A Peek at a Pitch-Black Pit

A rimless pit crater within the crater Tolstoj

[/caption]

MESSENGER captured this high-resolution image of an elongated pit crater within the floor of the 355-km (220-mile) -wide crater Tolstoj on Mercury on Jan. 11, 2012. The low angle of sun illumination puts the interior of the pit crater into deep shadow, making it appear bottomless.

Pit craters are not caused by impacts, but rather by the collapse of the roof of an underground magma chamber. They are characterized by the lack of a rim or surrounding ejecta blankets, and are often not circular in shape.

Since the floor of Tolstoj crater is thought to have once been flooded by lava, a pit crater is not out of place here.

The presence of such craters on Mercury indicates past volcanic activity on Mercury contributing to the planet’s evolution.

Read more on the MESSENGER mission website here.

Image credit: : NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Star Lab Needs Payloads!

The multi-section Star Lab suborbital vehicle. (Credit: 4Frontiers Corp.)

[/caption]

Star Lab, the next-generation vehicle for suborbital experiments developed by the Florida-based 4Frontiers Corporation, is well on its way toward its first successful flight — and it’s looking for payloads.

First reported on Universe Today by Jason Rhian in November of last year, Star Lab consists of stacked and subdivided cylindrical sections customized to hold scientific experiments. Contained within a rocket vehicle affixed to the wing of a Starfighters, Inc. F-104 supersonic aircraft, Star Lab will be launched during flight to attain an altitude of about 100 km, going suborbital and achieving 3 1/2 minutes of microgravity before descending.

“If Star Lab proves itself viable this could open the door to a great many scientific institutions conducting their research by using the Star Lab vehicle,” Mark Homnick, CEO of 4Frontiers Corporation, told Universe Today in November.

(Read Science On The Wings of Starfighters by Jason Rhian)

A high-purity environment within the Star Lab compartments will ensure no contamination from the outside can interfere with payloads contained within, making Star Lab suitable for both non-organic and bio-med experiments.

A scale prototype of a Star Lab payload section, molded in ABS plastic. (4Frontiers/J. Major)

Alternatively, the payload compartments can be made accessible to the external environment, allowing for atmospheric sampling.

After descent, Star Lab will splash down into the Atlantic and be retrieved by ship. Clients can expect to have their payloads returned within a 24-hour period — a quick turnaround especially essential for biological experiments.

In addition, Star Lab payloads can be accessed up to 24 hours before launch, allowing for any last-minute adjustments, minor installations or fine tuning.

Currently Star Lab is moving into its flight test phase of development, when the F-104s will go through a series of incremental tests up to and including an actual launch of the vehicle. This will determine how well it handles the stresses of flight and how to best — and most safely — perform the actual launch, slated for September 2012.

A maneuver only ever executed in military operations, Star Lab will become the first commercial vehicle to be launched from an aircraft.

(Read StarFighters, Inc. – The Supersonic Research Fleet Expands by Tammy Plotner)

Star Lab has 14 contracts signed for payloads at this time, and is right now working on a partnership with the payload-specialist company Kentucky Space to co-develop a successful market for bio-med experiments.

“We are looking for payloads… we’re real, we’re viable, and we have the best deal that I know of in respect to costs and what we provide,” Homnick said during an interview on March 15, 2012. “We’ll have the lowest cost and the highest launch rate, anywhere.”

At this point, signups with Star Lab require only a signature… no payment is required until the vehicle is proven.

“There’s even a contingency in there… we have to show with our prototypes that we are launching in the summer that they actually perform,” Homnick added. “One, they have to reach the altitude — over 80 kilometers — and two, we have to return the payloads for our prototype. And then, after all that, they would actually pay us… half up front, and half after launch.”

And if that’s not a good enough deal, the state of Florida is helping pick up some of the bill.

Under NASA’s Florida Space Grant, commercial ventures taking place in Florida are subject to a rebate program. Once a payload is launched, Space Lab customers can receive a refund from Space Florida of 1/3 of their cost.

Starting at $4,000 (after the Space Florida rebate), including integration and return costs, getting an experiment suborbital has never been so cost-effective.

“The whole concept is to make it really inexpensive and convenient to fly a lot of payloads,” Homnick said. “With ten launches a year, and up to thirteen payloads per launch, there’s a high launch rate.”

And with such convenience, Star Lab will help get the future of space research off the ground — literally.

Members of the Star Lab team during a fast taxi test at Kennedy Space Center's Shuttle Landing Facility. (4Frontiers Corp.)

“We’re real, we’re viable, and we have the best deal that I know of… we’ll have the lowest cost and the highest launch rate, anywhere.”

– Mark Homnick, CEO of 4Frontiers Corporation

4Frontiers will be at the Space Flight Payloads Workshop on Friday, March 23 at the Florida Solar Energy Center from 10 am to 5 pm. See more about Star Lab and what’s coming next from 4Frontiers here.

4Frontiers Corporation, the principal developer of Star Lab, was founded in 2005 in Florida, USA. 4Frontiers is an emerging space commerce company focused on developing fundamental space-related capabilities and resources essential for a long-term human presence in space. 4Frontiers will address the potential of the four most promising space frontiers: Earth orbit, the Moon, Mars and asteroids.

Astrophoto: Pulp Fiction by César Cantú

The Cone and Christmas Tree Nebula. Credit: {link url="http://www.astrophoto.com.mx/index.php?"}César Cantú{/link}. Click for higher resolution version.

[/caption]

Astrophotographer César Cantú from the Chilidog Observatory in Monterrey, Mexico calls this image “Pulp Fiction” for its violent areas of hot, deadly gases being expelled by the young stars, solar windstorms, huge accumulations of cosmic dust. But the two features show here are actually are named after things much more peaceful in nature: The Cone Nebula and the Christmas Tree Cluster. This open cluster of stars was discovered by William Herschel in 1785 and is cataloged as NGC 2264 and lies at a distance of 2,600 light years from our solar system.

“This is an H II region located in the constellation Monoceros,” César says, “a region with much stardust. The picture shows also the Hubble Variable Nebula, like a little flash at the top right. This is a vast field reached with the telescope and focal reducer FSQ106, which gives a focal length of 385mm with great resolution. The camera used was the FLI8300, with 4:30 hours of exposure.”

Click the image for access to a higher resolution version on César’s website.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Weekly SkyWatcher’s Forecast – March 19-25, 2012

NGC 2539 - Credit: Palomar Observatory Courtesy of Caltech

[/caption]

Greetings, fellow SkyWatchers! The week starts off with new Moon and the perfect opportunity to do a Messier Marathon. The planets continue to dazzle as we not only celebrate the Vernal Equinox, but the March Geminid meteor shower as well! If that doesn’t get your pulsar racing – nothing will. It’s time to get out your binoculars and telescopes and meet me in the backyard!

Monday, March 19 – Right now the Moon is between the Earth and the Sun, and you know what that means…New Moon! Tonight we’ll start in northern Puppis and collect three more Herschel studies as we begin at Alpha Monoceros and drop about four fingerwidths southeast to 19 Puppis.

NGC 2539 (Right Ascension: 8 : 10.7 – Declination: -12 : 50) averages around 6th magnitude and is a great catch for binoculars as an elongated hazy patch with 19 Puppis on the south side. Telescopes will begin resolution on its 65 compressed members, as well as split 19 Puppis – a wide triple. Shift about 5 degrees southwest and you find NGC 2479 (Right Ascension: 7 : 55.1 – Declination: -17 : 43) directly between two finderscope stars. At magnitude 9.6 it is telescopic only and will show as a smallish area of faint stars at low power. Head another degree or so southeast and you’ll encounter NGC 2509 (Right Ascension: 8 : 00.7 – Declination: -19 : 04) – a fairly large collection of around 40 stars that can be spotted in binoculars and small telescopes.

Tuesday, March 20 – Today is Vernal Equinox, one of the two times of the year that day and night become equal in length. From this point forward, the days will become longer – and our astronomy nights shorter! To the ancients, this was a time a renewal and planting – led by the goddess Eostre. As legend has it, she saved a bird whose wings were frozen from the winter’s cold, turning it into a hare which could also lay eggs. What a way to usher in the northern spring!

With the Moon still out of the picture, let’s finish our study of the Herschel objects in Puppis. Only three remain, and we’ll begin by dropping south-southeast of Rho and center the finder on a small collection of stars to locate NGC 2489 (Right Ascension: 7 : 56.2 – Declination: -30 : 04). At magnitude 7, this bright collection is worthy of binoculars, but only the small patch of stars in the center is the cluster. Under aperture and magnification you’ll find it to be a loose collection of around two dozen stars formed in interesting chains.

The next are a north-south oriented pair around 4 degrees due east of NGC 2489. You’ll find the northernmost – NGC 2571 (Right Ascension: 8 : 18.9 – Declination: -29 : 44) – at the northeast corner of a small finderscope or binocular triangle of faint stars. At magnitude 7, it will show as a fairly bright hazy spot with a few stars beginning to resolve with around 30 mixed magnitude members revealed to aperture. Less than a degree south is NGC 2567 (Right Ascension: 8 : 18.6 – Declination: -30 : 38). At around a half magnitude less in brightness, this rich open cluster has around 50 members to offer the larger telescope, which are arranged in loops and chains.

Congratulations on completing these challenging objects!

Are you up for another challenge? Then test your ability to judge magnitude as Mars has now dimmed to approximately -1.0. Does it look slightly different in size and brightness than it did a week or so ago? Keep watching!

Wednesday, March 21 – Take your telescopes or binoculars out tonight to look just north of Xi Puppis for a celebration of starlight known as M93 (Right Ascension: 7 : 44.6 – Declination: -23 : 52). Discovered in March of 1781 by Charles Messier, this bright open cluster is a rich concentration of various magnitudes that will simply explode in sprays of stellar fireworks in the eyepiece of a large telescope. Spanning 18 light-years of space and residing more than 3400 light-years away, it contains not only blue giants, but lovely golds as well. Jewels in the night…

Thursday, March 22 – Today in 1799 Friedrich Argelander was born. He was a compiler of star catalogues, studied variable stars and created the first international astronomical organization.

Tonight let’s celebrate no Moon and have a look at an object from an alternative catalog that was written by Lacaille, and which is about two fingerwidths south of Eta Canis Majoris.

Also known as Collinder 140, Lacaille’s 1751 catalog II.2 “nebulous star cluster” is a real beauty for binoculars and very low power in telescopes. More than 50% larger than the Full Moon, it contains around 30 stars and may be as far as 1000 light-years away. When re-cataloged by Collinder in 1931, its age was determined to be around 22 million years. While Lacaille noted it as nebulous, he was using a 15mm aperture reflector, and it is doubtful that he was able to fully resolve this splendid object. For telescope users, be sure to look for easy double Dunlop 47 in the same field.

Now, kick back and enjoy a spring evening with two meteor showers. In the northern hemisphere, look for the Camelopardalids. They have no definite peak, and a screaming fall rate of only one per hour. While that’s not much, at least they are the slowest meteors – entering our atmosphere at speeds of only 7 kilometers per second!

Far more interesting to both hemispheres will be the March Geminids which peak tonight. They were first discovered and recorded in 1973 and then confirmed in 1975. With a much faster fall rate of about 40 per hour, these slower than normal meteors will be fun to watch! When you see a bright streak, trace it back to its point of origin. Did you see a Camelopardalid, or a March Geminid?

Friday, March 23 – Today in 1840, the first photograph of the Moon was taken. The daguerreotype was exposed by American astronomer and medical doctor J. W. Draper. Draper’s fascination with chemical responses to light also led him to another first – a photo of the Orion Nebula.

Our target for tonight is an object that’s better suited for southern declinations – NGC 2451 (Right Ascension: 7 : 45.4 – Declination: -37 : 58). As both a Caldwell object (Collinder 161) and a southern skies binocular challenge, this colorful 2.8 magnitude cluster was probably discovered by Hodierna. Consisting of about 40 stars, its age is believed to be around 36 million years. It is very close to us at a distance of only 850 light-years. Take the time to closely study this object – for it is believed that due to the thinness of the galactic disk in this region, we are seeing two clusters superimposed on each other.

With the Moon out of the picture early, why not get caught up in a galaxy cluster study – Abell 426. Located just 2 degrees east of Algol in Perseus, this group of 233 galaxies spread over a region of several degrees of sky is easy enough to find – but difficult to observe. Spotting Abell galaxies in Perseus can be tough in smaller instruments, but those with large aperture scopes will find it worthy of time and attention.

At magnitude 11.6, NGC 1275 (Right Ascension: 3 : 19.8 – Declination: +41 : 31) is the brightest of the group and lies physically near the core of the cluster. Glimpsed in scopes as small as 150 mm aperture, NGC 1275 is a strong radio source and an active site of rapid star formation. Images of the galaxy show a strange blend of a perfect spiral being shattered by mottled turbulence. For this reason NGC 1275 is thought to be two galaxies in collision. Depending on seeing conditions and aperture, galaxy cluster Abell 426 may reveal anywhere from 10 to 24 small galaxies as faint as magnitude 15. The core of the cluster is more than 200 million light-years away, so it’s an achievement to spot even a few!

Saturday, March 24 – Today is the birthday of Walter Baade. Born in 1893, Baade was the first to resolve the Andromeda galaxy’s individual stars using the Hooker telescope during World War II blackout times, and he also developed the concept of stellar populations. He was the first to realize that there were two types of Cepheid variables, thereby refining the cosmic distance scale. He is also well known for discovering an area towards our galactic center which is relatively free of dust, now known as “Baade’s Window.”

Just after sunset, you really need to take a look out your western window for a really beautiful bit of scenery. As the sky darkens, look for the very tender crescent Moon lit with “Earthshine”. Above it you will see bright Jupiter. Above that you will see blazing Venus. And, if that’s not enough, just a little higher will bring you to the Pleiades! What a great way to start a weekend evening!

With the Moon so near the horizon, we have only a short time to view its features. Tonight let’s start with a central feature – Langrenus – and continue further south for crater Vendelinus. Spanning 92 by 100 miles and dropping 14,700 feet below the lunar surface, Vendelinus displays a partially dark floor with a west wall crest catching the brilliant light of an early sunrise. Notice also that its northeast wall is broken by a younger crater – Lame. Head’s up! It’s an Astronomical League challenge.

Once the Moon has set, revisit M46 in Puppis – along with its mysterious planetary nebula NGC 2438. Follow up with a visit to neighboring open cluster M47 – two degrees west-northwest. M47 may actually seem quite familiar to you already. Did you possibly encounter it when originally looking for M46? If so, then it’s also possible that you met up with 6.7 magnitude open cluster NGC 2423 (Right Ascension: 7 : 37.1 – Declination: -13 : 52), about a degree northeast of M47 and even dimmer 7.9 magnitude NGC 2414 (Right Ascension: 7 : 33.3 – Declination: -15 : 27 ) as well. That’s four open clusters and a planetary nebula all within four square arc-minutes of sky. That makes this a cluster of clusters!

Let’s return to study M47. Observers with binoculars or using a finderscope will notice how much brighter, and fewer, the stars of M47 are when compared to M46. This 12 light-year diameter compact cluster is only 1600 light-years away. Even as close as it is, not more than 50 member stars have been identified. M47 has about one tenth the stellar population of larger, denser, and three times more distant, M46.

Of historical interest, M47 was “discovered” three times: first by Giovanni Batista Hodierna in the mid-17th century, then by Charles Messier some 17 years later, and finally by William Herschel 14 years after that. How is it possible that such a bright and well-placed cluster needed “re-discovery?” Hodierna’s book of observations didn’t surface until 1984, and Messier gave the cluster’s declination the wrong sign, making its identification an enigma to later observers – because no such cluster could be found where Messier said it was!

Sunday, March 25 – Today in 1655, Titan – Saturn’s largest satellite – was discovered by Christian Huygens. He also discovered Saturn’s ring system during this same year. 350 years later, the probe named for Huygens stunned the world as it reached Titan and sent back information on this distant world. How about if we visit Saturn? You’ll find the creamy yellow planet located about a fistwidth northwest of bright, white Spica! Even a small telescope will reveal Titan, but remember… it orbits well outside the ring plane, so don’t mistake it for a background star! While you’re there, look closely around the ring edges for the smaller moons. A 4.5” telescope can easily show you three of them. How about the shadow the rings on the planet’s surface? Or how about the shadow of the planet on the rings? Is the Cassini division visible? If you have a larger telescope, look for other ring divisions as well. All are part and parcel of viewing incredible Saturn!

If you missed yesterday evening’s scenic line-up, don’t despair. Just after the Sun sets tonight – and above the western horizon – you’ll find the young Moon very closely paired with Jupiter. Keep traveling eastward (up) and you’ll encounter Venus. Continue east and the next stop is M45. Watch in the days ahead as the Moon sweeps by, continuing to provide us with a show! Need more? Then check out Leo and Mars! You’ll find a great triangulation of Regulus to the west, Mars to the east and Algieba to the north. If you didn’t know better, you’d almost swear the Lion swallowed the red planet.

Tonight let’s return to our previous studies of the Moon and revisit a challenging crater. Further south than Vendelinus, look for another large, mountain-walled plain named Furnerius, located not too far from the terminator. Although it has no central peak, its walls have been broken numerous times by many smaller impacts. Look at a rather large one just north of central on the crater floor. If skies are stable, power up and search for a rima extending from the northern edge. Keep in mind as you observe that our own Earth has been pummeled just as badly as its satellite.

On this day in 1951, 21 cm wavelength radiation from atomic hydrogen in the Milky Way was first detected. 1420 MHz H I studies continue to form the basis of a major part of modern radio astronomy. If you would like to have a look at a source of radio waves known as a pulsar, then aim your binoculars slightly more than a fistwidth east of bright Procyon. The first two bright stars you encounter will belong to the constellation of Hydrus and you will find pulsar CP0 834 just above the northernmost – Delta.

Unitl next week? May all your journeys be at light speed!

SpaceX’s Dragon, Now With Seating for Seven

Inside the SpaceX Dragon capsule, testing out the seating arrangement for a crew of seven. Test crew included (from top left): NASA Crew Survival Engineering Team Lead Dustin Gohmert, NASA Astronaut Tony Antonelli, NASA Astronaut Lee Archambault, SpaceX Mission Operations Engineer Laura Crabtree, SpaceX Thermal Engineer Brenda Hernandez, NASA Astronaut Rex Walheim, and NASA Astronaut Tim Kopra. Photo: Roger Gilbertson / SpaceX

[/caption]

So much for the idea that space capsules are cramped and can only carry a limited crew. SpaceX revealed a prototype for their new crew cabin design, as they conducted a joint daylong review with NASA of the Dragon crew vehicle layout. In this configuration, the Dragon will be able to carry a crew of seven, the same number the space shuttle could carry. Using a Dragon engineering model equipped with seats and representations of crew systems, they were able to get assessments and feedback from engineers and four NASA astronauts on interior amenities such as lighting, environmental control and life support systems, displays, cargo racks, and the all important seating system. The evaluators participated in human factors assessments which covered entering and exiting Dragon under both regular and emergency (that’s ‘off-nominal’ in NASA-speak) scenarios, as well as reach and visibility evaluations.

See more images from the review, below, along with a video from the initial tests of the SuperDraco engines that will power the launch escape system.

Plus, as a heads-up, SpaceX CEO Elon Musk will be on the US television show “60 Minutes” on Sunday, March 18, 2012. You can see a preview here, (which includes a touching scene of Musk talking about his heroes) and check your local listings here.


NASA Astronaut Rex Walheim, SpaceX CEO and Chief Designer Elon Musk and SpaceX Commercial Crew Development Manager and former NASA Astronaut Garrett Reisman standing inside the Dragon spacecraft during testing activities. Credit: SpaceX.

Even with all seven crewmembers in their seats, there is enough interior space for three additional people to stand and assist the crew with their launch preparations — or for the CEO to kibitz with the crew.

SpaceX and NASA conducted a daylong review of the Dragon crew vehicle layout using the Dragon engineering model equipped with seats and representations of crew systems. Photo: SpaceX

The seven seats mount to strong, lightweight supporting structures attached to the pressure vessel walls. Each seat can hold an adult up to 1.95 meters tall (6 feet 5 inches) and weighing 113 kg (250 lbs), and has a liner that is custom-fit for each crewmember.

Astrophoto: Conjunction Symmetry by Rick Ellis

Multiple images of the Venus-Jupiter conjuction on Mar. 13, 2012 from Toronto, Canada. Credit: Rick Ellis.

[/caption]

It’s poetry in motion! Rick Ellis from Toronto, Canada created this 27 frame-composite of the conjunction between Venus and Jupiter on March 13, 2012, with 6 second exposures five minutes apart. Rick used a Canon A460, ISO 80.

Beautiful!

Check out Rick’s website for more poetry — seriously — and more images.

See our previous gallery of Venus-Jupiter conjunction images from around the world.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, post in our Forum or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Solving the Puzzle of Apollo 12’s Mysterious Magnetic Moon Rocks

The moon's largest grouping of magnetic anomalies, on the left, is near the northern rim of the South Pole-Aitken basin, which scientists believe was created by the impact of a massive asteroid about 4.5 billion years ago. Image Credit: NASA/LRO/Science/AAAS

[/caption]

Ever since their discovery by the Apollo 12 crew, scientists have been puzzled by strongly magnetized rocks found on the Moon. Most Moon rocks that were brought back by the Apollo missions have very little iron, and therefore lack the ability to be strongly magnetized. At first, the magnetic oddities didn’t appear to be related to any lunar geology such as craters or lava flows. Over time, additional lunar missions have provided more data showing that only some portions of the Moon’s crust have magnetic fields. A team of scientists now theorize that the magnetized “patches” on the lunar surface may be the remains of an asteroid that crashed into the Moon shortly after its formation nearly 4.5 billion years ago. The impact crater, known as the South Pole-Aitken basin is one of the largest known in our Solar System.

Mark Wieczorek (Paris Institute for Global Physics), describes the South Pole-Aitken basin as, “this huge, whopping crater that’s roughly half the size of the U.S,” and says it may hold the answers to the mystery of the Apollo 12 rocks.

The Apollo 12 landing site as seen by LRO. Credit: NASA/GSFC/Arizona State University

Studies of the basin show that it is elliptical which suggests the impact was by a large object that hit at an oblique angle. Wieczorek speculates that the impactor was 10% to 30% iron by weight and about 100 times more magnetic than the lunar regolith. Interestingly enough, the theorized impact angle would have flung debris from the object in a pattern very similar to the observed magnetic anomalies. The material could have been magnetized as it cooled by a magnetic field that may have existed early in our Moon’s history.

Wieczorek and his team set out to test their theories with computer simulations of different types of impacts. The research led to a scenario where an object struck the Moon at about a 45 degree angle with a velocity of 15 kilometers per second. The team’s best impact model was described as normal by Wieczorek who stated, “We don’t require improbable conditions.”

Now the team needs to address one other question: How and when did a magnetic field develop on the Moon?

Wieczorek offers a simple solution: Go back to the moon and collect samples.

Source: NASA Lunar Science Institute

Watch Our Live Interview with Climate Scientist Michael Mann

If you missed it live, here’s the replay of our live interview this morning with climate researcher Michael Mann. We discussed his new book, “The Hockey Stick and the Climate Wars: Dispatches from the Front Lines,” his experiences — good and bad — of being one of the leading paleoclimatologists and dealing with deniers of climate change, as well as talking about the science being done by Mann and his colleagues.

Thanks again to Michael Mann for taking the time to join us for the latest in our series of live interviews via Google+ Hangouts On Air.

Watch Felix Baumgartner’s Test Jump

In preparation for his jump from from 36,500 meters (120,000 feet) sometime this summer, Austrian skydiver Felix Baumgartner took a practice jump yesterday from Roswell, New Mexico. The Red Bull Stratos Mission just posted the video of the jump — well, actually everything but the jump (you’ll see the preparations and post landing in this video). I’m sure the best footage is being saved for a documentary about the mission that is being done by the BBC and National Geographic. But this taste of the action whets your whistle for the big jump, when Baumgartner could become the first person to go supersonic outside a vehicle. He plans one more test jump, from 27,400 meters (90,000 feet) before attempting the full 36,500 meters to break the record for the longest freefall. According to Red Bull Stratos, the ‘launch window’ for the big jump opens in July and extends until the beginning of October.