millimeters across. The grains are classified as fine to very fine sand.

The Mars Hand Lens Imagery (MAHLI) on the Curiosity rover taken by the Mast Camera on the 32nd Martian day, or sol, of operations on the surface. Engineers imaged MAHLI to inspect the dust cover and to ensure that the tool’s LED lights are functional. Scientists enhanced the image to show the scene as it would appear under Earth’s lighting conditions. This helps in analyzing the background terrain.

Check out more images from the Mars Science Laboratory teleconference.

Image credit: NASA/JPL-Caltech/MSSS

Asteroid 2012 QG42 Zooms by Earth Tonight — Watch Live!

A newly found asteroid will zip past Earth tonight (Sept. 13/14). But don’t worry; at a distance of 2.85 million km (1.7 million miles) Asteroid 2012 QG42 will safely pass by Earth. But that’s close enough for this space rock to be considered a Potentially Hazardous Asteroid (PHA) which means it may pose a threat in the future. This asteroid is between 190 to 430 meters (625 feet to 1,400 feet) wide and was first spotted by astronomers at the Catalina Sky Survey in Arizona on August 26. NASA’s Near Earth Object Office said they will use this opportunity to observe the asteroid with radar – which is a great way to find out about the physical properties and orbits of asteroids.

Closest approach is on September 14 at 05:08 UT (1:08 am EDT)

Amateur and professional astronomers have already been keeping tabs on this asteroid. Above is a timelapse from Peter Lake. And a couple of different live feeds from telescopes will be available to watch the action.

The Virtual Telescope Project run by astronomer Gianluca Masi in Italy is already providing a live video stream at http://www.virtualtelescope.eu/webtv/

Additionally, the Slooh Space Camera night sky observing website will provide a live view of asteroid 2012 QG42’s closest approach in a webcast starting at 7 p.m. EDT (2300 GMT) on Sept. 13, offering views from at least one of its telescopes at its observatory in the Canary Islands, off the west coast of Africa. You can watch the Slooh webcast by visiting their website here: http://www.slooh.com

A view of Asteroid 2012 QG42 from the Siding Spring-Faulkes Telescope South on 2012, September 4, 2012, through a 2.0-m f/10.0 Ritchey-Chretien + CCD, a stack of 4×10-second exposures, taken with the asteroid at magnitude ~15.2 and moving at 4.35″/min. Credit: Ernesto Guido, Nick Howes & Giovanni Sostero.

Asteroid 2012 QG42’s flyby comes a few months after another recently discovered space rock, asteroid 2012 LZ1, made its closest approach to Earth just days it was discovered.

“Near-Earth objects have been whizzing past us lately, undetected until they have been practically on top of us,” said Bob Berman, Slooh commentator and Astronomy Magazine writer. “This illustrates the need for continued and improved monitoring for our own future safety. It is not a question of if, but when such an object will hit us, and how large and fast it may be going.”

Slooh will be using at least three of its online robotic telescopes to provide live image feeds as the celestial intruder makes its closest approach to Earth throughout the night.

At a magnitude of only 13-14, about the same faintness as the demoted ex-planet Pluto, the asteroid is a challenging target for backyard telescopes. To observe this kind of object requires large telescopes, equipped with ultra-sensitive CCD cameras, carefully set-up to point and track such a fast moving object — Slooh’s Half Meter Telescope at its Canary Islands Observatory is perfect for the task, the Slooh team said.

“To observe them — as we will do live on Thursday evening,” said Berman, “provides instruction and perhaps motivation to keep up our guard, as well as a sense of relief as it speeds safely past at a mere one fifteenth the distance to the nearest planets.”

With the radar images that NASA plans to take, the “echo”measurements can produce two-dimensional images that can provide spatial resolution as fine as a decameter if the echoes are strong enough. With enough data, astronomers can construct detailed three-dimensional models, define the rotation state precisely, and constrain the object’s internal density distribution.

So look for more information on this asteroid after it passes by Earth.

The Moon from Earth As You’ve Never Seen it Before

The Morteus region on the Moon, taken from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

Think this is an orbital view of the Moon? Guess again. Astrophotographer Thierry Legault took this image from his backyard in the suburbs of Paris, France! He’s taken a series of images of the Moon the past few nights that will blow your mind when you consider they were taken from Earth, within the confines of the metropolis of Paris (largest city in France, 5th largest in the EU, 20th largest in the world). Thierry used a Celestron C14 EdgeHD (356mm) and Skynyx2.2 camera. You definitely want to click on these images for the larger versions on Thierry’s website, and he suggests using a full-HD screen in subdued surroundings.

Additionally, Thierry also recently took images of Mercury and Uranus that include incredible detail.

Plato, Mons Pico and Montes Teneriffe as seen on Sept 8th, 2010, from the suburbs of Paris, France. Credit: Thierry Legault. Used by permission.

The clarity and detail are just tremendous. See all of Thierry’s recent lunar images at this link. He has a collection of twelve different images of various regions on the Moon and all are stunning.

Below are his images of Mercury and Uranus. In the image of Mercury, surface details are visible, and the cloud belts are even visible on the images of Uranus:

Incredibly detailed view of Mercury on August 23, 2012, as seen from Blancourt, France. Credit: Thierry Legault. Used by permission.

Uranus, as seen on September 9, 2012 from Blancourt, France. Credit: Thierry Legault. Used by permission.

Thanks, as always, to Thierry Legault for sharing his images and allowing us to post them. Check out his website: http://legault.perso.sfr.fr/ for more wonderful images and information about how he does his amazing astrophotography.

The Unusually Colossal Kepler Supernova

A composite image of Chandra X-ray data shows a rainbow of reds, yellows, green, blue and purple, from lower to higher energies. Optical data from the Digitized Sky Survey, shown in pale yellow and blue, offer a starry background for the image. Optical: DSS

An arc of hot gas that spewed from the Kepler Supernova offers tantalizing clues that the cataclysmic stellar explosion of 1604 was not only more powerful than previously thought but also farther away according to a recent study using Chandra X-ray Observatory data published in the September 1, 2012 edition of The Astrophysical Journal.

A new star appeared in the autumn skies of 1604. Although it was described by other astronomers, it was famous astronomer Johannes Kepler who thoroughly detailed the the second supernova sighting in a generation. The star shined more brilliant than Jupiter and remained visible – even during the day – over several weeks.

Look for Kepler’s Supernova at the foot of the constellation Ophiuchus, the Serpent Bearer, in visible light and you won’t see much. But the hot gas and dust glow brightly in the X-ray images from Chandra. Astronomers have long puzzled over Kepler’s Supernova. Astronomers now know the explosion that created the remnant was a Type Ia supernova. Supernovae of this class occur when a white dwarf, the white-hot dead core of a once Sun-like star, gains mass by either merging with another white dwarf or drawing gas onto its surface from a larger companion star until temperatures soar and thermonuclear processes spiral out of control resulting in a detonation that destroys the star.

Kepler’s Supernova is a bit different because the expanding debris cloud is shaped by gas and dust clouds throughout the area. Most Type Ia supernovae are symmetrical; nearly perfect expanding bubbles of material. A quick look at the Chandra image of the supernova and one notices the bright arc of material across the top edge of shockwave. In one model, a pre-supernova white dwarf and its companion were moving through a nebulous area creating a bow shock, like a boat plowing through water, in front. Another model suggests that the glowing arc is the edge of the supernova shockwave as it passes through an area of increasingly dense gas and dust. Both models push the distance of the supernova from the previously believed 13,000 light-years to more than 20,000 light-years from Earth, scientists say in the paper.

Scientists also found large amounts of iron by looking at the X-ray light from Chandra meaning that the explosion was far more powerful than an average Type Ia supernova. Astronomers have observed a similar Type Ia supernova using Chandra and an optical telescope in the Large Magellanic Cloud.

Kepler’s Supernova is the last Milky Way supernova visible to the naked eye. It was the second supernova to be observed in that generation after SN 1572 in Cassiopeia studied by the famous astronomer Tycho Brahe.

Source: http://chandra.harvard.edu

About the author: John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA’s Great Observatories and other sources in a different way. A former contributing editor for Final Frontier, his work has appeared in the Planetary Society Blog, Air & Space Smithsonian, Astronomy, Earth, MX Developer’s Journal, The Kansas City Star and many other newspapers and magazines. Follow John on Twitter @terrazoom.

Opportunity Rover Finds Intriguing New Spherules at Cape York

Mosaic image of the spherules in the rock outcrop on Cape York at Endeavour crater. Credit: NASA / JPL-Caltech / Stuart Atkinson

One of the most interesting discoveries made so far by the Opportunity rover on Mars has been the small round spherules or “blueberries” as they are commonly referred to, covering the ground at the rover’s landing site. Typically only a few millimetres across, some lie loose on the soil while others are imbedded in rock outcrops.

Analysis by Opportunity indicates that they are most likely a type of concretion, which are also found on Earth. These Martian concretions have been found to contain the mineral hematite, which explains its detection in this region from orbit, and one of the main reasons that the rover was sent to this location in Meridiani Planum in the first place. They are similar to the Moqui Marbles, iron-oxide concretions in the outcrops of Navajo Sanstone in Utah, which formed in groundwater.

Now, the rover (eight years later and still going!) has found what may be a different type of spherule. These ones generally resemble the previous ones, but are quite densely packed in an unusual rock outcrop that is on the eastern side of Cape York, the small island-like ledge on the rim of the huge Endeavour crater. With brittle-looking “fins” of material, the outcrop is an an area that from orbit has been identified as containing small clay deposits. There are also more substantial clay deposits farther south along Endeavour’s rim at the much larger Cape Tribulation, the next major destination of Opportunity.

Whether this outcrop actually has any clay in it isn’t known yet, but the examination of it by Opportunity continues at the time of this writing. Some spherules have apparently broken off the outcrop, exposing their inside structure. The new close-up images of the spherules were taken by the Microscopic Imager (MI) on the rover.

A portion of the rock outcrop. Credit: NASA / JPL-Caltech / Stuart Atkinson

What makes these spherules of interest is the possibility that they may be connected somehow to the clay deposits. Their dense concentration in the outcrop and the physical nature of the outcrop itself may indicate a different origin than the other spherules seen previously, as well as the fact that no hematite signature has been seen from orbit in this specific area (although there may be smaller amounts of hematite here as well). We will just have to wait for the results of the rover’s analysis to come back, but they should be interesting.

Opportunity is specifically looking for the clay deposits in this area, as they could have formed in non-acidic (or pH neutral) water as often happens on Earth. As we have seen in just the last few days though, the origin of Martian clays is itself still a subject of debate.

The whitish gypsum veins already seen at Cape York and examined by Opportunity also indicate the presence of liquid water at this location in the distant past. There are some interesting light-coloured veins in this same outcrop as well; whether they are also gypsum or something else isn’t known yet.

Thanks also to Stuart Atkinson for his excellent mosaic images made from the original Opportunity photos.

Endeavour’s Cross-Country Final Piggyback Ride Arrives at Kennedy

SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

The clock is rapidly ticking down on the final days of the Kennedy Space Center (KSC) as the proud home of NASA’s Space Shuttle Endeavour.

On Tuesday, Sept. 11, the modified 747 Jumbo Jet that will ferry shuttle Endeavour piggy-back style cross-country to her new eternal home in California arrived at KSC.

The Shuttle Carrier Aircraft, or SCA, touched down at the shuttle landing strip at KSC at about 5:05 p.m. EDT. See the gallery of approach and landing photos.

Image Caption: SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

SCA Arrival at KSC on Sept. 11 for Endeavour Ferry Flight to California on Sep. 17. Credit: Ken Kremer

SCA Arrival Photo. Credit: Ken Kremer

The 747 landing marks the start of the process that culminates soon with the final airborne flight of the orbiter in the history of NASA’s Space Shuttle Program.

On Friday, Sept. 14 Endeavour will be hauled out of the iconic Vehicle Assembly Building (VAB) for the final time and moved to the Shuttle Landing Facility where she will be hoisted and mated onto the back of the jumbo jet, designated NASA 905.

SCA Arrival Photo. Credit: Jeff Seibert/wiredforspace


SCA Arrival Photo. Credit: Jeff Seibert/wiredforspace

The mated pair are due to take off at first light on Monday, Sept.17 weather permitting on a multi day trip across America before landing in California.

The 747 crew will fly perform multiple, crowd pleasing and low flyovers of the space coast area, the KSC Visitor complex and the beaches – which will give every spectator a thrilling front row seat to this thrilling and bittersweet moment in space history as the shuttle takes flight for the very final time.

Watch for my upcoming tour report taking you inside the SCA Jumbo Jet.

And I will be on-site at KSC providing on-site Endeavour departure coverage for Universe Today readers through the dramatic takeoff on Sept 17.

Ken Kremer

………

SCA Arrival Photos Credit: Klaus Krueger

Sputtering: How Mars May Have Lost Its Atmosphere

Artist depiction of the MAVEN spacecraft. Credit: NASA

Why is Mars cold and dry? While some recent studies hint that early Mars may have never been wet or warm, many scientists think that long ago, Mars once had a denser atmosphere that supported liquid water on the surface. If so, Mars might have had environmental conditions to support microbial life. However, for some reason, most of the Martian atmosphere was lost to space long ago and the thin wispy atmosphere no longer allows water to be stable at the surface. Scientists aren’t sure how or why this happened, but one way a planet can lose its atmosphere is through a process called ‘sputtering.’ In this process, atoms are knocked away from the atmosphere due to impacts from energetic particles.

Since Mars doesn’t have a strong intrinsic magnetic field, the atmosphere could have been eroded by interactions with the solar wind, and this video shows how that occurs. Also, the conditions in the early solar-system conditions enhanced the sputtering loss, and so the loss of Martian atmosphere could be caused by a complex set of mechanisms working simultaneously.

An upcoming mission could tell us what happened to Mars’ atmosphere. The Mars Atmosphere and Volatile Evolution spacecraft or MAVEN is equipped with eight different sensors designed to sort out what happened to the planet’s atmosphere.

MAVEN will be the first spacecraft ever to make direct measurements of the Martian atmosphere, and is the first mission to Mars specifically designed to help scientists understand the past – also the ongoing — escape of CO2 and other gases into space. MAVEN will orbit Mars for at least one Earth-year, about a half of a Martian year. MAVEN will provide information on how and how fast atmospheric gases are being lost to space today, and infer from those detailed studies what happened in the past.

Studying how the Martian atmosphere was lost to space can reveal clues about the impact that change had on the Martian climate, geologic, and geochemical conditions over time, all of which are important in understanding whether Mars had an environment able to support life.

The MAVEN will carry eight science instruments that will take measurements of the upper Martian atmosphere during one Earth year, equivalent to about half of a Martian year.

MAVEN is scheduled to launch in 2013, with a launch window from Nov. 18 to Dec 7, 2013. Mars Orbit Insertion will be in mid-September2014.