A Tribute to Hubble… and Humanity

Here’s a excellent video compilation featuring images from the Hubble Space Telescope, along with music by Kanye West and quotes from astronomers Neil deGrasse Tyson, Lawrence Krauss and Carl Sagan reflecting on our place in the Universe… and the Universe’s place within each of us.

Uploaded to YouTube by video editor Brandon Fibbs, this is a reminder of how Hubble has opened our eyes to the wonders of the cosmos. Enjoy.

“The cosmos is also within us. We’re made of star stuff… we are a way for the cosmos to know itself.”
– Carl Sagan

Worlds Without Suns: Nomad Planets Could Number In The Quadrillions

Artist's concept of a free-floating Jupiter-like planet. (NASA / JPL-Caltech)

[/caption]

The concept of nomad planets has been featured before here on Universe Today, and for good reason. Not only is the idea of mysterious lone planets drifting sunless through interstellar space an intriguing one, but also the sheer potential quantity of such worlds is simply staggering. If some very well-respected scientists’ calculations are correct there are more nomad planets in our Milky Way galaxy than there are stars — a lot more. With estimates up to 100,000 nomad planets for every star in the galaxy, there could be literally quadrillions of wandering worlds out there, ranging in size from Pluto-sized to even larger than Jupiter.

That’s a lot of nomads. But where did they all come from?

Recently, The Kavli Foundation had a discussion with several scientists involved in nomad planet research. Roger D. Blandford, Director of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at Stanford University, Dimitar D. Sasselov, Professor of Astronomy at Harvard University and Louis E. Strigari, Research Associate at KIPAC and the SLAC National Accelerator Laboratory talked about their findings and what sort of worlds these nomad planets might be, as well as how they may have formed.

One potential source for nomad planets is forceful ejection from solar systems.

“Most stars form in clusters, and around many stars there are protoplanetary disks of gas and dust in which planets form and then potentially get ejected in various ways,” said Strigari. “If these early-forming solar systems have a large number of planets down to the mass of Pluto, you can imagine that exchanges could be frequent.”

And the possibility of planetary formation outside of stellar disks is not entirely ruled out by the researchers — although they do impose a lower limit to the size of such worlds.

“Theoretical calculations say that probably the lowest-mass nomad planet that can form by that process is something around the mass of Jupiter,” said Strigari. “So we don’t expect that planets smaller than that are going to form independent of a developing solar system.”

“This is the big mystery that surrounds this new paper. How do these smaller nomad planets form?” Sasselov added.

Of course, without a sun of their own to supply heat and energy one might assume such worlds would be cold and inhospitable to life. But, as the researchers point out, that may not always be the case. A nomad planet’s internal heat could supply the necessary energy to fuel the emergence of life… or at least keep it going.

“If you imagine the Earth as it is today becoming a nomad planet… life on Earth is not going to cease,” said Sasselov. “That we know. It’s not even speculation at this point. …scientists already have identified a large number of microbes and even two types of nematodes that survive entirely on the heat that comes from inside the Earth.”

Researcher Roger Blandford also suggested that “small nomad planets could retain very dense, high-pressure ‘blankets’ around them. These could conceivably include molecular hydrogen atmospheres or possibly surface ice that would trap a lot of heat. They might be able to keep water liquid, which would be conducive to creating or sustaining life.”

And so with all these potentially life-sustaining planets knocking about the galaxy,  is it possible that they could have helped transport organisms from one solar system to another? It’s a concept called panspermia, and it’s been around since at least the 5th century BCE when the Greek philosopher Anaxagoras first wrote about it. (We’ve written about it too, as recently as three weeks ago, and it’s still a much-debated topic.)

“In the 20th century, many eminent scientists have entertained the speculation that life propagated either in a directed, random or malicious way throughout the galaxy,” said Blandford. “One thing that I think modern astronomy might add to that is clear evidence that many galaxies collide and spray material out into intergalactic space. So life can propagate between galaxies too, in principle.

There could be quadrillions of nomad planets in our galaxy alone -- and they could even be ejected into intergalactic space. (Image: ESO/S.Brunier)

“And so it’s a very old speculation, but it’s a perfectly reasonable idea and one that is becoming more accessible to scientific investigation.”

Nomad planets may not even be limited to the confines of the Milky Way. Given enough of a push, they could be sent out of the galaxy entirely.

“Just a stellar or black hole encounter within the galaxy can, in principle, give a planet the escape velocity it needs to be ejected from the galaxy. If you look at galaxies at large, collisions between them leads a lot of material being cast out into intergalactic space,” Blandford said.

The discussion is a fascinating one and can be found in its entirety on The Kavli Foundation’s site here, and watch a recorded interview between Louis Strigari and journalist Bruce Lieberman here.

The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

The Moon Affects the Solar Wind

his is a view of the moon transiting, or passing in front of, the Sun as seen from the STEREO-B spacecraft on Feb. 25, 2007. The Sun is in false color, and the moon appears as a black disk on the upper right. NASA's STEREO mission consists of two spacecraft launched in October, 2006 to study solar storms. Credit: NASA

[/caption]

From a NASA press release:

With the Moon as the most prominent object in the night sky and a major source of an invisible pull that creates ocean tides, many ancient cultures thought it could also affect our health or state of mind – the word “lunacy” has its origin in this belief. Now, a powerful combination of spacecraft and computer simulations is revealing that the moon does indeed have a far-reaching, invisible influence – not on us, but on the Sun, or more specifically, the solar wind.

The solar wind is a thin stream of electrically conducting gas called plasma that’s constantly blown off the surface of the Sun in all directions at around a million miles per hour. When a particularly fast, dense or turbulent solar wind strikes Earth’s magnetic field, it can generate magnetic and radiation storms that are capable of disrupting satellites, power grids, and communication systems. The magnetic “bubble” surrounding Earth also pushes back on the solar wind, creating a bow shock tens of thousands of miles across over the day side of Earth where the solar wind slams into the magnetic field and abruptly slows from supersonic to subsonic speed.

Unlike Earth, the Moon is not surrounded by a global magnetic field. “It was thought that the solar wind crashes into the lunar surface without any warning or ‘push back’ on the solar wind,” says Dr. Andrew Poppe of the University of California, Berkeley. Recently, however, an international fleet of lunar-orbiting spacecraft has detected signs of the Moon’s presence “upstream” in the solar wind. “We’ve seen electron beams and ion fountains over the Moon’s day side,” says Dr. Jasper Halekas, also of the University of California, Berkeley.

These phenomena have been seen as far as 10,000 kilometers (6,214 miles) above the Moon and generate a kind of turbulence in the solar wind ahead of the Moon, causing subtle changes in the solar wind’s direction and density. The electron beams were first seen by NASA’s Lunar Prospector mission, while the Japanese Kaguya mission, the Chinese Chang’e mission, and the Indian Chandrayaan mission all saw ion plumes at low altitudes. NASA’s ARTEMIS mission has now also seen both the electron beams and the ion plumes, plus newly identified electromagnetic and electrostatic waves in the plasma ahead of the Moon, at much greater distances from the moon. “With ARTEMIS, we can see the plasma ring and wiggle a bit, surprisingly far away from the Moon,” says Halekas. ARTEMIS stands for “Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun”.

This is an artist's concept of the Earth's global magnetic field, with the bow shock. Earth is in the middle of the image, surrounded by its magnetic field, represented by purple lines. The bow shock is the blue crescent on the right. Many energetic particles in the solar wind, represented in gold, are deflected by Earth's magnetic "shield". Credit: Walt Feimer (HTSI)/NASA/Goddard Space Flight Center Conceptual Image Lab

“An upstream turbulent region called the ‘foreshock’ has long been known to exist ahead of the Earth’s bow shock, but the discovery of a similar turbulent layer at the moon is a surprise,” said Dr. William Farrell of NASA’s Goddard Space Flight Center in Greenbelt, Md. Farrell is lead of the NASA Lunar Science Institute’s Dynamic Response of the Environment At the Moon (DREAM) lunar science center, which contributed to the research.

Computer simulations help explain these observations by showing that a complex electric field near the lunar surface is generated by sunlight and the flow of the solar wind. The simulation reveals this electric field can generate electron beams by accelerating electrons blasted from surface material by solar ultraviolet light. Also, related simulations show that when ions in the solar wind collide with ancient, “fossil” magnetic fields in certain areas on the lunar surface, they are reflected back into space in a diffuse, fountain-shaped pattern. These ions are mostly the positively charged ions (protons) of hydrogen atoms, the most common element in the solar wind.

“It’s remarkable that electric and magnetic fields within just a few meters (yards) of the lunar surface can cause the turbulence we see thousands of kilometers away,” says Poppe. When exposed to solar winds, other moons and asteroids in the solar system should have this turbulent layer over their day sides as well, according to the team.

“Discovering more about this layer will enhance our understanding of the Moon and potentially other bodies because it allows information about conditions very near the surface to propagate to great distances, so a spacecraft will gain the ability to virtually explore close to these objects when it’s actually far away,” said Halekas.

The research is described in a series of six papers recently published by Poppe, Halekas, and their colleagues at NASA Goddard, U.C. Berkeley, U.C. Los Angeles, and the University of Colorado at Boulder in Geophysical Research Letters and the Journal of Geophysical Research. The research was funded by NASA’s Lunar Science Institute, which is managed at NASA’s Ames Research Center, Moffett Field, Calif., and oversees the DREAM lunar science center.

Secretive X-37B Space Plane Will be Landing Soon

X-37B after its first mission in 2010. Credit: 30th Wing, Vandenberg Air Force Base.

[/caption]

After nearly 15 months on a secret mission, the Air Force’s X-37B, an unmanned, reusable space plane, will soon be coming back home. A news release from the Vandenberg Air Force Base says the landing is expected to occur during the early- to mid-June timeframe, although the exact landing date and time will depend on technical and weather considerations. The mini space plane has been in orbit since March 5, 2011.

This is the second mission of the Orbital Test Vehicles to fly in the X-37B program with the second space plane, OTV-2. The first X-37B mission flew in 2010, spending 224 days in space. This original vehicle has been refurbished and is scheduled to go back into space for another mission sometime in October of this year.

As for the second space plane, its long mission has been termed a success, although no mission specifics have been released. It launched on March 5, 2011 from Cape Canaveral Air Force Station in Florida. Since then, the press release said, Vandenberg crews have conducted extensive, periodic training in preparation for landing.

“The men and women of Team Vandenberg are ready to execute safe landing operations anytime and at a moment’s notice,” said Col. Nina Armagno, 30th Space Wing commander. The space professionals from the 30th Space Wing will monitor the de-orbit and landing of the vehicle.

Seen here is the X-37B Orbital Test Vehicle, compared with proposed X-37C crewed vehicle, the space shuttle and the Atlas V booster that is currently used to launch the OTV. Image Credit: AIAA/Grantz/Boeing

The mini spaceplane is 8.8 meters (29 feet) long with a wing span of 4.2 meters (14 feet). It can weigh up to about 5,000 kg (11,000 pounds) fueled for launch. The reported in-space design life is 270 days, but sources say that good performance on this mission enabled ground controllers to keep it aloft significantly longer.

While no news of its orbital parameters have been released, skywatchers and amateur satellite trackers have been keeping an eye on where the OTV-2 has been. After launch it had a 331 km (206-mile)orbit inclined 42.8 degrees to the equator, but in the summer of 2011 the orbit was raised slightly to 337 km (209 miles).

Vandenberg said they would provide more details when available.

Source: Vandenberg AFB

Meteorites Could Provide New Explanation for Mars Methane

A Murchison meteorite specimen at the National Museum of Natural History in Washington DC.

[/caption]

Where does the methane on Mars come from? That has been one of the biggest unanswered questions in planetary science since the discovery of large plumes of methane gas in the Martian atmosphere. Scientists have been trying to figure out how the planet’s environment or geology can keep replenishing this short-lived gas, and of course, in the back of everyone’s mind is whether the methane has any connection to possible life on Mars.

A new potential explanation squelches both the life and environment prospect and offers a unique answer. A group of researchers found that meteorites, which continually bombard the surface of Mars, may contain enough carbon compounds to generate methane when they are exposed to strong UV sunlight.

“Whether or not Mars is able to sustain life is not yet known, but future studies should take into account the role of sunlight and debris from meteorites in shaping the planet’s atmosphere,” said Dr. Andrew McLeod, of the University of Edinburgh, co-author of a new study published in Nature this week.

The group of European researchers looked at the famous Murchison meteorite, a carbonaceous chondrite meteorites that fell in Australia more than 40 years ago. Carbonaceous chondrites are very common meteorites, so they likely will be falling on Mars. The team exposed particles of the Murchison meteorite to levels of ultraviolet radiation equivalent to sunlight on Mars.

When the meteorite pieces were exposed to ample amounts of UV light the meteor fragments rapidly released methane. After the UV exposure was reduced, the amount of methane produced would lessen, but if there were other activities, such as heating, shaking or lowering the pressure on the meteorite, the amount of methane released would rise again.

With Mars thin atmosphere, UV light easily gets to the surface of the planet. The thin atmosphere also allows more meteorites to hit Mars than on Earth (estimates range from just a few thousands of metric tons to as much as 60,000 metric tons.) The team said that temperature changes on Mars, especially during the summertime when it gets warm, could account for a boost of methane release from meteorites, and seasonal dust storms could shake or move the meteorites.

However, while only small amounts of methane are present in the Martian atmosphere, it seems to be coming from very specific, localized sources. Meteorites would likely be falling across the planet.

Top: Map of methane concentrations in Autumn (first martian year observed). Peak emissions fall over Tharsis (home to the Solar System's largest volcano, Olympus Mons), the Arabia Terrae plains and the Elysium region, also the site of volcanos. Bottom: True colour map of Mars. Credit: NASA/Università del Salento

Additionally, levels of methane vary in the seasons, and are highest in autumn in the northern hemisphere, with localized peaks of 70 parts per billion. There is a sharp decrease in winter, with only a faint band of methane appearing in the atmosphere between 40-50 degrees north.

Methane was first detected in the Martian atmosphere by ground based telescopes in 2003 and confirmed a year later by ESA’s Mars Express spacecraft. In 2009, observations using ground based telescopes showed the first evidence of a seasonal cycle.

Other research has said that the methane in the Martian atmosphere lasts less than a year, making it a flitting – and difficult – feature to study.

Another issue is that the estimates for the amount of meteorites hitting Mars’ surface would likely not bring enough carbon to explain the amount of methane seen in the atmosphere.

The researchers said, however, that their findings give valuable insights into the planet’s atmosphere and these findings would be helpful for future robotic missions to Mars so scientists could fine-tune their experiments, potentially making their trips more valuable.

Read the team’s paper in Nature.

SpaceX Dragon Sealed for Earth Return on May 31

SpaceX Dragon was grappled by robot arm, on May 25, 2012 and then became the first commercial space capsule in history to be connected to the International Space Station. Dragon will be detached on May 31 and splashdown hours later at about 11:44 a.m. EDT several hundered kilometers (mi) off the coast of California. Credit: NASA

[/caption]

The historic flight of the first private spaceship to ever connect to the International Space Station (ISS) has entered its waning hours and by all accounts it’s been a resounding success thus far ahead of the imminent return trip to Earth.

All objectives have been fully accomplished and all that remains is for the unmanned Dragon cargo capsule to be detached from the huge outpost early Thursday morning, May 31, following by a mission ending splashdown and ocean recovery off the coast of California some 6 hours later.

Astronauts living aboard the huge Earth orbiting lab closed the hatches to the SpaceX Dragon capsule earlier today (May 30) and will finish their activities to seal the capsule for a safe departure before going to sleep later today ahead of tomorrow’s momentous final feats on this landmark mission.

Dragon is the world’s first commercial spacecraft and was built by Hawthorne, Calif., based SpaceX Corporation, founded in 2002 by CEO and Chief Designer Elon Musk.

This view of European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, is among the first set of imagery from the crew showing the freshly opened SpaceX Dragon spacecraft. Credit: NASA

NASA and SpaceX described the Dragon’s upcoming unberthing and return to Earth activities at a news media briefing today.

The ISS crew is scheduled to disconnect the Dragon from the Earth-facing Harmony node using the station’s robotic arm at 4:05 a.m. EDT (0805 GMT), said NASA flight director Holly Ridings. They will release the Dragon from the arm’s grip into space at 5:35 a.m. EDT (0935 GMT).

“The Dragon really looks great,” Ridings told Universe Today.

Ridings said that the crew completed virtually “all the cargo [unloading and refilling] operations in a single day on Monday”.

Dragon will fire the first of a series of three small orbit transfer burns starting at 5:36 a.m. EDT (0936 GMT) to back it away from the orbiting lab complex. The big de-orbit burn lasting about 7 minutes is set for 10:51 am, the Dragon trunk will be jettisoned at 11:09 a.m., main chutes deploy at 11:36 a.m. and the splashdown in the Pacific Ocean is due at 11:44 a.m. (1544 GMT) some 490 nautical miles southwest of Los Angeles off the West Coast of California using a flotilla of recovery vessels rented by SpaceX for the ocean retrieval process.

Although SpaceX has demonstrated the capability to safely return Dragon to Earth once before in December 2010, the firm is taking nothing for granted.

“It’s still a very challenging phase of flight,” said SpaceX Dragon Mission Manager John Couluris at the briefing. “Only a few countries have done this so far, so we’re not taking this lightly.”

“It will take about 2 to 3 days to return the capsule to the port of Los Angeles and then to the SpaceX facility in Texas for cargo unloading.”

Unlike the other Russian, European and Japanese cargo freighters that service the ISS and then disintegrate on reentry, the SpaceX Dragon is uniquely equipped with a heat shield (made of PICA-X) that allows it to plunge safely through the Earth’s atmosphere and survive the fiery temperatures exceeding more than 3000 degrees F (1600 degrees C).

The down mass capability restores another critical capability lost with the forced retirement of NASA’s Space Shuttle orbiters in July 2011. The astronauts filled Dragon with about 620 kilograms (1367 pounds) of science experiments, trash and non-critical items on this historic test flight.

The Dragon arrived at the million pound orbiting space lab on May 25. On May 26, the crew opened the hatches and ‘Entered the Dragon’ for the first time.

Look here for a collection of incredible images snapped by European ISS astronaut Andre Kuipers who berthed Dragon at an open parking port on the ISS after it was snared with the 18 m (58 ft) Canadian robot arm by NASA astronaut Don Pettit.

Ridings said the astronauts used the robot arm to thoroughly inspect the Dragon’s exterior, trunk space and solar arrays.

“The results were very positive and our models were very accurate and match the on orbit Dragon configuration and clearances. On downstream flights we’ll be using Dextre on the end of the robot arm to reach around into the Dragon’s truck and grab payloads out,” Ridings told Universe Today.

Capturing SpaceX's Dragon. With clouds and land forming a backdrop, the SpaceX Dragon commercial cargo craft is grappled by the Canadarm2 robotic arm at the International Space Station. Expedition 31 Flight Engineers Don Pettit and Andre Kuipers grappled Dragon at 9:56 a.m. EDT and used the robotic arm to berth Dragon to the Earth-facing side of the station’s Harmony node at 12:02 p.m. May 25, 2012. Dragon became the first commercially developed space vehicle to be launched to the station to join Russian, European and Japanese resupply craft that service the complex while restoring a U.S. capability to deliver cargo to the orbital laboratory. Dragon is scheduled to spend about a week docked with the station before returning to Earth on May 31 for retrieval. Credit: NASA

Dragon is the world’s first commercial resupply vehicle. It was launched atop a SpaceX built Falcon 9 booster on May 22 from Pad 40 at Cape Canaveral Air Force Station, Florida.

SpaceX signed a contract with NASA in 2006 to conduct twelve Falcon 9/Dragon resupply missions to carry about 44,000 pounds of cargo to the ISS at a cost of some $1.6 Billion over the next several years.

NASA TV will provide live coverage of Dragon’s return to Earth and ocean splash down starting at 2:30 a.m. EDT.

Ken Kremer

…………………….
Dragon Return Timeline from SpaceX – (times are approximate and subject to change)

5/31/12

Time (Pacific) — Event
01:05 — Dragon uninstalled using station’s robotic arm
02:35 — Dragon released by the station’s robotic arm
03:11 — Dragon’s Draco thrusters fire departure burns
04:07 — Unlatch/close/latch GNC door holding sensors
07:51 — Dragon’s Draco thrusters fire deorbit burn
08:09 — Dragon’s trunk is jettisoned
08:35 — Dragon’s drogue parachutes are deployed
08:36 — Dragon’s main parachutes are deployed
08:44 — Dragon lands in the Pacific

Write Your Name In Galaxies!

The name of everyone's favorite space news blog written in starlight!

[/caption]

Ever wanted to see your name in lights? How about star lights? Well there’s a fun little website that will let you assemble your name — or anything you want to say — using real galaxies as the letters… very cool!

Created by UK astronomer Steven Bamford, My Galaxies uses actual images of galaxies acquired through the Sloan Digital Sky Survey and Galaxy Zoo projects to create your message, which you can then share on Facebook, Twitter or email. You can even download a high-res version of the resulting PNG image (although I did find that I had to open the file in Photoshop and add a layer filled with black behind the galaxified letters, in order to clear out some background noise. Perhaps this can be fixed in the future.)

It’s a nice bit of coding, and makes for a cool banner or message for your favorite starry-eyed individual. Check it out!

“Really? There are galaxies that look like letters? OK, S and Z I can believe, but M? H? R? Capitals or little letters? What about punctuation, or numbers? Well, there aren’t many, but when you’ve got pictures of millions of galaxies and an energetic group of Zooites there isn’t much that can stay hidden!”

– Steven Bamford

Make your own My Galaxy message and read more about how it’s done here.

(Tip of the star-studded hat to Jennifer Oullette for the heads-up!)

Book Review: Transit Of Venus: 1631 To The Present

Book review by David L. Hamilton

Dr. Nick Lomb’s book, “Transit Of Venus: 1631 To The Present,” covers the history of observed transits of Venus since the invention of the telescope in the early seventeenth century. The timing of the release of this book coincides with the upcoming transit of Venus, the last one that anyone alive today can witness due to the fact that the next transit will occur on December 2117. The upcoming transit will take place on June 5th or 6th of 2012, depending on your location, and Dr. Lomb’s book has a wealth of information on the times and locations across the globe from where one can observe the event.

During this transit, an observer on Earth can track the planet Venus as it crosses the disc of the Sun. One reason to track the transit of Venus is to get an accurate measurement of the size of our solar system. Although today we know the size of our solar, system Dr. Lomb’s book describes how this has not always been the case.

In the 1600’s Johannes Kepler, the famous German astronomer and astrologer, established the ratios of the distances of the known planets from the Sun. Knowing the ratios was a huge leap, however it did nothing to establish the size of our solar system. According to the text, if science could accurately determine the distance of a planet from the Sun, the distances of all the other planets could easily be known. Our adventure began once it was determined that timing the transit of a planet crossing the disc of the Sun from different locations on Earth would allow us to know the true size of our solar system.

Establishing the exact distance to the Sun was considered by Astronomer Royal Sir George Airy of the Greenwich Observatory in London “the noblest problem in astronomy.” The great nations of the time agreed and made arrangements to send out teams of scientists to the far reaches of the globe in hopes of attaining the required data.

Dr. Lomb covers each of the transits in detail by not only explaining the logistics involved in getting people and instruments to prime locations for observing the transits but also by providing a background story of those involved along with the triumphs and tragedies. When describing the people Lomb provides background information such as when they were born, their social and economic status, education, profession, and training, painting a clear picture of who the person really was and what their qualifications were. In addition to the background information, we are also presented with a detailed description of the preparations for the journey to remote sites across the globe including the adventures and misfortunes these individuals encountered along the way. This writing style provides for a connection with the adventures so one can appreciate the hardships endured to promote science by gaining and sharing knowledge about the world and universe that we live in.

The early transit expeditions were nothing short of an adventure. Lomb covers this well in the retelling of stories such as Charles Mason and Jeremiah Dixon’s journey to observe the transit. On this famous mission for the Royal Society, the ship carrying Mason and Dixon, the Seahorse, encountered the French warship, Le Grand. The end result of this encounter was the loss of 11 dead and almost 40 wounded. Needless to say, Mason and Dixon lost their nerve and informed the Royal Society that they were no longer interested in carrying out their duties, requiring persuasion in the form of threats to get them back on track. Mason and Dixon ended up at Cape Town instead of Bencoolen, Sumatra. Cape Town worked out well because the gentlemen had plenty of time to set up an observatory and calibrate instruments well before the day of the transit. Their measurements were so successful that they became well known and a few years later would be hired to survey a disputed boundary in the New World that would become famously known as the Mason-Dixon Line.

Whether it be Horrocks and Crabtree, Mason and Dixon, Le Gentil or Chappe, Lomb tells a story of ordinary humans doing the extraordinary in the name of science. Lomb reminds us that with success often comes failure. Consider, for example, the Frenchman Le Gentil who spent over 11 years chasing the transit across the globe, only to have it obscured by a cloud. Then he finally returned home to find out his estate was being squandered by those he had thought he could trust.

Lomb even describes how some gave their lives in the name of science. Consider the story of the Frenchman Chappe who understood the importance of getting an accurate timing of the transit in 1769. Despite imminent danger, Chappe stayed near San Jose del Cabo during the outbreak of a deadly epidemic that in the end cost him his life.

So, how does Lomb feel about these people and their willingness to lose everything, including in some cases, their lives, with the hopes of advancing scientific knowledge? “I greatly admire them for their willingness to set off for little known places and take risks in order to contribute to solving what was then the most crucial problem in astronomy,” Lomb told Universe Today via email. “Of course, we do need to realise that they lived in a world very different from ours: a world in which every journey was a boys’ own adventure, a world in which distant places were isolated, little known and genuinely different, and were only accessible after travel that was long and difficult.”

As for if there is anything comparable today, Lomb said the obvious comparison is with astronauts, especially those who first went into space and to the Moon. “Adventurous scientists today include volcanologists who travel to exotic places such as Papua New Guinea to study erupting volcanoes and storm chasers who fly into storms to study them,” Lomb said. “Possibly the best comparison to the astronomers of the 18th century are the scientists spending the dark and cold winter in Antarctica at places such as at the Amundsen-Scott South Pole Station so as to study the ice, the weather and to make astronomical observations from the driest place on Earth.”

In addition to the detailed stories, the book also contains a stunning collection of 140 photos and illustrations covering everything from high definition NASA images to drawings from the explorers themselves. The book also includes amazing images, maps and diagrams of the technologies used during the various transits.

Anyone interested in the upcoming transit of Venus will find this book to be a great resource for understanding the historical and scientific significance of the event along with valuable information to observe the event.

Find out more about the book here, or on Amazon.

Reviewer David Hamilton and his wife live in Conway, Arkansas. They are amateur astronomers that love spending nights stargazing. David is an Educational Technologist and Multidisciplinary researcher currently attending the University of Arkansas at Little Rock as a graduate student. David is an alumni of the University of Oklahoma and Rose State College.

Visions of the Cosmos: The Enduring Space Art of David A. Hardy

'Moon Landing:'' This is one of Hardy's very earliest paintings, done in 1952 when he was just 15. It was also the first to be published. Credit: David A. Hardy. Used by permission. Click image for access to a larger version and more information on Hardy's website.

[/caption]

For over 50 years, award-winning space and astronomy artist David A. Hardy has taken us to places we could only dream of visiting. His career started before the first planetary probes blasted off from Earth to travel to destinations in our solar system and before space telescopes viewed distant places in our Universe. It is striking to view his early work and to see how accurately he depicted distant vistas and landscapes, and surely, his paintings of orbiting space stations and bases on the Moon and Mars have inspired generations of hopeful space travelers.

Hardy published his first work in 1952 when he was just 15. He has since illustrated and produced covers for dozens of science and science fiction books and magazines. He has written and illustrated his own books and has worked with astronomy and space legends like Patrick Moore, Arthur C. Clarke, Carl Sagan, Wernher von Braun, and Isaac Asimov. His work has been exhibited around the world, including at the National Air & Space Museum in Washington, D.C. which houses two of his paintings.

Universe Today is proud to announce that Hardy has helped us update the banner at the top of our website (originally designed by Christopher Sisk) to make it more astronomically accurate.

Hardy has also recently debuted his own new website where visitors can peruse and learn more about his work, and buy prints and other items.

We had the chance to talk with Hardy about his enduring space art and career:

'Skiing on Europa' by David A. Hardy, 1981. Used by permission.

Universe Today: When you first started your space art, there weren’t images from Voyager, Cassini, Hubble, etc. to give you ideas for planetary surfaces and colored space views. What was your inspiration?

David Hardy: I got to look through a telescope when I was about 16. You only have to see the long shadows creeping across a lunar crater to know that this is a world. But I also found the book ‘The Conquest of Space‘ in my local library, and Chesley Bonestell’s photographic paintings of the Moon and planets just blew me away! I knew that I wanted to produce pictures that would show people what it’s really like out there — not just as rather blurry discs of light through a telescope.

UT: And now that we have such spacecraft sending back amazing images, how has that changed your art, or how have the space images inspired you?

Hardy: I was lucky to start when I did, because in 1957 we had Sputnik, and then the exploration of space really started. We started getting photos of the Earth from space, and of the Moon from probes and orbiters, then of Mars, and eventually from the outer planets. Each of these made it possible to produce better and more realistic and accurate paintings of these worlds.

'Ferry Rocket and Space Station' by David A. Hardy. Used by permission. Hardy’s description: ‘A wheel-shaped space station as designed by Wernher von Braun, and a dumbbell-shaped deep-space vehicle designed by Arthur C. Clarke to travel out to Mars and beyond. The only photographs of the Earth from space at this time were a few black-and-white ones from captured German V-2s.’

UT: We are amazed at your early work — you were so young and doing such amazing space art! How does it feel to have inspired several generations of people? — Surely your art has driven many to say, “I want to go there!”

Hardy: I certainly hope so — that was the idea! In 1954 I met the astronomer Patrick Moore, who asked me to illustrate a new book in 1954, and we have continued to work together until the present day. Back then we wanted to so a sort of British version of The Conquest of Space, which we called ‘The Challenge of the Stars.’ In the 1950s we couldn’t find a publisher — they all said it was ‘too speculative!’ But a book with that title was published in 1972; ironically (and unbelievably), just when humans visited the Moon for the last time. We had hoped that the first Moon-landings would lead to a base, and that we would go on to Mars, but for all sorts of reasons (mainly political) this never happened. In 2004 Patrick and I produced a book called ‘Futures: 50 Years in Space,’ celebrating our 50 years together. It was subtitled: ‘The Challenge of the Stars: What we thought then –What we know now.’

I quite often find that younger space artists tell me they were influenced by The Challenge of the Stars, just as I was influenced by The Conquest of Space, and this is a great honour.

'Mars From Deimos' 1956. Credit: David A. Hardy. Used by permission. Hardy's description: 'The dumbell-shaped spaceship (designed by Arthur C. Clarke) shown in the previous 'space station' image has arrived, touching down lightly in the low gravity of Mars's little outer moon, Deimos. The polar cap is clearly visible, and at that time it was still considered possible that the dark areas on Mars were caused by vegetation, fed by the melting caps. On the right of the planet is Phobos, the inner moon.'

UT: What places on Earth have most inspired your art?

Hardy: I’m a past President (and now European VP) of the International Association of Astronomical Artists (IAAA; www.iaaa.org), and we hold workshops in the most ‘alien’ parts of Planet Earth. Through these I have been to the volcanoes of Hawaii and Iceland, to Death Valley CA, the Grand Canyon and Meteor Crater, AZ, to Nicaragua. . . all of these provide not just inspiration but analogues of other worlds like Mars, Io or Triton, so that we can make our work more believable and authentic — as well as more beautiful, hopefully.

UT: How has technology changed how you do your work?

Hardy: I have always kept up with new technology, making use of xeroxes, photography (I used to do all my own darkroom work and processing), and most recently computers. I got an Atari ST with 512k (yes, K!) of RAM in 1986, and my first Mac in 1991. I use Photoshop daily, but I use hardly any 3D techniques, apart from Terragen to produce basic landscapes and Poser for figures. I do feel that 3D digital techniques can make art more impersonal; it can be difficult or impossible to know who created it! And I still enjoy painting in acrylics, especially large works on which I can use ‘impasto’ –laying on paint thickly with a palette knife and introducing textures that cannot be produced digitally!

'Antares 2' by David A. Hardy, shows a landscape looking up at the red supergiant star, which we see in Scorpio and is one of the biggest and brightest stars known. It has a small bluish companion, Antares B.

UT: Your new website is a joy to peruse — how does technology/the internet help you to share your work?

Hardy: Thank you. It is hard now to remember how we used to work when we were limited to sending work by mail, or faxing sketches and so on. The ability to send first a low-res jpeg for approval, and then a high-res one to appear in a book or on a magazine cover, is one of the main advantages, and indeed great joys, of this new technology.

UT: I imagine an artist as a person working alone. However, you are part of a group of artists and are involved heavily in the Association of Science Fiction and Fantasy Artists. How helpful is it to have associations with fellow artists?

Hardy: It is true that until 1988, when I met other IAAA artists (both US, Canadian and, then, Soviet, including cosmonaut Alexei Leonov) in Iceland I had considered myself something of a lone wolf. So it was almost like ‘coming out of the closet’ to meet other artists who were on the same wavelength, and could exchange notes, hints and tips.

'Ice Moon' by David Hardy. Used by permission.

UT: Do you have a favorite image that you’ve created?

Hardy: Usually the last! Which in this case is a commission for a metre-wide painting on canvas called ‘Ice Moon’. I put this on Facebook, where it has received around 100 comments and ‘likes’ — all favourable, I’m glad to say. It can be seen there on my page, or on my own website, www.astroart.org (UT note: this is a painting in acrylics on stretched canvas, with the description,”A blue ice moon of a gas giant, with a derelict spaceship which shouldn’t look like a spaceship at first glance.”)

UT: Anything else you feel is important for people to know about your work?

Hardy: I do feel that it’s quite important for people to understand the difference between astronomical or space art, and SF (‘sci-fi’) or fantasy art. The latter can use a lot more imagination, but often contains very little science — and often gets it quite wrong. I also produce a lot of SF work, which can be seen on my site, and have done around 70 covers for ‘The Magazine of Fantasy & Science Fiction’ since 1971, and many for ‘Analog’. I’m Vice President of the Association of Science Fiction & Fantasy Artists (ASFA; www.asfa-art.org ) too. But I always make sure that my science is right! I would also like to see space art more widely accepted in art galleries, and in the Art world in general; we do tend to feel marginalised.

UT: Thank you for providing Universe Today with a more “accurate” banner — we really appreciate your contribution to our site!

Hardy: My pleasure.

See more at Hardy’s website, AstroArt or his Facebook page. Click on any of the images here to go directly to Hardy’s website for more information on each.

Here’s a list of the books Hardy has written and/or illustrated.

The Leonids over Stonhenge by David A. Hardy. Used by permission

Fly To Space For $320!

JP Aerospace's MiniCube program can send your stuff to the "edge of space"

[/caption]

Ok, at 100,000 feet it’s not really “space” but for $320 USD JP Aerospace is offering a very affordable way to get your research experiment, brand statement, artwork or anything you can imagine (and that fits into a 50mm cube, weight limits apply) into the upper atmosphere. Pretty cool!

Touting its program as “stomping down the cost of space”,  Rancho Cordova, California-based JP Aerospace (America’s OTHER Space Program) is offering its MiniCube platform to anyone who wants to get… well, something… carried up to 100,000 feet.

The plastic MiniCubes are each 1mm-thick, 48mm wide and 50mm high. Their bases have a standard tripod mount, and the MiniCubes can be cut, drilled, printed and/or modified within parameters before being mailed back to JPA for flight. Once the MiniCubes are flown, they are returned to their customers along with a data sheet and a CD of images from the mission. All for $320!

Again, it may not technically be “space”, but the view’s not bad.

Where MiniCubes go: a photo from a JPA balloon platform (JP Aerospace)

At the time of this writing there are 20 spaces available for the next JPA high-altitude balloon flight on September 22.

Find out more about JPA, MiniCubes, size specifications and how to purchase a space on the next flight here.

All images via JPAerospace.com