Two New Videos Show Curiosity’s Touchdown and Heat Shield Hitting Mars

Wow, this is better than any theatrical movies of fictional ships landing on Mars, because this is REAL! The images and videos from the Mars Descent Imager (MARDI) camera on the Mars Science Laboratory spacecraft keep getting more amazing as the science team goes through their data and refines all the awesome action events from landing that the camera was able to capture. The video above is from a sequence of images which shows Curiosity’s heat shield slamming into the surface and raising a cloud of dust!! MARDI took the images while the rover was still suspended on a parachute and, of course, after the spacecraft had jettisoned the heat shield.

We also have a full resolution color MARDI image below which was sent to us by Rolf Wahl Olsen, pointing out where the heat shield is sitting on the surface.

And another great video below is of Curiosity gently touching down on Mars. This was also taken by MARDI and is a higher resolution version that what was previously available. MARDI is on the bottom of the rover, so you see the surface of Mars coming up at you, and then see the dust swirling as the sky crane’s rocket thrusters blasted the Mars regolith. Additionally, on the descent, one of the rover’s wheel’s comes into view as it unfolds in preparation for landing! Awesome!

UPDATE: (Aug. 19)

This video was put together by Doug Ellison of UnmannedSpaceflight.com, which shows Curiosity’s entire descent, starting with the heat shield jettison until touchdown and provides a “smoother” view of the entire landing:

Caption: High resolution image from MARDI of Curiosity’s descent. Credit: NASA/JPL/MSSS

Click on the image for a larger version, or see the original raw version here. “It’s the little back irregular spot in the middle near the bottom edge,” Olsen said. “It’s not in the image before that, and it fits perfectly with the ‘crime scene’ photo released earlier,” which you can see here. If you look closely, the impact crater is even visible in this image!

Mohawk Guy Provides Update on Curiosity Rover

JPL’s Bobak Ferdowsi — famous for the star-spangled Mohawk hairdo he sported on Curiosity’s landing night — provides an update on what the newest Mars rover has been up to (checking out instruments) and how next week should include big moments like the first test drive and firing up that laser.

In addition to great hair, Ferdowsi is a Flight Director for the Curiosity rover team.

Ferdowsi in JPL’s Mission Control during Curiosity’s landing.

Spectacular ‘Sideways Glance’ of Mt. Sharp in Gale Crater

Yep, you really want to click on this link to see the full color version of this great oblique view of Mt. Sharp (a.k.a. Aeolis Mons) in Gale Crater, taken by the HiRISE camera on the Mars Reconnaissance Orbiter. Or you can click here to see the full “raw” strip from the spacecraft.

“The viewing angle is 45 degrees, like looking out an airplane window,” wrote HiRISE Principal Investigator Alfred McEwen on the HiRISE website. McEwen noted that this color version doesn’t show the Curiosity rover or the hardware left over from the landing on Mars, but it does provide a great view of Gale Crater’s central mound.

So how “true” is the color in this image?

“It may be close, but not true,” Christian Schaller from the HiRISE team told Universe Today. Schaller pointed out the description (pdf) of color in HiRISE images from the HiRISE team:

It isn’t natural color, as seen by normal human eyes, because the IR, RED, and BG channels are displayed in red, green, and blue colors. For the Extras products, each color band is individually stretched to maximize contrast, so the colors are enhanced differently for each image based on the color and brightness of each scene. Scenes with dark shadows and bright sunlit slopes or with both bright and dark materials are stretched less, so the colors are less enhanced than is the case over bland scenes.

Jim Bell, the lead scientist for the Pancam color imaging system on the Mars Exploration Rovers, said he likes to use the term “approximate true color” because the MER panoramic camera images are estimates of what humans would see if they were on Mars. Other colleagues, Bell said, use “natural color.”

“We actually try to avoid the term ‘true color’ because nobody really knows precisely what the ‘truth’ is on Mars,” Bell told Universe Today in 2007 for an article about the art of extraterrestrial photography. In fact, Bell pointed out, on Mars, as well as Earth, color changes all the time: whether it’s cloudy or clear, the Sun is high or low, or if there are variations in how much dust is in the atmosphere. “Colors change from moment to moment. It’s a dynamic thing. We try not to draw the line that hard by saying ‘this is the truth!’”

For more great shots from HiRISE, check out their website.

Source: HiRISE

What If All of Kepler’s Exoplanets Orbited the Same Star?


That’s exactly the scenario shown by a mesmerizing animation called “Worlds” by Alex Parker — a single system containing 2299 multiple-transit planetary candidates identified to date by NASA’s Kepler space telescope, which is currently scrutinizing a field of view within the constellation Cygnus to detect the oh-so-faint reductions in brightness caused by planets passing in front of their stars.

The search requires patience and precision; it’s not really this crowded out there.

Alex’s animation takes 2299 candidates that have been observed multiple times, each shown to scale in relation to their home star, and puts them in orbit around one star, at their relative distances.

The result, although extravagantly impossible, is no less fascinating to watch. (I suggest going full screen.)

“The Kepler observatory has detected a multitude of planet candidates orbiting distant stars,” Alex writes on his Vimeo page. “The current list contains 2321 planet candidates, though some of these have already been flagged as likely false-positives or contamination from binary stars. This animation does not contain circumbinary planets or planet candidates where only a single transit has been observed, which is why ‘only’ 2299 are shown.

“A fraction of these candidates will likely be ruled out as false positives as time goes on, while the remainder stand to be confirmed as real planets by follow-up analysis,” Alex adds.

The white ellipses seen when the animation pulls back are the relative sizes of the orbits of Mercury, Venus and Earth.

At this time the Kepler mission has identified 2321 planetary candidates, with 74 exoplanets confirmed. See more on the Kepler mission here.

Animation: Alex Parker. Image: Kepler mission planet candidates family portrait (NASA Ames/Jason Rowe/Wendy Stenzel)

Masten’s Xombie Tests a Mars EDL-type Trajectory

Could one of the next landings on Mars be led by a commercial company? Masten Space Systems vertical take-off and landing vehicle, Xombie, recently tested powered descent and landing trajectory algorithms that could be used for future Mars Entry Descent & Landing (EDL) applications.

“You may have noticed we’ve been flying Xombie a lot lately doing some interesting things,” wrote the Masten team on their website. “We just finished the third leg of a flight campaign on Xombie that expands the boundaries of what we believe to be the nation’s leading terrestrial landing testbed.”

These very fun-to-watch test flights were completed by Masten for the Jet Propulsion Laboratory to test its powered descent and landing trajectory optimization algorithms for future EDL applications.

“It may look easy, but flying VTVL is really hard,” said Masten Space Systems CTO David Masten on Twitter.


The company said the flights this week reached a higher translation velocity than the previous flights and successfully expanded Xombie’s flight envelope. The flight was controlled by Masten’s own Guidance, Navigation & Control system.

The flight ascended to 476.4 meters before translating downrange 750 meters at a horizontal velocity of 24 meters per second (53 mph).
“As far as we know, the 750 meter translation flight represents the longest terrestrial translation flight ever undertaken by a rocket powered vertical takeoff, vertical landing craft” said the Masten website. “You can bet there were a lot of high fives around the Masten team after this flight!”

This was the third test Masten did for JPL to validate their algorithm, and all objectives were successfully met.

Masten Space Systems’ Xombie rocket with Draper Laboratory’s GENIE flight control system takes an untethered flight from the Mojave Air and Space Port. (Photo courtesy of Draper Laboratory)

US Astronomy Facing Severe Budget Cuts and Facility Closures

The US astronomy budget is facing unprecedented cuts with potential closures of several facilities. A new report by the National Science Foundation’s Division of Astronomical Sciences says that available funding for ground-based astronomy could undershoot projected budgets by as much as 50%. The report recommends the closure – called “divestment” in the new document — of iconic facilities such as the Very Long Baseline Array (VLBA) and the Green Bank Radio Telescope, as well as shutting down four different telescopes at the Kitt Peak Observatory by 2017.

“Divestment from these highly successful, long-running facilities will be difficult for all of us in the astronomical community,” reads the AST Panel Review, Advancing Astronomy in the Coming Decade: Opportunities and Challenges. “We must, however, consider the science tradeoff between divesting existing facilities and the risk of devastating cuts to individual research grants, mid-­scale projects, and new initiatives.”

The National Science Foundation funds the majority of ground-based astronomy facilities and research in the US. Every ten years, the astronomy community puts out a “Decadal Review,” which reviews and identifies the highest priority research activities for astronomy and astrophysics in the next decade, recommending important science goals and facilities.

With the budget trouble the US has encountered since the 2010 decadal survey was released (called “New Worlds, New Horizons, (NWNH),” the money available through the NSF for astronomy is much less than hoped for. Experts say that the Fiscal Year 2012 astronomy budget is already $45 million below the NWNH model, and predictions say the gap may grow to $75 million to $100 million by 2014.

In response to these projections, the US astronomy community convened a new panel to go through NWNH to come up with a set of recommendations of how to live within the means of a smaller budget — basically what to cut and what to keep.

“The federal budget looks nothing like it did when NWNH was underway,” said Dr. Debra Elmegreen from Vassar College in New York, a member of the 2010 Decadal Review Committee, “and I really hope non-defense discretionary spending will not be slashed beyond repair. Congress needs to understand that the nation’s leadership in science is at risk if science funding is not maintained at an adequate level.”

But Elmegreen told Universe Today she was impressed with the new panel’s review.

“The committee faced a very difficult task in trying to allow implementation of the Decadal recommendations while maintaining the strong programs and facilities that NSF has been supporting, in the face of extremely bleak budget projections,” she said, “and I am impressed with their report. The committee seemed to take great care in considering what resources – grant programs, facilities, instrumentation, technological and computation development – would be necessary to achieve progress in each of the very exciting primary science drivers outlined in NWNH.”

The new panel came up with two possible scenarios to deal with the projected budget shortfalls. The more optimistic of the two scenarios, Scenario A, sees funding at the end of the decade at only 65% of what was expected by NWNH. The less optimistic scenario, B, predicts only 50% of projected funding.

Both scenarios recommend closure of “older” facilities: the Nicholas U. Mayall 4-meter telescope, the WIYN (Wisconsin Indiana Yale NOAO) 3.5 meter telescope, the 2.1 meter Kitt Peak telescope, and the McMath-Pierce Solar Telescope – all at the Kitt Peak National Observatory, as well as the the Robert C. Byrd Green Bank Telescope, and the Very Long Baseline Array. “We recommend that AST (NSF’s Astronomy Division) divest from these facilities before FY17” the report says. “We recommend that AST divest in a manner that is responsible to its fellow tenants at observatories and to its long-duration user programs.”

The panel looked to protect small grants for researchers and mid-scale programs, as well as projects already in place to attract and train new astronomers with undergraduate training and post-doc fellowships. But they were forced to keep the budgets of many of these programs relatively flat over the next several years. The panel also recommended no significant new initiatives be started over the next decade.

However, they recommended continued funding of newer and under-construction facilities such as the Atacama Large Millimeter/submillimeter Array (ALMA), the Large Synoptic Survey Telescope (LSST), the Advanced Technology Solar Telescope (ATST), Cerro Chajnantor Atacama Telescope (CCAT), and the Giant Segmented Mirror Telescope (GSMT).

“[These] are all powerful new facilities that promise major advances in the field,” the report reads. “However, they are expensive to construct and operate, and implementing them while protecting the very important (and heavily over-subscribed) small-grants and mid-scale programs implies that AST must find significant reductions elsewhere in the portfolio. This is an uncomfortable but necessary step.”

The panel said that with astronomy advancing very rapidly, investment in the latest facilities, technologies, and instruments is crucial or US astronomy would face a decline in their leadership of astronomical efforts worldwide.

“We have to judge the continuation of existing programs and facilities against the opportunities made possible by new investment,” the report reads. “However, we must also recognize that existing facilities offer secure, near-term science opportunities.”

However, the National Radio Astronomy Observatory (NRAO) and the Associated Universities Inc. (AUI) issued a response to the possible closing of facilities, saying that “optimizing the United States’ astronomy portfolio should involve considerations beyond just the question of what can be cut from a particular funding agency’s budget to make room for something new in that same agency’s budget.”

They listed goals of having world class training facilities and preserving irreplaceable research facilities but said “None of these goals will be advanced by removing the GBT and VLBA from the portfolio of telescopes funded via the NSF; indeed, they will be hindered.”

The savings from divesting from the aforementioned facilities is projected at $20 million.

Another recommendation is to have yearly reviews of every facility to ensure the limited funds are being spent wisely.

“No matter how rosy budgets are you can’t continue to build new facilities without closing old ones or finding another steward to take them over,” said Michael Turner via email, a cosmologist from the University of Chicago and also a member of the NWNH committee. “NASA has realized this for years and blazed the trail with its regular Senior Reviews which this is modeled after. While the budgets ahead are uncertain at best and are unlikely to be as simple as either scenario considered, AST is now reviewing its portfolio on a regular basis and making the difficult decisions needed for good stewardship of the field. That is the big news.”

How are astronomers in the field responding to the new report? Posts on Twitter included expletives, outrage, disappointment and one response of “I want to cry.”

Katherine Mack, an astronomer who is originally from the US but now working abroad tried to take a comprehensive view.

“There’s just so little funding right now,” she said in an email. “As a cosmologist, I was sad to hear that NASA pulled its funding for LISA, a space-based gravitational-wave detector. But I’m even more surprised that now the NSF wants to pull funding from a number of highly productive ground-based projects, such as the Green Bank Telescope. It’s a sharp contrast to places like Australia and South Africa, where new investment in astronomy facilities seems to be very healthy and even increasing.”

Several astronomers posted on Twitter that perhaps the US astronomy community and the AST review panel needs to “think outside the box” more for solutions to problems that are known among those in the astronomy community, but not widely addressed or acknowledged. For example, in the section on “Career Support and Progression, the panel discussed issues relating to the astronomy career structure.

The report says, “Within astronomy, there are aspects of the postdoctoral situation that are unhealthy and unstable” and “there is a persistent mismatch between the production rate of Ph.D.s and the number of tenure-track faculty or long-term astronomy positions.”

“I think everyone in the astronomy community is aware that these problems exist, and it’s nice to see them spelled out, but there’s not much in the report to suggest solutions,” Mack said. “I would love to see a much bigger effort in this direction, thinking of ways to not just prioritize current funding models in a way that helps early-career researchers, but also ways to fundamentally change the funding models or to discourage the field from filling up with postdocs and soft-money astronomers who will never find permanent jobs.”

Astronomer Nicole Gugliucci wrote on the CosmoQuest blog that closures of facilities will not only mean loss of jobs for astronomers, but others as well. “We will lose these important telescopes AND jobs for scientists, engineers, software developers, education professionals, shop mechanics and more,” she said, adding that researchers at smaller universities that do not own their own telescopes, “will lose access to the sky…. and their associated education centers will be in danger and the brilliant projects done with high school and college students will GO AWAY.”

Elmegreen hopes that some of the facilities under threaten of closure will be able to continue their work through privatization. “There is simply no way that all worthy facilities can be kept operating on federal funds and still have any funds left for new starts,” she said, “and NWNH recognized that there would be tough choices ahead in the event of more pessimistic budgets than we had built our recommendations on. I believe the Portfolio report strives for a prudent balance among small, medium, and large efforts, and between existing and proposed facilities, in a way that can help maximize the realization of our astronomical goals.”

As bleak as the new review looks, Turner said there could be a silver lining in this dark cloud for astronomy.

“The toughness of the decisions and the clarity of the strategic thinking at an extraordinary time of discovery about our universe and our place within it … might give NSF reason to find ways to increase the astronomy budget by tightening the budget elsewhere,” he told Universe Today. “The Committee has certainly given the Division Director(James Ulvestad) powerful arguments for increasing funding for astronomy. Time will tell if he is able to put them to good use. I hope he can. This is a special time in astronomy and our quest to understand our place in the cosmos.”

A graph depicts the basic rundown of the two different funding scenarios recommended by the AST Panel Review:

Read the full report here.

Lead image caption: The Robert C. Byrd Green Bank Telescope (GBT) located in Green Bank, West Virginia. This telescope is under threat of closure under the new recommendations of the AST Panel Review. Image courtesy of NRAO/AUI

NASA’s Mighty Eagle Takes Flight; Finds Its Target

No, it’s not a UFO — it’s NASA’s “Mighty Eagle”, a robotic prototype lander that successfully and autonomously found its target during a 32-second free flight test at Marshall Space Flight Center yesterday, August 16.

You have to admit though, Mighty Eagle does bear a resemblance to classic B-movie sci-fi spacecraft (if, at only 4 feet tall, markedly less threatening to the general populace.)

Fueled by 90% pure hydrogen peroxide, Mighty Eagle is a low-cost “green” spacecraft designed to operate autonomously during future space exploration missions. It uses its onboard camera and computer to determine the safest route to a pre-determined landing spot.

During the August 16 test flight, Mighty Eagle ascended to 30 feet, identified a target painted on the ground 21 feet away, flew to that position and landed safely — all without being controlled directly.

“This is huge. We met our primary objective of this test series — getting the vehicle to seek and find its target autonomously with high precision,” said Mike Hannan, controls engineer at Marshall Space Flight Center. “We’re not directing the vehicle from the control room. Our software is driving the vehicle to think for itself now. From here, we’ll test the robustness of the software to fly higher and descend faster, expecting the lander to continue to seek and find the target.”

In the wake of a dramatically unsuccessful free flight test of the Morpheus craft on August 9, another green lander designed by Johnson Space Center, the recent achievements by the Mighty Eagle team are encouraging.

Here’s a video from a previous test flight on August 8:

Future tests planned through September will have the lander ascend up to 100 feet before landing. Read more here.

The Mighty Eagle prototype lander was developed by the Marshall Center and Johns Hopkins University Applied Physics Laboratory in Laurel, Md., for NASA’s Planetary Sciences Division, Headquarters Science Mission Directorate Image/video: NASA/Marshall Space Flight Center

Scientists Find Clues of Plate Tectonics on Mars

Valles Marineris NASA World Wind map Mars Credit NASA

Caption: Valles Marineris NASA World Wind Map Mars Credit: NASA

Until now, Earth was thought to be the only planet with plate tectonics. But a huge “crack” in Mars’ surface — the massive Valles Marinaris — shows evidence of the movement of huge crustal plates beneath the planet’s surface, meaning Mars may be showing the early stages of plate tectonics. This discovery can perhaps also shed light on how the plate tectonics process began here on Earth.

Valles Marineris is no ordinary crack on the Martian surface. It is the longest and deepest system of canyons in the Solar System. Stretching nearly 2,500 miles, it is nine times longer than Earth’s Grand Canyon.

An Yin, a planetary geologist and UCLA professor of Earth and space sciences, analyzed satellite images from THEMIS (Thermal Emission Imaging System), on board the Mars Odyssey spacecraft, and from the HIRISE (High Resolution Imaging Science Experiment) camera on NASA’s Mars Reconnaissance Orbiter.

“When I studied the satellite images from Mars, many of the features looked very much like fault systems I have seen in the Himalayas and Tibet, and in California as well, including the geomorphology,” he said.

The two plates that Yin calls Valles Marineris North and Valles Marineris South are moving approximately 93 miles horizontally relative to each other. By comparison, California’s San Andreas Fault, which is similarly over the intersection of two plates, has moved about twice as much, because Earth is about twice the size of Mars.

Yin believes Mars has no more than two plates whereas Earth has seven major plates and dozens of smaller ones. As Yin puts it “Earth has a very broken ‘egg shell,’ so its surface has many plates; Mars’ is slightly broken and may be on the way to becoming very broken, except its pace is very slow due to its small size and, thus, less thermal energy to drive it. This may be the reason Mars has fewer plates than on Earth.”

Mars also has several long, straight chains of volcanoes, including three that make up the Tharsis Montes, three large shield volcanoes which includes Olympus Mons, the tallest mountain in the Solar System at 22 km high. These volcanic chains may have formed from the motion of a plate sitting over a “hot spot” in the Martian mantle, in the same way the Hawaiian Islands are thought to have formed here on Earth. Yin also identified a steep cliff similar to cliffs in California’s Death Valley, which are generated by a fault, as well as a very smooth and flat side of a canyon wall which Yin says is also strong evidence of tectonic activity.

Yin also suggests that the fault is shifting occasionally, and may even produce “Marsquakes” every now and again. “I think the fault is probably still active, but not every day. It wakes up every once in a while, over a very long duration — perhaps every million years or more,” he said.

It is not known how far beneath the surface the plates on Mars are located. Yin admits “I don’t quite understand why the plates are moving with such a large magnitude or what the rate of movement is; maybe Mars has a different form of plate tectonics,” Yin said. “The rate is much slower than on Earth.”

“Mars is at a primitive stage of plate tectonics,” Yin added. “It gives us a glimpse of how the early Earth may have looked and may help us understand how plate tectonics began on Earth.”

Yin’s study was published in the August issue of the journal Lithosphere and he also plans to publish a follow-up paper hoping to shed more light on plate tectonics on both Mars and Earth.

Read the abstract.

Find out more at the

Astrovideo: Klingon Bird of Prey Attacks Venus!

Bird of Prey at Venus during Transit of 2012. Credit: John Chumack

“Okay, so it’s not a Klingon War Bird,” admits astrophotographer John Chumack, but it is a Sonoran Desert Bird of Prey swooping by Venus’ location in the sky during its transit across the face of the Sun in June 2012. And it is “freakin’ cool,” just as John describes it on Flickr.

John said he saw the “attack” live during his time on Kitt Peak in Arizona for the Transit of Venus observations, but just recently located and processed the footage. “The Sun was low to the horizon by this time…which accounts for the distorted looking Venus… Goes to show, you never know what will enter your field of view while imaging!”

The video of the event is below:

Thanks to John for sharing his image; see more of his work at his website, Galactic Images or his Flickr page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Historic Images: Two Space Shuttles Together

This is a sight that will probably never be seen again: two space shuttles nose-to-nose in the same location. NASA’s space shuttles Endeavour and Atlantis switched locations today at Kennedy Space Center in Florida, and met each other for the last time in front of Orbiter Processing Facility 3.

Endeavour was moved from OPF 2 to the Vehicle Assembly Building where it will be housed temporarily until its targeted departure from Kennedy atop the Shuttle Carrier Aircraft in mid-September. After a stop at the Los Angeles International Airport, Endeavour will move in mid-October to the California Science Center for permanent public display.

Atlantis will undergo preparations for its move to the Kennedy Space Center Visitor Complex in November, with a grand opening planned for July 2013.

Here’s a look at some other instances when two space shuttles were in close enough proximity to have their pictures taken together:

Space Shuttles Enterprise, left, and Discovery meet nose-to-nose at the beginning of a transfer ceremony at the Smithsonian's Steven F. Udvar-Hazy Center, Thursday, April 19, 2012. Credit: NASA//Paul E. Alers.

This event took place today at the National Air & Space Museum’s Udvar-Hazy Center in April, 2012 as space shuttle Discovery, the first orbiter retired from NASA’s shuttle fleet, met up with its prototype sister, Enterprise as they switch spots. Discovery is now at the Air & Space Museum, while Enterprise headed to New York City’s Intrepid Museum.

This view shows two space shuttles on adjacent Kennedy Space Center Launch Complex 39 pads with the Rotating Service Structures retracted I 1990. STS-35’s Columbia is on Pad A (foreground), while its sister spaceship, Discovery, is beginning preparations for STS-41. Credit: NASA

The first time two space shuttles were ever on the launchpads at the same time was in 1985. Then it was Columbia for STS-61-C and Challenger for the ill-fated STS-51-L. In the 30-year duration of the space shuttle program, having two shuttles on the launchpads at once happened just 17 times.

Space shuttle Atlantis on Launch Pad 39A (left) is accompanied by space shuttle Endeavour on Pad 39B in 2009. This was the final time two shuttles were on launch pads at the same time. Endeavour will stood by in case a rescue mission was necessary during Atlantis' mission to upgrade NASA's Hubble Space Telescope. Credit: NASA
Space Shuttles Discovery and Endeavour meet for a nose-to-nose encounter of gaping holes at the Kennedy Space Center on Aug. 11, 2011. The two NASA shuttles shorn of spaceflight maneuvering capability swapped locations to continue the transition to retirement and public display at museum in Virginia and California respectively. Credit: Mike Deep for Universe Today.
Another view of the same meetup, Discovery (right) and Endeavour paused for a unique nose-to-nose photo opportunity before going their separate ways outside Orbiter Processing Facility-3 at the Kennedy Space Center on August 11, 2011. Credit: NASA
This event never really happened, thankfully. This is a slide from a NASA presentation showing how a shuttle rescue mission would work. Credit: NASA