The universe is swimming in black holes, from stellar mass to supermassive behemoths. But, there’s one class that remains elusive: the “middle child” class. These are called “intermediate-mass black holes (IMBH).” How numerous are they, how do they form, and where are they? To answer those questions, astronomers simulated possible formation scenarios.
Continue reading “A Simulation Predicts Where Astronomers Should Look to Find Intermediate-mass Black Holes”New Stars Forming Uncomfortably Close to the Milky Way’s Supermassive Black Hole
Astronomers examining a star cluster near Sgr A*, the Milky Way’s supermassive black hole, found that the cluster has some unusually young members for its location. That’s difficult to explain since the region so close to the powerful black hole is infused with powerful radiation and dominated by the black hole’s extremely powerful gravitational force. According to our understanding of stellar formation, young stars shouldn’t be there.
Continue reading “New Stars Forming Uncomfortably Close to the Milky Way’s Supermassive Black Hole”A Comprehensive Blueprint for the Settlement of Mars
Throughout the 20th century, multiple proposals have been made for the crewed exploration of Mars. These include the famed “Mars Project” by Werner von Braun, the “Mars Direct” mission architecture by Robert Zubrin and David Baker, NASA’s Mars Design Reference Mission studies, and SpaceX’s Mars & Beyond plan. By 2033, two space agencies (NASA and the CNSA) plan to commence sending crews and payloads to the Red Planet. These and other space agencies envision building bases there that could eventually lead to permanent settlements and the first “Martians.”
This presents several major challenges, not the least of which have to do with exposure to radiation, extreme temperatures, dust storms, low atmospheric pressure, and lower gravity. However, with the right strategies and technology, these challenges could be turned into opportunities for growth and innovation. In a recent paper, a Leiden University researcher offers a roadmap for a Martian settlement that leverages recent advancements in technology and offers solutions that emphasize sustainability, efficiency, and the well-being of the settlers.
Continue reading “A Comprehensive Blueprint for the Settlement of Mars”TRAPPIST-1 Has Flares. What Does This Mean for its Planets?
The TRAPPIST-1 system continues to fascinate astronomers, astrobiologists, and exoplanet hunters alike. In 2017, NASA announced that this red dwarf star (located 39 light-years away) was orbited by no less than seven rocky planets – three of which were within the star’s habitable zone (HZ). Since then, scientists have attempted to learn more about this system of planets to determine whether they could support life. Of particular concern is the way TRAPPIST-1 – like all M-type (red dwarf) stars – is prone to flare-ups, which could have a detrimental effect on planetary atmospheres.
Using the James Webb Space Telescope (JWST), an international team of astrophysicists led by the University of Colorado Boulder (CU Boulder) took a closer look at this volatile star. As they describe in their paper (which recently appeared online), the Webb data was used to perform a detailed spectroscopic investigation of four solar flares bursting around TRAPPIST-1. Their findings could help scientists characterize planetary environments around red dwarf stars and measure how flare activity can affect planetary habitability.
Continue reading “TRAPPIST-1 Has Flares. What Does This Mean for its Planets?”More JWST Observations are Finding Fewer Early Massive Galaxies
There’s a common pattern in science. We develop some new process or tool that allows us to gather all kinds of data we’ve never had before, the data threatens to overturn all we’ve assumed about some long-established theory, and then the dust settles. Unfortunately, the early stage of this process generates a lot of sensationalism in the press. Early results from the JWST are a good example of this.
Continue reading “More JWST Observations are Finding Fewer Early Massive Galaxies”OSIRIS-REx Returned Carbon and Water from Asteroid Bennu
Carbon and water are so common on Earth that they’re barely worth mentioning. But not if you’re a scientist. They know that carbon and water are life-enabling chemicals and are also links to the larger cosmos.
Initial results from OSIRIS-REx’s Bennu samples show the presence of both in the asteroid’s regolith. Now, eager scientists will begin to piece together how Bennu’s carbon, water, and other molecules fit into the puzzle of the Earth, the Sun, and even the entire Solar System and beyond.
Continue reading “OSIRIS-REx Returned Carbon and Water from Asteroid Bennu”Astronomers See the Afterglow Where Two Ice Giant Planets Collided
What would happen if two giant planets collided? It would be terrifying to behold if it happened in our Solar System. Imagine if Neptune and Uranus slammed into each other. Picture the chaos as a new super-heated object took their places, and clouds of debris blocked out the Sun. Think of the monumental destruction as objects are sent careening into each other.
Astronomers spotted the aftermath of a gigantic planetary collision like this in a distant solar system. From a safe distance, they were surprised and intrigued rather than terrified. Now, they intend to keep watching as the aftermath unfolds.
Continue reading “Astronomers See the Afterglow Where Two Ice Giant Planets Collided”What Would It Take to See Exoplanet Volcanoes?
Even with the clearest image from the best telescope in the world, astronomers still won’t know what they’re looking at. It takes a fundamental understanding of physics, particularly how light works, to glean scientific data from the images that telescopes like the James Webb Space Telescope (JWST) capture. To help with that understanding, a whole group of physics modelers specialize in trying to understand what different scenarios would look like with different telescope technologies. A new paper fits neatly into this mold, where researchers from UC Riverside, NASA Goddard, American University, and the University of Maryland decided to model what they think volcanic activity would look like on an exoplanet around a Sun-like star.
Continue reading “What Would It Take to See Exoplanet Volcanoes?”A Sneak Peek at the Next Generation Very Large Array’s New Antennae
The National Radio Astronomy Observatory (NRAO) recently disclosed a prototype radio telescope antennae for its next generation Very Large Array (ngVLA) to a group of press, scientists, engineers, and government and business leaders from the United States and Germany at the end of a workshop held at the Max Planck Institute for Mathematics in the Sciences in Leipzig. While construction on the ngVLA isn’t slated to begin until 2026, this recent unveiling provided an opportunity for mtex antenna technology to present its 18-meter dish, which consists of 76 individual aluminum panels arranged in an 8-sided shape.
Continue reading “A Sneak Peek at the Next Generation Very Large Array’s New Antennae”Compare Images of a Galaxy Seen by Both Hubble and JWST
The James Webb Space Telescope is widely considered to be better than the Hubble Space Telescope. But the JWST doesn’t replace its elder sibling; it’s the Hubble’s successor. The Hubble is nowhere near ready to retire. It’s still a powerful science instrument with lots to contribute. Comparing images of the same object, NGC 5068, from both telescopes illustrates each one’s value and how they can work together.
Continue reading “Compare Images of a Galaxy Seen by Both Hubble and JWST”