Curiosity Takes Aim at Martian Destination – Mount Sharp

Image Caption: Curiosity Points to Mount Sharp. Curiosity unstowed the robotic arm on Aug. 20 and aimed it directly at her Martian drive destination – Mount Sharp. This mosaic of the robotic arm was assembled from navigation camera images from Sols 2, 12 and 14 and shows 18,000 foot high Mount Sharp in the background and the shadow of the martian robot’s head at center. Curiosity will search for hydrated minerals using the robotic arm and a neutron detector on the body. Image stitching and processing by Ken Kremer and Marco Di Lorenzo. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Curiosity flexed her mighty robotic arm for the first time on Monday (Aug. 20) and aimed the hand-like tool turret squarely at Mount Sharp, her ultimate driving destination.

If you want to see exactly where Curiosity is headed and why she was sent to Gale Crater, just take a look at the new mosaic assembled by Ken Kremer and Marco Di Lorenzo.

Curiosity is pointing with her robotic arm right at Mount Sharp, the huge 18,000 foot tall (5.5 kilometer) mysterious mound that covers the center of the 96 mile (154 km) wide crater. Our mosaic was prominently featured on the front page of NBC News and in a new article by Alan Boyle – here

The layered sediments in Mount Sharp could unveil the geologic history of Mars stretching back billions of years and reveal why the planet transitioned from an ancient, wet period of flowing liquid water on the surface to the dry, desiccated era of today.

As Curiosity unstowed and raised the 7 foot long (2.1 m) arm and reached towards Mount Sharp, the mast mounted navigation cameras on her head snapped a series of black and white images that included the shadow of NASA’s newest Martian robot. The 6 wheeled, car-sized rover made a harrowing pinpoint touchdown barely 2 weeks ago.

The arm is critical to the success of the mission because it will be used to maneuver a sophisticated turret, mounted at the arms terminus and laden with scientific instruments. It weighs a hefty 66 pounds (30 kg) and is about 2 feet in diameter. The turret includes a high resolution focusable color camera, a drill, an X-Ray spectrometer, a scoop and mechanisms for sieving and portioning samples of powdered rock and soil.

“We continue to hit home runs. We unstowed the robotic arm and took a look at the tools on the end of the arm,” said Curiosity Mission Manager Michael Watkins of NASA’s Jet Propulsion Lab (JPL) at a news briefing on Tuesday, Aug. 21. “It’s kind of a Swiss army knife there where we have a lot of instruments. We wanted to make sure all of that was working by doing these first motor checks. All of that went successfully.”

Watkins said the team was thrilled to finally see images of the arm deployed on Mars after seeing thousands of engineering test images.

“We have looked at images thousands of times in our test environment and I always see the walls of the test lab there.Now to see the arm out there deployed with Mars out there in the background is just a great feeling.”

The next step is more tests to confirm the arms utility and movements and calibrate the instruments . “We will fully check out the arm, drill and processing unit,” said Louise Jandura of JPL, sample system chief engineer for Curiosity, at the briefing. “The arm has already performed all these motions on Earth, but in a different gravity condition and that gravity does matter. Our turret at the end of the arm weighs as much as a small child and the differences in gravity change the amount of sag at the end of the arm. We want to be able to fine tune these end-point positions. So it will take some time to put the arm through all its paces.”

What’s more is that Curiosity is wiggling her wheels and is all set to make her first martian test drive on Wednesday.

“Late tonight, we plan to send Curiosity the commands for doing our first drive tomorrow,” said Watkins. “Curiosity will drive about 10 feet, turn right and then back up so her rear wheels will wind up about where her front wheels are now. The cameras will photograph the tracks and evaluate the performance of Curiosity driving ability and the softness of the surface soil.”

The 1 ton mega robot is also equipped with the DAN (Dynamic Albedo of Neutrons) instrument provided by Russia to check for water bound into minerals as hydrates in the top three feet (one meter) of soil beneath the rover.

“Curiosity has begun shooting neutrons into the ground,” said Igor Mitrofanov of Space Research Institute, Moscow, principal investigator for DAN. “We measure the amount of hydrogen in the soil by observing how the neutrons are scattered, and hydrogen on Mars is an indicator of water.”

The mission goal is to ascertain whether the Red Planet was ever capable of supporting microbial life, past or present and to search for the signs of life in the form of organic molecules during the 2 year primary mission phase.

Ken Kremer

Image Caption: Panoramic Vista of Mount Sharp (at right) and Gale Crater from NASA’s Curiosity rover on Mars. Curiosity will eventually climb 3.4 mile high Mount Sharp in search of hydrated minerals. This colorized panoramic mosaic shows was assembled from new navigation camera (Navcam) images snapped by Curiosity on Sol 2 and Sol 12 and colorized based on Mastcam imagery from Curiosity. Image stitching and processing by Ken Kremer and Marco Di Lorenzo. See black and white version below. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo Lorenzo – www.kenkremer.com

Astrophoto: Sky Island by Sean Parker

It’s true, the Perseid Meteor shower is the best star show of the year. But sometimes a little enhancement doesn’t hurt. I’ll let astrophotographer Sean Parker tell the story of this image:

A fellow star gazer friend and I both love space and also happen to love photography, so we packed up our gear and headed to the best place to observe the night sky that we know of, Mt. Lemmon. We set up 2 different time-lapses and this was a frame from one of them. In the time-lapse it shows us and other stargazers sitting on the rock observing the Perseid Meteor Shower under the dark skies about 40 minutes out of Tucson in the Catalina Mountains. Unfortunately there was some cloud cover which limited our view, but we were still able to see an acceptable amount of shooting stars.

Because there were other observers using their flashlights in the area, I decided to add some light painting gestures to the shot here and there. The shot is of me holding my phone and doing a circle motion and it just happened to be perfect timing with the meteor going by above the tree.

The Photo was taken at 1:48 AM. The clouds are reflecting the city lights of Tucson, Arizona. I’ve also added a warmer temperature to the image, but not much.

Camera Details:

Canon 5D MK II
Canon EF 24-70mm f/2.8L
20 Second exposure @ ISO-1600

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Carnival of Space #263

This week’s Carnival of Space is hosted by our pal Ray Sanders at his Dear Astronomer blog.

Click here to read Carnival of Space #263.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.

Shields Up! ISS Spacewalkers Install New Micrometeorite Shields

International Space Station Commander Gennady Padalka and Flight Engineer Yuri Malenchenko completed the first spacewalk of the Expedition 32 mission on Monday, Aug. 20, and successfully completed several tasks, including the installation of micrometeoroid debris shields on the exterior of the Zvezda service module and the deployment of a small science satellite.

Graphic showing the Debris Panel Installation Sites. Credit: NASA

The primary task during the five-hour, 51-minute EVA was to move the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module. The move was another step in preparing Pirs for its eventual undocking and disposal, which will make room for the docking of the new Russian multipurpose laboratory module to the Zvezda nadir port.

This was the 163rd in support of station assembly and maintenance.

A second Expedition 32 spacewalk, scheduled for Aug. 30, will be conducted by NASA Flight Engineer Sunita Williams and Japan Aerospace Exploration Agency Flight Engineer Akihiko Hoshide. This will be the first U.S.-based spacewalk in over a year, since July 2011. During the planned 6.5-hour EVA, the astronauts will replace a faulty power relay unit on the station’s truss, rig power cables for the arrival late next year of a Russian laboratory module, replace a failing robotic arm camera and install a thermal cover on a docking port.

Timelapse: Star Trails in Portugal

Astrophotographer Miguel Claro has compiled dozens of hours of timelapse photography – all taken in Portugal – creating one of the most amazing and idyllic night sky views, including several magical star trail observations. Included in the foreground are some historical features, such as Diana’s Temple in Évora, the 25th of April Bridge in Lisbon and scenes from the Dark Sky Alqueva, one of the first dark sky reserves in the world to be certified as “Star Light Tourism Destination.”

“It is the perfect place to find the Milky Way as well providing an incredible and overwhelming vision,” Claro wrote to UT, “where the depth of the sky has no limit. The light pollution effect existing in large cities, earned their magic through the peculiar form as it was captured in each image revealed in this video.”

Sit back, put the video in HD and large screen, turn on your speakers and enjoy! This is perfect if you need a short “get away from it all” during your day!
Continue reading “Timelapse: Star Trails in Portugal”

Chasing Atlantis: An Upcoming Film about the Shuttle’s Legacy

Shuttle Atlantis as it enters the Vehicle Assembly Building (Ryan Horan.)

Take five shuttle fans and a once-in-a-lifetime experience, mix in some artistic creativity, and you will understand the enthusiasm and love behind the Chasing Atlantis film production.

Five Canadians made the trek to Florida to watch the final shuttle launch last year. They are wrapping up filming and interviews — which included astronauts and sci-fi stars — to discuss the legacy of the program.

They plan to release Chasing Atlantis in November. Team member Matthew Cimone talked to Universe Today by e-mail about why they made the journey in the first place.

UT: What is your connection to space?

There were five of us in total. Matthew Cimone, Paul Muzzin, Melanie Godecki, Chris Bourque and Rebecca Mead. We ranged from total space geeks and sci-fi junkies to those who were simply interested in being part of an adventurous road trip.

Continue reading “Chasing Atlantis: An Upcoming Film about the Shuttle’s Legacy”

Video: What Would Mars Look Like to an Astronaut in Orbit?

Image of Mars from Mars Express. Credit: ESA

Future human Mars mission preview! The team from Mars Express put this great video together which shows what Mars looks like from above, during an elliptical orbit. They created it using 600 individual still images captured by the Visual Monitoring Camera (VMC), and it shows the view from a visiting spacecraft’s slow descent from high above the planet, then speeds up during closest approach, and then slows down again as the orbital distance increases.

A Mars Express VMC camera image of Mars from May, 2012. Credit: ESA

Visible are giant Martian volcanoes, a quick glimpse of the ice-covered South Pole, and Mars terminator as day turns to night. Then quickly daylight returns, and then the visitor sees the North Pole, followed by the long climb away from the planet over the equator. Finally, at the end of the movie — look closely! –the disk of Phobos can be seen crossing over Mars.

The VMC is being used almost like a Mars webcam! It consists of a small CMOS-based optical camera, which can be fitted with an on-pixel RGB color filter for color images. So, it is basically an ordinary camera, but it is in an extraordinary place! It originally provided simple, low-tech images of Beagle lander separation — a mission which, unfortunately failed and crashed. But the VMC has been resurrected to provide views of the Red Planet. It’s not a scientific instrument, but it does provide fantastic views of Mars – including crescent views of the planet not obtainable from Earth.

The images used here were taken during Mars Express’ 8,194th orbit of Mars on May 27, 2010 between 02:00 and 09:00 UTC (04:00-11:00 CEST).

More info on VMC.

Curiosity’s Sundial Carries a Message of Hope

Image from Curiosity's Mastcam shows the rover's MarsDial (NASA/JPL-Caltech)

 A recent high-definition image from Curiosity’s Mastcam shows the rover’s sundial (NASA/JPL-Caltech)

While Curiosity is definitely loaded up with some of the most high-tech instruments ever made to investigate the surface of Mars, it also carries a very low-tech instrument: a sundial (aka the “MarsDial”) which can be used to determine the position of the Sun in the sky and the season on Mars just like they do here on Earth. Curiosity’s sundial also has additional color calibration tools for the rover’s Mastcam, which captured the image above on August 19 — the 13th “Sol” of the mission.

The connection between a device invented by people thousands of years ago being in use today on a robotic explorer on another planet didn’t go unnoticed by the Mars Exploration Rover team either; in addition to the words “Mars 2012” and “To Mars, To Explore” around its top bezel, Curiosity’s sundial also carries a message of history, hope and inspiration printed along its edges…

Along with line drawings and the word for “Mars” in sixteen languages, Curiosity’s sundial bears the following inscription:

“For millennia, Mars has stimulated our imaginations. First, we saw Mars as a wandering star, a bringer of war from the abode of the gods. In recent centuries, the planet’s changing appearance in telescopes caused us to think that Mars had a climate like the Earth’s. Our first space age views revealed only a cratered, Moon-like world, but later missions showed that Mars once had abundant liquid water. Through it all, we have wondered: Has there been life on Mars? To those taking the next steps to find out, we wish a safe journey and the joy of discovery.”

Curiosity’s successful landing on Mars at 10:31 p.m. on August 5, 2012 (PDT) was only the first (although very exciting!) step of its mission, and the first of hopefully many next steps to explore our neighboring world. Perhaps one day this message will be revisited by human explorers on Mars who may then reflect back on how it all began, and all of the innovations, hope and — well, curiosity — that made each of their rust-dusted steps possible.

Follow the sun, Curiosity!

Find out more about Curiosity’s many science and exploration instruments on JPL’s interactive 3D page here, and keep up with the latest MSL downloaded images here.

A First: Star Caught in the Act of Devouring a Planet

Artist's impression of a red giant star. Image credit: ESO

How’s this for a depressing look into Earth’s potential future: astronomers have witnessed the first evidence of a planet’s destruction by its aging star as it expands into a red giant.

“A similar fate may await the inner planets in our solar system, when the Sun becomes a red giant and expands all the way out to Earth’s orbit some five-billion years from now,” said Alex Wolszczan, from Penn State, University, who led a team which found evidence of a missing planet having been devoured by its parent star. Wolszczan also is the discoverer of the first planet ever found outside our solar system.

The planet-eating culprit, a red-giant star named BD+48 740 is older than the Sun and now has a radius about eleven times bigger than our Sun.

The evidence the astronomers found was a massive planet in a surprising highly elliptical orbit around the star – indicating a missing planet — plus the star’s wacky chemical composition.

“Our detailed spectroscopic analysis reveals that this red-giant star, BD+48 740, contains an abnormally high amount of lithium, a rare element created primarily during the Big Bang 14 billion years ago,” said team member Monika Adamow from the Nicolaus Copernicus University in Torun, Poland. “Lithium is easily destroyed in stars, which is why its abnormally high abundance in this older star is so unusual.

“Theorists have identified only a few, very specific circumstances, other than the Big Bang, under which lithium can be created in stars,” Wolszczan added. “In the case of BD+48 740, it is probable that the lithium production was triggered by a mass the size of a planet that spiraled into the star and heated it up while the star was digesting it.”

The other piece of evidence discovered by the astronomers is the highly elliptical orbit of the star’s newly discovered massive planet, which is at least 1.6 times as massive as Jupiter.

“We discovered that this planet revolves around the star in an orbit that is only slightly wider than that of Mars at its narrowest point, but is much more extended at its farthest point,” said Andrzej Niedzielski, also from Nicolaus Copernicus University. “Such orbits are uncommon in planetary systems around evolved stars and, in fact, the BD+48 740 planet’s orbit is the most elliptical one detected so far.”

The Hobby-Eberly Telescope

Because gravitational interactions between planets are responsible for such peculiar orbits, the astronomers suspect that the dive of the missing planet toward the star could have given the surviving massive planet a burst of energy, throwing it into an eccentric orbit like a boomerang.

“Catching a planet in the act of being devoured by a star is an almost improbable feat to accomplish because of the comparative swiftness of the process, but the occurrence of such a collision can be deduced from the way it affects the stellar chemistry,” said Eva Villaver of the Universidad Autonoma de Madrid in Spain Villaver. “The highly elongated orbit of the massive planet we discovered around this lithium-polluted red-giant star is exactly the kind of evidence that would point to the star’s recent destruction of its now-missing planet.”

The team used the Hobby-Eberly Telescope – searching for planets – when they detected evidence of the missing planet’s destruction.
The paper describing this discovery is posted in an early online edition of the Astrophysical Journal Letters (Adamow et al. 2012, ApJ, 754, L15), or another version is available on arXiv.

Lead image caption: Artist’s impression of a red giant star. Image credit: ESO

Mars Lander Wins Out for 2016 Mission Over Titan Boat and Comet Hopper

Artist rendition of NASA’s Mars InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter (MRO) and Gravity Recovery and Interior Laboratory (GRAIL) missions. Credit: JPL/NASA

A new mission to Mars will launch in 2016, NASA announced on Monday, a lander named InSight that will probe Mars’ interior to determine whether it has a solid or liquid core, if it actually does have fault lines and plate tectonics, and figure out the Red Planet’s basic internal structure. All of this will not only help scientists understand Mars, but also to gain insight on how terrestrial planets form and evolve.

“We’re very confident that this will produce exciting science,” said John Grunsfeld, NASA’s associate administrator for the agency’s Science Mission Directorate.

InSight won out for this round of NASA’s lowest cost missions, the Discovery missions, over two other very enticing proposals: the Titan Mare Explorer (TiME) would have sent a floating high-tech buoy to land in a methane sea on Saturn’s moon Titan to study its composition and its interaction with the atmosphere; and Chopper was a proposed Comet Hopper mission that would put a lander on comet 46P/Wirtanen where it would study the comet’s composition, and with thrusters it could essentially “hop” to different locations on the comet.

While all three missions in the competition were compelling, NASA only has enough money, unfortunately, for one Discovery mission in 2016. And, Grunsfeld said, InSight was the best choice of a project that could stay at or even under the Discovery program’s $425 million cost cap, excluding launch costs, and keep its tight schedule to launch in 2016.

“Our Discovery Program enables scientists to use innovative approaches to answering fundamental questions about our Solar System in the lowest cost mission category,” said Grunsfeld. “InSight will get to the ‘core’ of the nature of the interior and structure of Mars, well below the observations we’ve been able to make from orbit or the surface.”

Asked during a press briefing if NASA is becoming, too Mars-centric, Grunsfeld replied, “We still have a broad portfolio of missions, with Juno recently launching, OSIRIS-Rex launching in 2016, the Dawn mission going on and New Horizons heading to Pluto, so I think we’ve shown very broad diversity in past selections.”

Grunsfeld was also asked if the Curiosity rover’s recent successful landing had any influence on the choice, but Grunsfeld said the decision was actually made before the Mars Science Laboratory rover touched down.

“We’re really clueless on the interior of Mars,” said NASA’s Planetary Science Chief, Jim Green. “And this is really our first attempt to understand what terrestrial bodies go through in their early evolution.”

Insight’s body is based on the Phoenix lander, which landed in Mars’ polar region in 2008, and will use solar panels for power instead of a radioisotope power system, which saves on costs. But the instrumentation for InSight is completely different than Phoenix, and it involves an international mix.

InSight will carry four instruments: JPL will supply a geodetic instrument to determine the planet’s rotation axis and a robotic arm and two cameras used to deploy and monitor instruments on the Martian surface. The French space agency CNES is leading an international consortium that is building an instrument to measure seismic waves traveling through the planet’s interior. The German Aerospace Center (DLR) is building a subsurface heat probe to measure the flow of heat from the interior.

And don’t expect any great color photos of Mars’ surface from InSight. It will only have a black and white context camera, and Green said they don’t expect any changes in that regard, as the mission will need to stay on budget and on time.

InSight will land in a flat, equatorial, flat region in September 2016 to begin a two-year scientific mission. “The Phoenix lander went to polar regions and we knew it was going to be a short lifetime,” said Grunsfeld. “Because InSight goes to an equatorial region where the environment is relatively more benign, it has the potential to last longer, so that is exciting.”

Green touched on other potential areas of study for InSight, such as determining if there are “Marsquakes,” and whether the landslides seen by the Mars Reconnaissance Orbiter’s HiRISE camera are due to activity on the planet like quakes or from melting.

“Methane is being potentially being produced from Mars’ interior,” Green said, “and that touches upon the potential life question. But that is a potentially active process a-bioticaly, in interactions between water, minerals and magma. And this mission could determine if Mars has a hot interior magma, and why it doesn’t generate a magnetic field. What we are seeing are some of the different perspectives of Mars being an active planet or not, and these instruments will clearly be able to do this.”

Sources: NASA, press briefing