Shuttle Discovery Flies Over Washington D.C. to New Home

Space shuttle Discovery, mounted atop a NASA 747 Shuttle Carrier Aircraft flies near the U.S. Capitol, Tuesday, April 17, 2012, in Washington D.C. Photo Credit: (NASA/Rebecca Roth)

[/caption]

Space Shuttle Discovery, atop its Shuttle Carrier Aircraft, NASA 905, flew over the US national capital region on April 17, 2012 on the final leg of its ferry flight from NASA’s Kennedy Space Center in Florida to Dulles International Airport in Virginia, on the way to its final home at the National And & Space Museum’s Steven F. Udvar-Hazy Center. The image above shows the duo flying near the U.S. Capitol and the video below shows views of Discovery from various vantage points in Washington D.C.

Discovery, the first orbiter retired from NASA’s shuttle fleet, completed 39 missions, spent 365 days in space, orbited the Earth 5,830 times, and traveled 238539663.3 km (148,221,675 miles). Discovery new mission will be to “commemorate past achievements in space and to educate and inspire future generations of explorers,” NASA says.

You can see more images at NASA’s Flickr page.

Here’s a video taken by Joy Hargraves who went to the Udvar-Hazy Center today to watch the Shuttle Discovery come in to her final resting place:

Rogue Planets Can Find Homes Around Other Stars

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

[/caption]

As crazy as it sounds, free-floating rogue planets have been predicted to exist for quite some time and just last year, in May 2011, several orphan worlds were finally detected. Then, earlier this year, astronomers estimated that there could be 100,000 times more rogue planets in the Milky Way than stars. Now, the latest research suggests that sometimes, these rogue, nomadic worlds can find a new home by being captured into orbit around other stars. Scientists say this finding could explain the existence of some planets that orbit surprisingly far from their stars, and even the existence of a double-planet system.

“Stars trade planets just like baseball teams trade players,” said Hagai Perets of the Harvard-Smithsonian Center for Astrophysics.

Astronomers now understand that rogue planets are a natural consequence of both star and planetary formation. Newborn star systems often contain multiple planets, and if two planets interact, one can be ejected in a form of planetary billiards, kicked out of the star system to become an interstellar traveler.

But later, if a rogue planet encounters a different star moving in the same direction at the same speed, be captured into orbit around that star, say Perets and Thijs Kouwenhoven of Peking University, China, the authors of a new paper in The Astrophysical Journal.

A captured planet tends to end up hundreds or thousands of times farther from its star than Earth is from the Sun. It’s also likely to have a, orbit that’s tilted relative to any native planets, and may even revolve around its star backward.

Perets and Kouwenhoven simulated young star clusters containing free-floating planets. They found that if the number of rogue planets equaled the number of stars, then 3 to 6 percent of the stars would grab a planet over time. The more massive a star, the more likely it is to snag a planet drifting by.

While there haven’t actually been planets found yet that are definitely a ‘captured’ world, the best bet would perhaps be a planet in a distant orbit around a low-mass star. The star’s disk wouldn’t contain enough material to form a planet that distant, Perets and Kouwenhoven said.

The best evidence of a captured planet comes from the European Southern Observatory, which announced in 2006 the discovery of two planets (weighing 14 and 7 times Jupiter) orbiting each other without a star.

“The rogue double-planet system is the closest thing we have to a ‘smoking gun’ right now,” said Perets. “To get more proof, we’ll have to build up statistics by studying a lot of planetary systems.”

As for our own solar system, there’s no evidence at this time that our Sun could have captured an alien world, which would lie far beyond Pluto.

“There’s no evidence that the Sun captured a planet,” said Perets. “We can rule out large planets. But there’s a non-zero chance that a small world might lurk on the fringes of our solar system.”

Read the team’s paper.

Source: CfA

Dust Shells Seen for the First Time Around Dying Stars

The Helix Nebula
The Helix Nebula - the fate of most stars including our Sun. These new results illuminate how nebulae like this are formed. Credit: NASA, NOAO, ESA, the Hubble Helix Nebula Team, M. Meixner (STScI), and T.A. Rector (NRAO).

[/caption]

Stars get pretty sloppy towards the end of their lives.  As the nuclear fuels start to wane, the star pulsates – expanding and contracting like a marathon runner catching her breath.  With each pulsation, the dying star belches out globs of gas into space that eventually get recycled into a new generation of stars and planets.  But accounting for all that lost material is difficult.  Like trying to see a wisp of smoke next to a stadium spotlight, observing these tenuous sheets of stellar material swirling just over the surface of the star is considerably challenging.  However, using an innovative technique to image starlight scattering off interstellar grains, astronomers have finally succeeded in seeing ripples of dust flowing off dying stars!

The stars – W Hydra, R Doradus, and R Leonis – are all highly variable red giants, stars that are no longer fusing hydrogen in their cores but have moved on to forming heavier elements.  Each is completely enveloped by a very thin dust shell most likely made up of minerals like forsterite and enstatite.  These grains can only form once the raw ingredients have flowed some distance from the star.  At distances roughly equal to the size of the star itself, the gas has cooled enough to allow atoms to start sticking together and forming more complex compounds.  Minerals like these will go on to seed asteroids and possibly rocky planets like the Earth in the continual cycle of death and rebirth playing out in the Galaxy.

The paper describing this discovery, accepted to the journal Nature, can be found here.

The astronomers who recently reported this discovery used the eight meter wide Very Large Telescope in the Chilean Atacama Desert – and a suite of clever tools – to tease out the subtle reflections off these dust shells.  The trick to seeing light bouncing off interstellar dust particles involves taking advantage of one of light’s wave properties.  Imagine you had a length of rope: one end is in your hand, the other tied to a wall.  You start to wiggle your end and waves travel down the cord.  If you move your arm up and down, the waves are perpendicular to the floor; if you move your arm from side to side, they are parallel to it.  The orientation of those waves is known as their “polarization”.  If you mixed things up by constantly changing the direction in which your arm was oscillating, the orientation of the waves would be similarly confused.  The rope would bounce in all directions.  With out a preferred direction of movement, the rope waves are said to be “unpolarized”.

Light waves emitted from the surface of star are just like your chaotic rope flinging. The oscillations in the electric and magnetic fields that make up the propagating light wave have no preferred direction of motion – they are unpolarized.  However, when light bounces off a dust grain, all that confusion drops away.  The waves now oscillate in roughly the same direction, just as if you decided to only bounce the rope up and down.  Astronomers call this light “polarized”.

A polarizing filter only allows light with a specific orientation to pass through.  Hold it one way, and only “vertically polarized” light – light where the electric field is oscillating up and down – will pass. Turn the filter ninety degrees, and you’ll only transmit “horizontally polarized” light.  If you have polarizing sunglasses, you can try this yourself by rotating the glasses and watching how the the scene through the lenses gets brighter and darker.  This is also a nice demonstration of how our atmosphere polarizes incoming sunlight.

A shell of dust around a star will polarize the light that bounces off it.  Just like the sky gets brighter and dimmer as you turn your sunglasses, looking at a such star through differently oriented polarizing filters will reveal a halo of polarized light surrounding it.  The different orientations will reveal different segments of the halo.  By combining polarimetric observations with interferometry – the beating together of light waves from widely separated spots on a telescope mirror to create very high-resolution images – a thin ring of scattered light reveals itself around these three stars.

These new observations represent a milestone in our understanding of not only a star’s end game but also the production of interstellar dust that follows. Like the smokestacks of great factories, red giant stars expel a soot of minerals into space, carried aloft by stellar winds.  With meticulous observation, results such as these can help tie together the death of one generation of stars with the birth of another.  Unraveling the mysteries of grain formation in space takes us one step closer to piecing together the many steps that lead from stellar death to the creation of rocky planets like our own.

Special New Panorama Celebrates Hubble’s 22nd Anniversary

A mosaic view of 30 Doradus, assembled from Hubble Space Telescope photos, Credit: NASA, ESA, ESO,

[/caption]

Happy birthday to the Hubble Space Telescope! On April 24, 1990, HST was launched into low Earth orbit. Now, nearly 22 years later, Hubble is still producing incredible, stunning images of the farthest reaches of the Universe. For this year’s anniversary, the Hubble team took a special panoramic view of 30 Doradus, a raucous stellar breeding ground, located in the heart of the Tarantula nebula. The image comprises one of the largest mosaics ever assembled from Hubble photos and consists of observations taken by Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, combined with observations from the European Southern Observatory’s MPG/ESO 2.2-metre telescope that trace the location of glowing hydrogen and oxygen.

The Tarantula nebula is 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. No known star-forming region in our galaxy is as large or as prolific as 30 Doradus.

The stars in this image add up to a total mass millions of times bigger than that of our Sun. The image is roughly 650 light-years across and contains some rambunctious stars, from one of the fastest rotating stars to the speediest and most massive runaway star.

The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the stars’ birth and evolution. Many small galaxies have more spectacular starbursts, but the Large Magellanic Cloud’s 30 Doradus is one of the only star-forming regions that astronomers can study in detail. The star-birthing frenzy in 30 Doradus may be partly fueled by its close proximity to its companion galaxy, the Small Magellanic Cloud.

The image reveals the stages of star birth, from embryonic stars a few thousand years old still wrapped in dark cocoons of dust and gas to behemoths that die young in supernova explosions. 30 Doradus is a star-forming factory, churning out stars at a furious pace over millions of years. The Hubble image shows star clusters of various ages, from about 2 million to about 25 million years old.

The image was made from 30 separate fields, 15 from each camera. Hubble made the observations in October 2011. Both cameras were making observations at the same time.

Take an interactive tour of the Tarantula Nebula at the HubbleSite

Source: ESA’s Hubble website

Gallery: Discovery Leaves Kennedy Space Center for the Final Time

Discovery leaves Kennedy Space Center for the final time. Credit: Mike Deep.

[/caption]

It’s the end of an era. For 29 years space shuttle Discovery has been leaving Kennedy Space Center on solid rocket boosters and her own engines. Now she’s left for the final time on top of a modified Boeing 747, known as the Shuttle Carrier Aircraft, to head to her new, final home at the Smithsonian National Air & Space Museum in Washington D.C. Discovery departed Florida’s Kennedy Space Center at daybreak on April 17, 2012. The duo took one last flyover flight over the beaches of Cape Canaveral. A similar flyover is planned over the nation’s capital when they arrive later today. We have images of the event from Universe Today photographer, as well as former shuttle technician Jen Scheer (@flyingjenny) — thanks to Jen for sharing her images of Discovery’s departure. See more below from Mike and Jen (you can also visit Jen’s Flickr page). The video below was taken by Andy Scheer, another shuttle technician.


Discovery is the first of the three remaining space shuttles to head to a museum. The shuttle prototype, Enterprise that is currently at the Air & Space museum will go to New York City’s Intrepid Museum. Endeavour will go to Los Angeles this fall, while Atlantis will remain at KSC.

Orbiter Discovery is carried on the Shuttle Carrier Aircraft up and down the beaches of Brevard County as a farewell on her way to Washington D.C. and her new home at the National Air & Space Museum. Credit: Jen Scheer.
Discovery atop the Shuttle Carrier Aircraft heads down the runway at KSC. Credit: Mike Deep.
Orbiter Discovery is carried on the Shuttle Carrier Aircraft up and down the beaches of Brevard County as a farewell on her way to Washington D.C. and her new home at the National Air & Space Museum. Credit: Jen Scheer.

Takeoff for Discovery. Credit: Mike Deep.

Banking gently, Orbiter Discovery is carried on the Shuttle Carrier Aircraft up and down the beaches of Brevard County as a farewell on her way to Washington D.C. and her new home at the National Air & Space Museum. Credit: Jen Scheer.

A T-38 aircraft escorts Discovery atop the Shuttle Carrier Aircraft. Credit: Jen Scheer.

This video was taken on the beach in Cape Canaveral:

Discovery leaving Florida for the final time. Credit: Mike Deep.

Discovery Poised for Final Takeoff on April 17

Discovery atop the Boeing 747 Shuttle Carrier Aircraft. Credit: Mike Deep.

[/caption]

Space Shuttle Discovery is poised for her final takeoff, bolted firmly on top of the Boeing 747 Shuttle Carrier Aircraft (SCA) at the Kennedy Space Center in Florida.

This morning (Tuesday, April 16) the mated pair were backed out of the Mate/Demate Device at the Shuttle Landing Facility.

See more images from Universe Today photographer Mike Deep at KSC, below:

The Mate-Demate facility at Kennedy Space Center. Credit: Mike Deep

Kennedy Space Center has been Discovery’s home for three decades and the countdown clock is ticking down relentlessly to a day many hoped would not come foe many more years. In just a few hours she will depart for the last time and never return.

The SCA jet, designated NASA 905, will fire her engines at the runway and take flight shortly after sunrise at 7 a.m. on Tuesday (April 17), fly around the Space Coast facilities and beaches, putting on a great show for the throngs expected to wish her a fond farewell. The best view is from the beaches around Port Canaveral and the lucky visitors at the landing strip itself.

Discovery and the SCA. Credit: Mike Deep.

Then, NASA 905 will head north and ferry Discovery to her permanent new home and museum display at the Smithsonian National Air and Space Museum’s Steven F. Udvar-Hazy Center in Chantilly, Virginia.

With Discovery mated to NASA 905, they begin the move away from the device known as the MDD, or mate/demate Device. Credit: NASA

Discovery is expected to arrive in the Washington, D.C. area around 10 to 11 a.m. with spectacular views around the National Mall area as well as National and Dulles Airports and the Udvar-Hazy Center, at only about 1500 feet altitude – weather permitting.

NASA TV will air live broadcasts of Discovery’s flight

Discovery inside the mate/demate device. Credit: Larry Sullivan/NASA Spaceflight.com

If you spot the shuttle along the way and around the DC area, send Ken your photos to post here at Universe Today.

Final checks on Discovery. Credit: Mike Deep.
NASA astronauts attending the press event for Discovery. Credit: Mike Deep.
Discovery ready for her ride. Credit: Mike Deep.
Credit: Mike Deep.
Aerial View of Space Shuttle Discovery on the Shuttle Carrier Aircraft at the Kennedy Space Center after exiting the mate/demate device at left on the shuttle landing strip. See the Vehicle Assembly Building (VAB) and new mobile launch platform in the background. Credit: NASA

Big Blast from the Sun

The CME we reported on earlier today was obviously just a warm up to the latest blast: A beautiful prominence eruption producing a larger CME off the east limb (left side) of the sun on April 16, 2012 at about 17:45 UTC (1:45 pm EDT). The event, which also produced an M1.7-class solar flare, was not Earth-directed, say scientists from the Solar Dynamics Observatory. But SpaceWeather.com says the blast confirms suspicions that a significant active region is rotating onto the Earth-side of the sun.

The Sun Spits Out a Coronal Mass Ejection

A CME from the Sun on April 15, 2012. Credit: Solar Dynamics Observatory

Ever squirted water out of your mouth when playing in a swimming pool or lake? This Coronal Mass Ejection (CME) release by the Sun on April 15, 2012 looks reminiscent of such water spouting. But this burst of solar plasma being hurled from the eastern limb of the Sun is more like an explosion, as such CMEs can release up to 100 billion kg (220 billion lb) of material, and the speed of the ejection can reach 1000 km/second (2 million mph) in some flares. Scientists at the Solar Dynamics Observatory say some of the explosions approach the power in one billion hydrogen bombs! In this video, the Sun hurled a cloud of plasma towards the STEREO B spacecraft and SDO captured the event in a couple of different wavelengths.

Coronal Mass Ejections (CMEs) are balloon-shaped bursts of solar wind rising above the solar corona, expanding as they climb. Solar plasma is heated to tens of millions of degrees, and electrons, protons, and heavy nuclei are accelerated to near the speed of light. The super-heated electrons from CMEs move along the magnetic field lines faster than the solar wind can flow. Rearrangement of the magnetic field, and solar flares may result in the formation of a shock that accelerates particles ahead of the CME loop.

[/caption]

Cassini Slips Through Enceladus’ Spray

Cassini's latest view of Enceladus' icy spray, acquired on April 14, 2012.

[/caption]

Spray it again, Enceladus! This Saturday the Cassini spacecraft paid another visit to Enceladus, Saturn’s 318-mile-wide moon that’s become famous for its icy geysers.During its latest close pass Cassini got a chance to “taste” Enceladus’ spray using its ion and neutral mass spectrometer, giving researchers more information on what sort of watery environment may be hiding under its frozen, wrinkled surface.

The image above shows a diagonal view of Enceladus as seen from the night side. (The moon’s south pole is aimed at a 45-degree angle to the upper right.) Only by imaging the moon backlit by the Sun can the geysers of fine, icy particles be so well seen.

During the flyby Cassini passed within 46 miles (74 km) of Enceladus’ surface.

This image was captured during the closest approach, revealing the distressed terrain of Enceladus’ south pole. Although a bit blurry due to the motion of the spacecraft, boulders can be made out resting along the tops of high , frozen ridges. (Edited from the original raw image to enhance detail.)

Enceladus' southern fissures, the source of its spray. (NASA/JPL/SSI/J. Major)

This flyby occurred less than three weeks after Cassini’s previous visit to Enceladus. Why pay so much attention to one little moon?

Basically, it’s the one place in our solar system that we know of where a world is spraying its “habitable zone” out into space for us to sample.

“More than 90 jets of all sizes near Enceladus’s south pole are spraying water vapor, icy particles, and organic compounds all over the place,” said Carolyn Porco, planetary scientist and Cassini Imaging science team leader, during a NASA interview in March. “Cassini has flown several times now through this spray and has tasted it. And we have found that aside from water and organic material, there is salt in the icy particles. The salinity is the same as that of Earth’s oceans.

“In the end, it’s the most promising place I know of for an astrobiology search,” said Porco. (Read the full interview here.)

A crescent-lit Enceladus sprays its "habitable zone" out into space.

Not to be left out, Tethys was also paid a visit by Cassini. The 662-mile-wide moon boasts one of the most extensively cratered surfaces in the Solar System, tied with its sister moons Rhea and Dione. In this raw image captured by Cassini on April 14, we can see some of the moon’s ancient, larger craters, including Melanthius with its enormous central peak.

Saturn's moon Tethys, imaged by Cassini on April 14, 2012.

Cassini passed Tethys at a distance of about 6,000 miles (9000 km) after departing Enceladus. Cassini’s composite infrared spectrometer looked for patterns in Tethys’ thermal signature while other instruments studied the moon’s geology.

Image credits: NASA/JPL/Space Science Institute. See more images from the Cassini mission on the CICLOPS site here.

 

Carnival of Space #245

Carnival of Space. Image by Jason Major.

[/caption]

This week’s Carnival of Space is hosted by Amy Shira Teitel at her Vintage Space blog.

Click here to read Carnival of Space #245.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.