Casting Swords into Space Observatories

Earth as seen from lunar orbit. Credit: NASA

[/caption]

Editor’s note – Bruce Dorminey is a science journalist and author of Distant Wanderers: The Search for Planets beyond the Solar System.

Planet hunter extraordinaire Geoff Marcy recently let his frustration surface about the current state of the search for other habitable solar systems. Despite the phenomenal planet-finding success of NASA’s Kepler mission, Marcy, an astronomer at the University of California at Berkeley, correctly pointed out that NASA budget cuts have severely hampered the hunt for extrasolar life.

A decade ago, only a few dozen extrasolar planets had been detected. Today, by some recent gravitational microlensing estimates, there are more planets than stars in the Milky Way. But without the ability to characterize these extrasolar planetary atmospheres from space, we are astrobiologically hamstrung.

NASA’s goal had been that by 2020, we would have a pretty good idea about how frequently terrestrial Earth-mass planets orbit other stars — whether those planets have atmospheres that resemble our own; and, more crucially, whether those atmospheres exhibit the telltale signs of planets harboring life.

But consider how the federal government spends our tax dollars on a daily basis. Each and every day for more than a decade, the U.S. military spent roughly $1 billion a day funding congressionally-undeclared wars in Iraq and Afghanistan.

In contrast, NASA’s cancelled SIM and TPF missions were both originally estimated to have cost less than $1.5 billion dollars each.

Artist concept of the now-cancelled Terrestrial Planet Finder mission. Credit: NASA

SIM, the Space Interferometry Mission, was to have focused on finding extrasolar earths in a targeted search; its follow-on mission, NASA’s TPF, the Terrestrial Planet Finder mission, was to have characterized the atmospheres of these earth twins in an attempt to remotely detect the signatures of life.

The astronomical community continues to be resourceful as it can in working around these problems. But if NASA had followed through with the SIM and TPF missions in the timeframe that it first announced, we would have a very good idea of our own earth’s galactic pecking order by now.

Instead, war-funding has taken priority. On the home front, we’ve let the attacks of 9/11 take us down a road that has resulted in our airports resembling Orwellian netherworlds. Most of us now accept that we must basically disrobe and be physically prodded before boarding an aircraft.

Kids born at the beginning of what was supposed to be a great new millennium — remember 2001: A Space Odyssey, anyone? — have instead grown up accustomed to running the gauntlet just to take their teddy bears onto the plane with them.

Contrast the country’s current poisoned national mood with the heady days of euphoria surrounding this country’s Moon shots.

Dare we attempt to again turn at least a portion of our swords back into ploughshares?

If the U.S. is going to continue to lead the world in science and technology, the country will have to quit living in a state of perpetual geopolitical paranoia and take space seriously again.

No one wants to turn a blind eye to our national defense and NASA may never return to its glory days. But something is amiss when within a generation, we’ve gone from John F. Kennedy pointedly challenging the nation to test its mettle by safely sending a man to the moon and back before the end of the decade to this current era of national teeth gnashing.

Newt Gingrich was openly ridiculed on the morning TV news shows for advocating that the U.S. use private enterprise to help us put a manned lunar colony on the moon. Mitt Romney responded that he’d fire any employee that walked into his office and suggested such a plan.

Perhaps Gingrich is not the ideal messenger for jumpstarting a long dormant manned lunar program. But our country has reached a sad nadir when a presidential candidate is publicly mocked for advocating the hard work of boldly revamping our national space policy.

IBEX Captures ‘Alien’ Material From Beyond Our Solar System

NASA's Interstellar Boundary Explorer (IBEX) has found that there's more oxygen in our solar system than there is in the nearby interstellar material. That suggests that either the sun formed in a different part of the galaxy or that outside our solar system life-giving oxygen lies trapped in dust or ice grains unable to move freely in space. Credit: NASA/Goddard

[/caption]

If we could board the starship Enterprise-D and were able to look through Giordi LaForge’s visor we might be able to see the interstellar medium – the ‘stuff’ between the stars — as wispy clouds of oxygen, hydrogen, helium and neon. Instead, since we are back in the 21st century, we have the Interstellar Boundary Explorer (IBEX) spacecraft, which has now made the first–ever direct observations of neutral hydrogen and oxygen atoms drifting into our solar system from the region outside our heliosphere. Surprisingly, this material is more ‘alien’ than scientists were expecting, as the matter in the galactic wind doesn’t contain the same exact material as what our solar system is made of.

The most important finding is there is less oxygen ‘out there.’ For every 20 neon atoms in the galactic wind, there are 74 oxygen atoms. In our own solar system, however, for every 20 neon atoms there are 111 oxygen atoms. That translates to more oxygen in any given region of the solar system than in the local interstellar space.

“Our solar system is different than the space right outside it and that suggests two possibilities,” said David McComas the principal investigator for IBEX. “Either the solar system evolved in a separate, more oxygen-rich part of the galaxy than where we currently reside or a great deal of critical, life-giving oxygen lies trapped in interstellar dust grains or ices, unable to move freely throughout space.”

Either way, the scientists said, this affects scientific models of how our solar system – and life – formed. And more than just helping to determine the distribution of elements in the interstellar medium, these new measurements provide clues about how and where our solar system formed, the forces that physically shape our solar system, and even the history of other stars in the Milky Way.

“This alien interstellar material is really the stuff that stars and planets and people are made of — and it’s very important to be measuring it directly,” McComas said during a press briefing on Tuesday.

If Spock were a member of this mission, he would probably raise an eyebrow and say, “Fascinating.”*

Our heliosphere is the region of space dominated by the Sun and is inflated, like a bubble, in local interstellar material by the million mile-per-hour solar wind. This bubble keeps out the ionized or charged particles and magnetic fields from the galaxy and so protects us from dangerous Galactic Cosmic Rays. Credit: SwRI

Interstellar clouds hold the elements of exploded supernovae, which are dispersed throughout the galaxy. As the interstellar wind blows these charged and neutral particles through the Milky Way, the spacecraft can measure samples that make it into our solar system. IBEX scans the entire sky once a year, and every February, its instruments point in the correct direction to intercept incoming neutral atoms. IBEX counted those atoms in 2009 and 2010 and has now captured the best and most complete glimpse of the material that lies so far outside our own system.

In addition to sampling the raw “star stuff,” the findings are important because the interstellar gas surrounding us can affect the strength of the Sun’s heliosphere – the area of influence by the Sun, and like a shielding bubble, protects us from dangerous galactic cosmic rays, the majority of which would come into the inner solar system if not for this bubble.

IBEX also discovered that the interstellar wind is approximately 7,000 miles per hour slower than previously thought. This indicates that our solar system is still in what’s referred to as the “local interstellar cloud.” However, the scientists noted that we will transition into a different region at any time within a few thousand years (very short on astronomical time scales) where conditions will change and affect the heliosphere’s protective capability. And no one knows if that change will be for the better or worse.

As our solar system travels around the Milky Way through the vast sweep of cosmic time, the ever-changing nature of the heliosphere has likely had implications on the evolution of life on Earth as varying levels of radiation spurred genetic mutations and, perhaps, wholesale extinctions.

“This is all very exciting, and it has important implications as the Sun moves through space and in and out of interstellar clouds , the flux of galactic cosmic rays varies,” said Priscilla Frisch, senior scientist, Department of Astronomy and Astrophysics at the University of Chicago, and part of the IBEX mission. “And that is recorded in the geo-isotopic records. Someday maybe we can link the Sun’s motion through interstellar clouds with geological records on Earth, and trace the geological history of Earth.”

The conditions necessary to make the heliosphere, namely the balance of an outward pushing stellar wind and the inward compression of surrounding interstellar gas is so common, that perhaps most stars have analogous structures, called astrospheres. Photographs of three such astrospheres are shown, as taken by various telescopes. Credit: NASA/ESA/JPL-Caltech/Goddard/SwRI

Additionally, while the new findings provide a greater understanding of our heliosphere, it will also aid scientists in exploring analogous structures called “astrospheres,” surrounding other stars throughout the galaxy.

“We know at least two cases of another star with a planetary system and an astrosphere around it, and these are the true analogs to our own solar system,” said Seth Redfield, assistant professor, Astronomy Department, Wesleyan University, in Middletown, Connecticut, also speaking at the press briefing. “The discovery of other planets coupled with our understanding of the impact these galactic cosmic rays could potentially have on planets and the emergence and evolution of life. These are connections that we haven’t explored fully, and with these new findings from IBEX, are now coming together to a very interesting topic to explore.”

Artist impression of IBEX (NASA)

IBEX is a small spacecraft, roughly the size of a card table, and is one of NASA’s low-cost missions. It is in Earth orbit, but can observe the edges of the solar system with detectors that “look” outward and collect particles called energetic neutral atoms. With data from IBEX, scientists are creating the first map of the boundary of our solar system.

These latest findings from IBEX were presented in a series of science papers appearing in the Astrophysics Journal on January 31, 2012.
“This set of papers provide many of the first direct measurements of the interstellar medium around us,” says McComas. “We’ve been trying to understand our galaxy for a long time, and with all of these observations together, we are taking a major step forward in knowing what the local part of the galaxy is like.”

For more information: NASA press release, Additional images, videos via Goddard Media Center, Papers: Disconnecting Solar Magnetic Flux, The Interstellar Boundary Explorer (IBEX): Tracing the Interaction between the Heliosphere and Surrounding Interstellar Material with Energetic Neutral Atoms,

*Thanks to Dwayne Brown from NASA for the Spock reference.

Night Sky Guide: February 2012

Special thanks to Ninian Boyle astronomyknowhow.com for information in parts of this guide

This month, the Solar System gives us a lot to observe and we’ll even start to see the ‘spring’ constellations appear later in the evenings. But February still has the grand constellations of winter, with mighty Orion as a centrepiece to long winter nights.

The Sun has finally started to perform as it should as it approaches “Solar Maximum.” This means we get a chance to see the northern lights (Aurora), especially if you live in such places as Scotland, Canada, Scandinavia, or Alaska or the southern light (Aurora Australis) if you live in the southern latitudes of South America, New Zealand and Australia. Over the past few weeks we have seen some fine aurora displays and will we hope to seesome in February!

We have a bit of a treat in store with a comet being this month’s favourite object with binoculars as well, so please read on to find out more about February’s night sky wonders.

You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.

So what sights are there in the February night sky and when and where can we see them?

Aurora

Looking north from the science operations center at Poker Fla,Alaska. Credit: Jason Ahrns.

The Aurora or Northern Lights (Aurora Borealis) have been seen from parts of Northern Europe and North America these last few weeks. This is because the Sun has been sending out huge flares of material, some of which have travelled towards us slamming into our magnetic field. The energetic particles then follow the Earth’s magnetic field lines towards the poles and meet the atoms of our atmosphere causing them to fluoresce, similar to what happens in a neon tube or strip light.

The colours of the aurora depend on the type of atom the charged particles strike. Oxygen atoms for example usually glow with a green colour, with some reds, pinks and blues. So the more active the Sun gets, the more likely we are to see the Northern (or Southern) Lights.

All you need to see aurora is your eyes, with no other equipment is needed. Many people image the aurora with exposures of just a few seconds and get fantastic results. Unfortunately auroras are “space weather” and are almost as difficult to predict as normal terrestrial weather, but thankfully we can be given the heads up of potential geomagnetic storms by satellites monitoring the Sun such as “STEREO” (Solar TErrestrial RElations Observatory).

Spaceweather.com is a great resource for aurora and other space weather phenomenon and the site has real-time information on current aurora conditions and other phenomenon.

Planets

Mercury is too close to the Sun to be seen at the beginning of the month, but will be visible very low in the south west from the 17th onwards. At the end of February Mercury will be quite bright at around mag -0.8 and will be quite a challenge. It can be seen for about 30 minutes after sunset.

Venus will improve throughout the month in the south west and will pass within half a degree of Uranus on the 9th of February. You can see this through binoculars or a small telescope. On the 25th Venus and the slender crescent Moon can be seen together a fabulous sight. At the end of month Venus closes in on Jupiter for a spectacular encounter in March.

Venus

Mars can easily be spotted with the naked eye as a salmon pink coloured “star” and starts off the month in the constellation of Virgo and moves into Leo on the 4th. Mars is at opposition on March 3rd but is also at its furthest from the Sun on the 15th February making this opposition a poor one with respect to observing due to its small apparent size. The planet will still be visually stunning throughout the month.

Mars

Jupiter starts off the month high in the south as darkness falls and is still an incredibly bright star-like object. Through good binoculars or a small telescope you can see its four Galilean moons – a fantastic sight. On the 8th at around 19:50 UT, Europa will transit Jupiter and through a telescope you will see the tiny moons shadow move across its surface. Throughout February, Jupiter moves further west for its close encounter with Venus in March.

Jupiter

Saturn rises around midnight in the constellation of Virgo and appears to be a bright yellowish star. Through a small telescope you will see the moon Titan and Saturn’s rings as well.

Saturn

Uranus is now a binocular or telescope object in the constellation of Pisces. On the 9th Uranus and the planet Venus will be within half a degree of each other.

Uranus

Neptune is not visible this month.

Comets

Comet Garradd Credit: astronomy.com

Comet Garradd is still on show early in the month — if you have binoculars — and as the month progresses the viewing should improve. You can find the comet in the constellation of Hercules not far from the globular cluster M92. It is about a half a degree away or around the same width as the full Moon. The comet is around magnitude 7 or a little fainter than the more famous globular cluster M13 also to be found in Hercules, so you will definitely need binoculars to see it. The comet is heading north over the course of the month which should mean that it will become a little easier to see. At the beginning of the month you will have to get up early to see it, the best time being around 5:30 to 6:30 GMT. By the end of the month though, it should be visible all night long.

Moon phases

  • Full Moon – 7th February
  • Last Quarter – 14th February
  • New Moon – 21st February

Constellations

In February, Orion still dominates the sky but has many interesting constellations surrounding it.

Above and to the left of Orion you will find the constellation of Gemini, dominated by the stars Castor and Pollux, representing the heads of the twins with their bodies moving down in parallel lines of stars with each other.

Legend has it that Castor and Pollux were twins conceived on the same night by the princess Leda. On the night she married the king of Sparta, wicked Zeus (disguised as a swan) invaded the bridal suite, fathering Pollux who was immortal and twin of Castor who was fathered by the king so was mortal.

Castor and Pollux were devoted to each other and Zeus decided to grant Castor immortality and placed Castor with his brother Pollux in the stars.

Gemini has a few deep sky objects such as the famous Eskimo nebula and some are a challenge to see. Get yourself a good map, Planisphere or star atlas and see what other objects you can track down.

Credit: Adrian West

 

“Cool” Gas May Be At The Root Of Sunspots

During the initial stage of sunspot emergence and cooling, the formation of H2 may trigger a temporary "runaway" magnetic field intensification. The magnetic field prevents the flow of energy from inside the sun to the outside, and the sunspot cools as the energy shines into space. They form hydrogen molecules that take half the volume of the atoms, thus dropping pressure and concentrating the magnetic field, and so on. (adapted from Jaeggli, 2011; sunspot image by F. Woeger et al

[/caption]

Although well over 40 years old, the Dunn Solar Telescope at Sunspot, New Mexico isn’t going to be looking at an early retirement. On the contrary, it has been outfitted with the new Facility Infrared Spectropolarimeter (FIRS) and is already making news on its solar findings. FIRS provides simultaneous spectral coverage at visible and infrared wavelengths through the use of a unique dual-armed spectrograph. By utilizing adaptive optics to overcome atmospheric “seeing” conditions, the team took on seven active regions on the Sun – one in 2001 and six during December 2010 to December 2011 – as Sunspot Cycle 23 faded away. The full sunspot sample has 56 observations of 23 different active regions… and showed that hydrogen might act as a type of energy dissipation device which helps the Sun get a magnetic grip on its spots.

“We think that molecular hydrogen plays an important role in the formation and evolution of sunspots,” said Dr. Sarah Jaeggli, a recent University of Hawaii at Manoa graduate whose doctoral research formed a key element of the new findings. She conducted the research with Drs. Haosheng Lin, also from the University of Hawaii at Manoa, and Han Uitenbroek of the National Solar Observatory in Sunspot, NM. Jaeggli now is a postdoctoral researcher in the solar group at Montana State University. Their work is published in the February 1, 2012, issue of The Astrophysical Journal.

You don’t have to be a solar physicist to know about the Sun’s 11 year cycle, or to understand how sunspots are cooler areas of intense magnetism. Believe it or not, even the professionals aren’t quite sure of how all the mechanisms work… especially those which cause sunspot forming areas that retard normal convective motions. Of the things we’ve learned, the spot’s inner temperature has a correlation with its magnetic field strength – with a sharp rise as the temperature cools. “This result is puzzling,” Jaeggli and her colleagues wrote. It implies some undiscovered mechanism inside the spot.

NOAA 11131 sunspot region (Dec. 6, 2010) was the most intense spot measured in this study, but far from the largest the Sun can produce. The two bottom images show the strength of the magnetic field (C) and the contrast between the interior of the spot and the surrounding photosphere (D). The first graph (A) shows how OH starts to appear in the penumbra and continues to rise as the magnetic field strength rises. Because OH forms at a lower temperature than H2, its presence implies the quantity of hydrogen molecules that could be present (B). (adapted from Jaeggli et al, 2012)

One theory is that hydrogen atoms combining into hydrogen molecules may be responsible. As for our Sun, the majority of hydrogen is ionized atoms because the average surface temperature is assessed at 5780K (9944 deg. F). However, since Sol is considered a “cool star”, researchers have found indications of heavy-element molecules in the solar spectrum – including surprising water vapor. These type of findings might prove the umbral regions could allow hydrogen molecules to combine in the surface layers – a prediction of 5% made by the late Professor Per E. Maltby and colleagues at the University of Oslo. This type of shift could cause drastic dynamic changes where gas pressure is concerned.

“The formation of a large fraction of molecules may have important effects on the thermodynamic properties of the solar atmosphere and the physics of sunspots,” Jaeggli wrote.

With direct measurements being beyond our current capabilities, the team then measured a proxy – the hydroxyl radical made of one atom each of hydrogen and oxygen (OH). According to the National Solar Observatory, “OH dissociates (breaks into atoms) at a slightly lower temperature than H2, meaning H2 can also form in regions where OH is present. By coincidence, one of its infrared spectral lines is 1565.2nm, almost the same as the 1565nm line of iron, used for measuring magnetism in a spot and one of the lines FIRS is designed to observe.”

Spectral lines are the unique "fingerprints in light" that all atoms and molecules produce. In the presence of a magnetic field in a hot gas, some lines split, betraying the presence and strength of the magnetic fields. Each line corresponds to electrons giving up energy in discrete amounts, or quanta, as light. Imposing a magnetic field on the atom makes the electrons produce multiple lines instead of one. The spread of these lines is a direct measure of the strength of the magnetic field, and is greater in the red and in the infrared spectrum. This image depicts sunspot spectra taken by FIRS with lines centered at 630.2nm (left) and 1564.8nm (right). Note the broadened area in the color ellipses, indicating line splitting inside a spot, and how the broadening is greater at the longer wavelength. Contrast is adjusted to enhance visibility in the inset boxes.

By combining both old and new data, the team measured magnetic fields across sunspots, and the OH intensity inside spots, judging the H2 concentrations. “We found evidence that significant quantities of hydrogen molecules form in sunspots that are able to maintain magnetic fields stronger than 2,500 Gauss,” Jaeggli commented. She also said its presence leads to a temporary “runaway” intensification of the magnetic field.

As for the anatomy of a sunspot, magnetic flux boils up from the Sun’s interior and slows surface convection – which in turns stops cooler gas which has radiated its heat into space. From there, molecular hydrogen is created, reducing the volume. Because it is more transparent than its atomic counterpart, its energy is also radiated into space allowing the gas to cool even more. At this point the hot gas primed by the flux compresses the cooler region and intensifies the magnetic field. “Eventually it levels out, partly from energy radiating in from the surrounding gas. Otherwise, the spot would grow without bounds. As the magnetic field weakens, the H2 and OH molecules heat up and dissociate back to atoms, compressing the remaining cool regions and keeping the spot from collapsing.”

For now, the team admits that additional computer modeling is required to validate their observations and that most of the active regions so far have been mild ones. They’re hoping that Sunspot Cycle 24 will give them more fuel to be “cool”…

Original Story Source: National Solar Observatory News Release.

Test Your Knowledge and Skills with NASA’s New Online Games

Space Race Blastoff. Image Credit: NASA

[/caption]This week, NASA has launched its first multi-player online game on Facebook to test players’ knowledge of the space program, as well as an interactive air traffic control mobile game for iPad, iPhone, and iPod touch.

The first game, Space Race Blastoff asks players questions such as “Who was the first American to walk in space?” and “Who launched the first liquid-fueled rocket?”

Sector 33 is the second game, which puts the player in the role of a lead air traffic controller. The players task is to guide air traffic safely through “Sector 33” as quickly as possible. To achieve their goal, players must choose the most efficient route and make strategic speed changes.

Are you up for the challenges NASA has put forth in Space Race Blastoff and Sector 33 ?

Space Race Blastoff tests players’ knowledge of NASA history, technology, science and pop culture. When players answer correctly, they earn in-game “badges” which depict NASA astronauts, spacecraft and celestial objects. Points are also awarded for correct answers, and players can redeem the points to obtain more badges, including “premium” badges.

Space Race Blastoff character select screen. Image credit: NASA
The game play experience is fairly straight forward: Players choose their avatar and then answer 10 multiple-choice questions. Correct answers earn the player 100 points. The first player to answer correctly earns a 20-point bonus. The winner of the round advances to a bonus round where they can earn additional points and a badge.

“Space Race Blastoff opens NASA’s history and research to a wide new audience of people accustomed to using social media,” said David Weaver, NASA’s associate administrator for communications. “Space experts and novices will learn new things about how exploration continues to impact our world.”

While NASA is emphasizing the “multi-player” aspect of the game by making the game available through Facebook, players can also opt to play solo games.

Sector 33 screenshot. Image Credit: NASA
Ever wonder what it’s really like to work as an Air Traffic Controller?

Put yourself in this scenario:

It’s a stormy night in Northern California as air traffic is quickly approaching the San Francisco Bay Area from the East. You are in charge of Sector 33 which all flights must pass through.

Can you handle the job of guiding planes safely through Sector 33 as quickly as possible?

Sector 33 is designed to be an interactive game to interest students in aeronautics-related careers and connect mathematics and problem solving to the real world.

Some additional features of Sector 33 are:

  • 35 problems featuring two to five airplanes
  • Speed and route controls
  • Weather obstacles
  • Four levels of controller certification
  • In-game introduction, hints, and help section
  • Extra videos
  • Moonbase Alpha screenshot. Image credit: NASA
    You can play Space Race Blastoff at: http://apps.facebook.com/spacerace

    Download the Sector 33 App for free for the iPad, iPhone, and iPod touch through the App store

    For those of you a bit more “hard-core” about your gaming, NASA continues to offer their “Moonbase Alpha” demo via STEAM.

    Newsreel Footage of Explorer 1

    Here’s a blast from the past: 54 years ago on January 31, 1958, Explorer 1 was the first satellite sent into space by the United States. The U.S. Army Ballistic Missile Agency was directed to launch a satellite following the Soviet Union’s successful Sputnik 1 launch on October 4, 1957. The 13-kg (30-pound) Explorerer satellite was launched by 3-stage Redstone missile. This newsreel footage also includes a famous scene where Werner von Braun and scientist James Van Allen lift a model of the satellite triumphantly above their heads.
    Continue reading “Newsreel Footage of Explorer 1”

    The Van Allen Belts and the Great Electron Escape

    Artist concept of the twin Radiation Belt Storm Probes spacecraft, scheduled for launch in August 2012. Credit: NASA

    [/caption]

    During the 1950s and just before the great “Space Race” began, scientists like Kristian Birkeland, Carl Stormer, and Nicholas Christofilos had been paying close attention to a theory – one that involved trapped, charged particles in a ring around the Earth. This plasma donut held in place by our planet’s magnetic field was later confirmed by the first three Explorer missions under the direction of Dr. James Van Allen. Fueled by perhaps solar winds, or cosmic rays, the knowledge of their existence was the stuff of nightmares for an uniformed public. While the “radiation” can affect objects passing through it, it doesn’t reach Earth, and this realization quickly caused fears to die. However, there are still many unanswered questions about the Van Allen Radiation Belts that mystify modern science.

    Over the years we’ve learned these radiation zones are comprised of electrons and energetically charged particles. We’ve documented the fact they can both shrink and swell according to the amount of solar energy they receive, but what researchers haven’t been able to pinpoint is exactly what causes these responses. Particles come and particles go – but there isn’t a solid answer without evidence. A pertinent question has been to determine if particles escape into interplanetary space when the belts shrink – or do they fall to Earth? Up until now, it’s been an enigma, but a new study employing several spacecraft at the same time has been to trace the particles and follow the trail up.

    “For a long time, it was thought particles would precipitate downward out of the belts,” says Drew Turner, a scientist at the University of California, Los Angeles, and first author on a paper on these results appearing online in Nature Physics on January 29, 2012. “But more recently, researchers theorized that maybe particles could sweep outward. Our results for this event are clear: we saw no increase in downward precipitation.”

    From October to December 2003, the radiation belts swelled and shrank in response to geomagnetic storms as particles entered and escaped the belts. Credit: NASA/Goddard Scientific Visualization Studio

    This isn’t just a simple answer to simple question, though. Understanding the movement of the particles can play a critical role in protecting our satellite systems as they pass through the Van Allen Belts – and its far reaching radiation extensions. As we know, the Sun produces copious amounts of charged particles in the stellar winds and – at times – can blast in our direction during coronal mass ejections (CMEs) or shock fronts caused by fast solar winds overtaking slower winds called co-rotating interaction regions -CIRs). When directed our way, they disrupt Earth’s magnetosphere in an event known as a geomagnetic storm. During a “storm” the radiation belt particles have been known to decrease and empty the belt within hours… a depletion which can last for days. While this is documented, we simply don’t know the cause, much less what causes the particles to leave!

    In order to get a firmer grip on what’s happening requires multiple spacecraft measuring the changes at multiple points at the same time. This allows scientists to determine if an action that happens in one place affects another elsewhere. While we look forward to the Radiation Belt Storm Probes (RBSP) mission results, it isn’t scheduled to launch until August 2012. In the interim, researchers have combined data from two widely separated spacecraft to get an early determination of what happens during a loss event.

    “We are entering an era where multi-spacecraft are key,” says Vassilis Angelopoulos, a space scientist at UCLA, and the principal investigator for THEMIS and a coauthor on the paper. “Being able to unite a fleet of available resources into one study is becoming more of a necessity to turn a corner in our understanding of Earth’s environment.”

    So where did this early support information come from? Fortunately the team was able to observe a small geomagnetic storm which occurred on January 6, 2011. By engaging the the three NASA THEMIS (Time History of Events and Macroscale Interactions during Substorms) spacecraft, two GOES (Geostationary Operational Environment Satellite), operated by the National Oceanic and Atmospheric Administration (NOAA), and six POES (Polar Operational Environmental Satellite), run jointly by NOAA, and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) spacecraft, they were able to catch electrons moving close to the speed of light as they dropped out of the belt for over six hours. Orbiting Earth’s equatorial zones, the THEMIS and GOES spacecraft are just part of the team. The POES spacecraft passes through the radiation belts several times a day as it cruises at a lower altitude and near the poles. By combining data, the scientists were able to take several observational vantage points and proved – without a doubt – that the particles left the belt by way of space and did not return to Earth.

    “This was a very simple storm,” says Turner. “It’s not an extreme case, so we think it’s probably pretty typical of what happens in general and ongoing results from concurrent statistical studies support this.”

    During this time, the spacecraft also observed a low-density area of the Van Allen belts which appeared along the periphery and traveled inward. This appeared to be an indication the particles were outward bound. If this was a normal occurrence, it stands to reason that a type of “wave” must assist the motion, allowing the particles to reach the outer escape boundary. Discovering just what exactly triggers this escape mechanism will be one of the jobs for RBSP, says David Sibeck at NASA’s Goddard Space Flight Center in Greenbelt, Md., who is NASA’s mission scientist for RBSP and project scientist for THEMIS.

    “This kind of research is a key to understanding, and eventually predicting, hazardous events in the Earth’s radiation belts,” says Sibeck. “It’s a great comprehensive example of what we can expect to see throughout the forthcoming RBSP mission.”

    Original Story Source: NASA THEMIS News Release.

    Hayabusa 2 Mission Approved by Japanese Government

    Artist's conception of Hayabua 2 approaching the asteroid 1999 JU3. Credit: Akihiro Ikeshita/JAXA

    [/caption]

    In 2010, the Japanese spacecraft Hayabusa completed an exciting although nail-biting mission to the asteroid Itokawa, successfully returning samples to Earth after first reaching the asteroid in 2005; the mission almost failed, with the spacecraft plagued by technical problems. The canister containing the microscopic rock samples made a soft landing in Australia, the first time that samples from an asteroid had been brought back to Earth for study.

    Now, the Japanese government has approved a follow-up mission, Hayabusa 2. This time the probe is scheduled to be launched in 2014 and rendezvous with the asteroid known as 1999 JU3 in mid-2018. Samples would again be taken and returned to Earth in late 2020.

    1999 JU3 is approximately 914 metres (3,000 feet) in diameter, a little larger than Itokawa, and is roughly spherical in shape, whereas Itokawa was much more oblong.

    As is common for any space agency, the Japanese Aerospace Exploration Agency (JAXA) is working with tight budgets and deadlines to make this next mission happen. There is a possibility of a back-up launch window in 2015, but if that deadline is also not met, the mission will have to wait another decade to launch.

    The asteroid Itokawa, visited by Hayabusa in 2005. Credit: JAXA

    One of the main problems with Hayabusa was the failure of the sampling mechanism during the “landing” (actually more of a brief contact with the surface with the sample capturing device) to retrieve the samples for delivery back to Earth. Only a small amount of material made it into the sample capsule, but which was fortunate and ultimately made the mission a limited success. The microscopic grains were confirmed to have primarily come from Itokawa itself and are still being studied today.

    To avoid a repetition of the glitches experienced by Hayabusa, some fundamental changes needed to be made.

    This next spacecraft will use an updated ion propulsion engine, the same propulsion system used by Hayabusa, as well as improved guidance and navigation systems, new antennas and a new altitude control system.

    For Hayabusa 2’s sample-collecting activities, a slowly descending impactor will be used, detonating upon contact with the surface, instead of the high-speed projectile used by Hayabusa. Perhaps not quite as dramatic, but hopefully more likely to succeed. Like its predecessor, the main objective of the mission is to collect as much surface material as possible for delivery back home.

    Hopefully Hayabusa 2 will not be hampered by the same problems as Hayabusa; if JAXA can achieve this, it will be exciting to have samples returned from a second asteroid as well, which can only help to further our understanding of the history and formation of the solar system, and by extrapolation, even other solar systems as well.

    End of an Era: Shannon Lucid Retires from NASA

    Astronaut Shannon W. Lucid made history in 1996 on the Russian Mir Space Station, her home for six months, as the first American woman to do so. Here, she is photographed on board the space shuttle Atlantis as she leaves Mir. Credit: NASA

    [/caption]

    It’s the end of an era for NASA and for those who have looked up to this iconic astronaut as a role model. After working as an astronaut for more the three decades, Shannon Lucid has retired from NASA. Lucid’s career at NASA was legendary, as she was a member of the US’s first astronaut class to include women. She was a veteran of five spaceflights, logging more than 223 days in space. Lucid is the only American woman to serve aboard the Russian Mir space station. She lived and worked there for more than 188 days, the longest stay of any American on that vehicle. Her time on Mir also set the single flight endurance record by a woman until Suni Williams broke it in 2006.

    “I was extremely fortunate that I was able to be part of the shuttle Mir program,” Lucid said during an interview for NASA’s 50th anniversary celebration. “I wanted to do that, because it was something new, it was really — I was very, very fortunate that I was able to be in a program at the very beginning where everybody was working to get the program to work. “ Lucid said she was so happy and fortunate to have that opportunity and she found out “that I really and truly enjoyed living and working in space for an extended period of time.”

    NASA's First Class of Female Astronauts From left to right are Shannon W. Lucid, Margaret Rhea Seddon, Kathryn D. Sullivan, Judith A. Resnik, Anna L. Fisher, and Sally K. Ride. NASA selected all six women as their first female astronaut candidates in January 1978, allowing them to enroll in a training program that they completed in August 1979. Image Credit: NASA

    “Shannon is an extraordinary woman and scientist. She paved the way for so many of us,” said Peggy Whitson, chief of NASA’s Astronaut Office at the Johnson Space Center in Houston. “She was a model astronaut for long-duration missions, and whether she was flying hundreds of miles up in space or serving as Capcom [capsule communicator] during the overnight hours for our space shuttle and space station crews, she always brought a smile to our faces. Like so many others, I always will look up to her.”

    Lucid, who holds a doctorate in biochemistry, was selected by NASA in 1978. She joined five other women as the agency’s first female astronauts. Her first three shuttle missions deployed satellites. STS-51G in 1985 deployed and retrieved the SPARTAN satellite; STS-34 in 1989 deployed the Galileo spacecraft to explore Jupiter; and STS-43 in 1991 deployed the fifth Tracking and Data Relay Satellite (TDRS-E). Her fourth shuttle mission, STS-58 in 1993, focused on medical experiments and engineering tests.

    Lucid traveled aboard Atlantis on STS-76 in March 1996 to the Russian Mir space station. She performed numerous life science and physical science experiments during the course of her stay. She returned from the station aboard Atlantis on STS-79 in September 1996.
    In 2002, Lucid served as NASA’s chief scientist at the agency’s headquarters in Washington. She returned to Johnson in the fall of 2003 and resumed technical assignments in the Astronaut Office.

    Later, she served as a Capcom in the Mission Control Center for numerous space shuttle and space station crews, representing the flight crew office and providing a friendly voice for dozens of friends and colleagues in space.

    Astronaut Shannon Lucid serving as Capcom during the STS-134 mission in 2011. Credit: NASA

    Phobos-Grunt Failure Due to Computer Problems, Cosmic Rays

    Phobos-Grunt Model. This is a full-scale mockup of Russia's Phobos-Grunt. The spacecraft was supposed to collect samples of soil on Mar's moon Phobos and return them to Earth for study. Credit: CNES

    [/caption]

    Roscosmos said today that a computer malfunction caused by cosmic rays was the reason for the failure of the Phobos-Grunt spacecraft. Additionally, ‘counterfeit’ chips in the computer may have played a role, said Federal Space Agency (Roscosmos) head Vladimir Popovkin. The original mission was to do a sample return from Mars’ largest moon, but the spacecraft crashed back to Earth on January 15 after the rocket failed to send it out of Earth orbit shortly after the launch in November. This determination comes from a study done by a commission led by Yuri Koptev, former head of the Russian Space Agency.

    “There was a restart of the two sets of on-board computer system so [it] moved to the highest energy saving mode and the standby command,” said Popovkin, quoted by the Russian RIA Novosti news agency. “The most likely reason is the impact of heavy charged space particles.”

    A Russian scientist was also quoted by RIA Novosti that the outcome of the accident investigation should not be cause for dismissals and resignations as much as a “lesson to developers of new interplanetary spacecraft,” said Alexander Zakharov, scientific secretary of Institute of Space Research, which developed instruments and the scientific program the station.

    Some officials from Roscosmos had threatened the jobs of those involved with the mission.

    As far as the counterfeit computer chips, Popovkin said the components were imported. “The cause probably is in this,” he said. Reportedly, NASA and the U.S. Defense Department has also encountered counterfeit products, according to an article in Itar-Tass.

    Anatoly Zak at RussianSpaceWeb.com reported more in detail about possible shortcomings in the design of the probe’s flight control system, called the BKU, saying that “the most likely culprit in the failure of the probe’s propulsion unit to ignite soon after it had entered orbit on November 9 was a programming error in the flight control system.”

    Zak said an industry source revealed that the commission studying the failure “concluded that the mission failure was the result of the design error and the lack in the ground testing of BKU,” adding that “its shortcomings had been well documented long before the ill-fated launch.” The BKU was the the main computer and the “brain” of the spacecraft.

    Additionally, Zak reported that the most probable cause was a “simultaneous robooting of two operational processors in the main computer” and the computers “could crash as a result of errors in their software or as a result of some external reasons, such as electromagnetic incompatibility,” industry sources said.

    The assertion that “foreign radars” had possibly caused the malfunction was apparently tested by the company that built the Phobos-Grunt probe, NPO Lavochkin, with no problems coming from simulated radar interference.

    “With all external failure scenarios effectively debunked, the most probable cause of the failure was narrowed down to the lack of integrated testing,” Zak reported.

    Roscosmos also indicated they may try again to send a sample return mission to Phobos.

    As to the probability of any pieces of the original Phobos-Grunt spacecraft surviving the fiery re-entry through Earth’s atmosphere, most experts agree that most of the debris ended up in the Pacific Ocean. However, some debris may have fallen onto regions of Chile and possibly Argentina.

    Luciano Anselmo from the Space Flight Dynamics Laboratory (ISTI/CNR) in Pisa, Italy left a comment on a previous Universe Today article saying that the Phobos-LIFE capsule, which was designed to survive re-entry “should have impacted the ground approximately 820 km eastward along the trajectory and 15 minutes later (w.r.t. the 80 km ‘entry’ point), with a velocity around 70 km/h.”

    However, Anselmo added that “based on the orbit data available from the different sources involved, our estimation of the final uncertainty is plus/minus 12 minutes. Other observations, or the lack of them, both from the ground or from space, might be used to reduce such uncertainty, but nothing of reliable and unclassified has been provided so far, to my knowledge.”

    Sources: RIA Novosti, RussianSpaceWeb.com, Itar-Tass