Russia To Try Again For Phobos-Grunt?

Poster art for the Russian Phobos-Grunt mission. Russian Federal Space Agency)/IKI

[/caption]

Russia says “eish odin ras”* for its Mars moon lander mission, according to Roscomos chief Vladimir Popovkin.

If the European Space Agency does not include Russia in its ExoMars program, a two-mission plan to explore Mars via orbiter and lander and then with twin rovers (slated to launch in 2016 and 2018, respectively), Roscosmos will try for a “take-two” on their failed Phobos-Grunt mission.

“We are holding consultations with the ESA about Russia’s participation in the ExoMars project… if no deal is reached, we will repeat the attempt,” said Popovkin on Tuesday.

Phobos-Grunt, an ambitious mission to land on the larger of Mars’ two moons, collect samples and return them to Earth, launched successfully on November 9, 2011. It became caught in low-Earth orbit shortly afterwards, its upper-stage engines having failed to ignite.

Read more about the tragic end of the Phobos-Grunt mission here.

After many attempts to communicate with the stranded spacecraft, Phobos-Grunt re-entered the atmosphere and impacted on January 15. Best estimates place the impact site in the Pacific Ocean off the coast of southern Chile.

The failed mission also included a Chinese orbiter and a life experiment from The Planetary Society.

Russia is offering ESA the use of a Proton launch vehicle for inclusion into the ExoMars mission, now that the U.S. has canceled its joint participation and Atlas carrier. Roscomos and ESA are scheduled to discuss the potential partnership in February.

(News via RIA Novosti)

*Phonetic pronunciation for “one more time.” Thanks to my friend Dima for the Russian lesson!

Russia Confirms Delay for Next Soyuz Launches to ISS

Expedition 27 Soyuz rollout. Credit (NASA/Carla Cioffi

[/caption]

The next two launches of crews to the International Space Station will each be postponed by about 45 days, due to an air leak found during testing of the descent module of the Soyuz spacecraft. An official from the Federal Space Agency, Roscosmos, said they will need to build a reserve capsule, and they will confer with NASA ISS program managers on Thursday to clarify the exact launch dates.

The current mission on the ISS will also likely be extended, with the crew’s departure also about 30-45 days later than the previously scheduled date of March 16. Alexei Krasnov from Roscosmos said the delays should not be a problem because the crew currently on the ISS had initially been assigned an “unusually short expedition” of 120 days.

“I think their return and the launch of the next crew (Expedition 31/32) will be pushed back by a month or a month-and-a-half,” he said, quoted by the Russian RIA Novosti news agency, adding that the mission that was scheduled for liftoff on June 1 (Expedition 32/33) will also likely be delayed.

As we reported last week, the Soyuz TMA–04M experienced problems during a test in an altitude test chamber at the Energia Space Rocket Corporation, with a leak in the descent, or re-entry module.

The three ISS crewmembers scheduled to launch for Expedition 31 are Russians Gennady Padakla and Sergei Rivin and NASA astronaut Joseph Acaba, who will be replacing Expedition 30 crewmates Anton Shkaplerov, Anatoli Ivanishin and Dan Burbank, who arrived at the station in November, 2011, and were initially scheduled to return to Earth on March 16. However, since their own launch was delayed, their Soyuz craft does have some margin before exceeding its on-orbit certified life.

The Expedition 32 crew, scheduled to launch on the Soyuz TMA-05M are Suni Williams from NASA, Yuri Malenchenko from Russia, and Akihiko Hoshide from Japan.

Russia now holds the sole ticket for getting cosmonauts and astronauts to the ISS. The Soyuz capsules, along with the Progress re-supply ships had been notorious for their reliability, but since the retirement of the Space Shuttles last summer, the Soyuz program has been hit by several problems the past several months, including the failure and crash of a Progress ship.

Source: RIA Novosti

Canada Looks to the Future in Space

The Canadarm on the Space Shuttle. Credit: NASA

[/caption]

When it comes to space, the first thing most people think of is NASA. Or Russia and the European Space Agency, or even more recently, countries like China and Japan. In the public eye, Canada has tended to be a bit farther down on the list. There is the Canadian Space Agency, but it is better known for developing space and satellite technologies, not awe-inspiring launches to the Moon or other planets, which naturally tend to get the most attention.

Canada has its own astronauts, too, but they go into orbit on the Space Shuttle or Russian rockets. Canada’s role in space should not, however, be underestimated. It was, for example, the first country to have a domestic communications satellite in geostationary orbit, Anik A1, in 1972. There is also the well-known Canadarm used on the Space Shuttle and Canadarm2 on the International Space Station, as well as the space robot Dextre on the ISS. Canada has also contributed technology to various robotic planetary missions as well.

But even in these times of budget constraints, new ventures are being planned, including a mission to place two video cameras on the International Space Station late next year, via a Russian mission.

The cameras will provide near real-time video broadcasting continuously in high-definition. The cameras are being developed by Urthecast, a Vancouver-based firm, which is investing $10 million in the project.

Like their American counterparts now, the investment and development of space technology is coming increasingly from the private sector instead of the government. In 1996, the Canadian government contributed 32% to domestic space revenue; in 2010, it was only 18% and it is estimated to drop again over the next three years.

Because of smaller budgets, the CSA focuses on assisting with larger missions from other countries instead of developing its own launch vehicles. According to Mark Burbidge, head of industrial policy at the CSA, the Canadian Space Agency doesn’t have the money for such projects. “That got our astronauts up there,” he says, referring to the Canadarm.

Another area that Canada may be able to contribute to is space tourism, a prime example of private companies becoming involved in the space business. Companies like SpaceX, Virgin Galactic and Bigelow Airspace are changing the way that people will go into near-orbit and low-Earth orbit. No dependence solely on government dollars to finance their objectives such as tourist space flights, small orbiting hotels or launching commercial satellites.

At this stage, government funding is still often required, especially for smaller firms, but the future looks promising. Space companies are becoming gradually less reliant on the government for revenue growth. The investment return tends to be primarily a scientific one, according to Dr. Jean de Lafontaine, founder of space services company NGC Aerospace in Quebec, making space tourism more of an ideal option for private companies.

This would seem to be an optimum arrangement, allowing companies to compete in orbital missions and tourism, while government agencies like NASA, ESA, etc. are better able to invest in larger-scale planetary missions and other costly space projects (noting however that some commercial companies also have their eyes on the Moon and Mars).

Canada may not have its own rockets or grandiose space missions, not yet anyway, but it will continue to make important contributions to space exploration. And as a Canadian, I am very pleased about that!

Astronomy Cast, Ep. 250: Precision

Wow… 250 episodes.

Accuracy, precision and reproducibility. These are the foundations of science that make our progress possible. How do these play into a scientist’s daily activities? And just how precise can we get with our measurements?

You can watch us record Astronomy Cast live every Monday at 12:00 pm PDT (3:00 pm EDT, 2000 GMT). Make sure you circle Fraser on Google+ to see it show up in the feed. You can also see it live over on our YouTube channel.

If you’d like to be notified of all our live events, sign up for our notification email at Cosmoquest. You can check out our calendar here.

Amazing Panorama of Western Europe at Night from Space Station

Western Europe at Night With hardware from the Earth-orbiting International Space Station appearing in the near foreground, a night time European panorama reveals city lights from Belgium and the Netherlands at bottom center. the British Isles partially obscured by solar array panels at left, the North Sea at left center, and Scandinavia at right center beneath the end effector of the Space Station Remote Manipulator System or Canadarm2. This image was taken by the station crew on Jan. 22, 2012. Credit: NASA

[/caption]

An amazing panorama revealing Western Europe’s ‘Cities at Night’ with hardware from the stations robotic ‘hand’ and solar arrays in the foreground was captured by the crew in a beautiful new image showing millions of Earth’s inhabitants from the Earth-orbiting International Space Station (ISS).

The sweeping panoramic vista shows several Western European countries starting with the British Isles partially obscured by twin solar arrays at left, the North Sea at left center, Belgium and the Netherlands (Holland) at bottom center, and the Scandinavian land mass at right center by the hand, or end effector, of the Canadian-built ISS robotic arm known as the Space Station Remote Manipulator System (SSRMS) or Canadarm2.

European Space Agency astronaut Andre Kuipers gazing at Earth from the Cupola dome of the ISS

Coincidentally European Space Agency astronaut Andre Kuipers from Holland (photo at left) is currently aboard the ISS, soaring some 400 kilometers (250 miles) overhead.

The panoramic image was taken by the ISS residents on January 22, 2012.

The Expedition 30 crew of six men currently serving aboard the ISS (photo below) hail from the US, Russia and Holland.

NASA astronaut Dan Burbank is the commander of Expedition 30 and recently snapped awesome photos of Comet Lovejoy.

“Cities at Night” – Here’s a portion of a relevant ISS Blog post from NASA astronaut Don Pettit on Jan. 27, 2012:

“Cities at night are different from their drab daytime counterparts. They present a most spectacular display that rivals a Broadway marquee. And cities around the world are different. Some show blue-green, while others show yellow-orange. Some have rectangular grids, while others look like a fractal-snapshot from Mandelbrot space.”

“Patterns in the countryside are different in Europe, North America, and South America. In space, you can see political boundaries that show up only at night. As if a beacon for humanity, Las Vegas is truly the brightest spot on Earth. Cities at night may very well be the most beautiful unintentional consequence of human activity,” writes NASA astronaut Don Pettit currently residing aboard the ISS.

Comet Lovejoy on 22 Dec. 2011 from the International Space Station. Comet Lovejoy is visible near Earth’s horizon in this nighttime image photographed by NASA astronaut Dan Burbank, Expedition 30 commander, onboard the International Space Station on Dec. 22, 2011. Credit: NASA/Dan Burbank
Expedition 30 Crew: Pictured on the front row are NASA astronaut Dan Burbank, commander; and Russian cosmonaut Oleg Kononenko, flight engineer. Pictured from the left (back row) are Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin; along with European Space Agency astronaut Andre Kuipers and NASA astronaut Don Pettit, all flight engineers. Photo credit: NASA and International Space Station partners

Carnival of Space #234

This week’s Carnival of Space is hosted by our very own Ray Sanders at his very own website, Dear Astronomer

Click here to read the Carnival of Space #234.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send and email to the above address.

Help Astronomers Measure the Solar System!

The orbit of asteroid 433 Eros brings it close to Earth on Jan. 31. (www.astronomerswithoutborders.org)

[/caption]

As the bright Mars-crossing asteroid 433 Eros makes its closest approach to Earth since 1975, astronomers around the globe are taking the opportunity to measure its position in the sky, thereby fine-tuning our working knowledge of distances in the solar system. Using the optical principle of parallax, whereby different viewpoints of the same object show slightly shifted positions relative to background objects, skywatchers in different parts of the world can observe Eros over the next few nights and share their images online.

The endeavor is called the Eros Parallax Project, and you can participate too!

433 Eros' path from jan. 30 - Feb. 1, 2012. (transitofvenus.nl)

Discovered in 1898, Eros was the largest near-Earth asteroid yet identified. Its close and relatively bright oppositions were calculated by astronomers of the day and used, along with solar transits by Venus (one of which, if you haven’t heard, will also occur this year on June 5!) to calculate distances in the inner solar system.

Having both events take place within the same year offers today’s astronomers an unparalleled opportunity to obtain observational measurements.

Through the efforts of the Astronomers Without Borders organization, along with Steven van Roode and Michael Richmond from the Transit of Venus project, anyone with moderate astrophotography experience can participate in the observation of Eros and share their photos via free online software.

Using the data gathered by individual participants positioned around the world, each with their own specific viewpoints, astronomers will be able to precisely measure the distance to Eros.

The more accurately that distance is known, the more accurately the distance from Earth to the Sun can be calculated – via the orbital mechanics of Kepler’s third law.

The tumbling motion of elongated 33-km-long Eros creates a changing brightness. (via transitofvenus.nl)

The last time such a bright pass of Eros occurred was in January of 1931. Observations of the asteroid made at that time allowed astronomers to calculate a solar parallax of 8″ .790, the most accurate up to that time and the most accurate until 1968, when data acquired by radar measurements gave more detailed measurements.

In many ways the 2012 close approach by Eros – astronomically close, but still a very safe 16.6 million miles (26.7 million km) away – will allow for a re-eneactment of the 1931 event… with the exception that this time amateur skywatchers will also contribute data, instantly, from all over the world!

One has to wonder…when Eros comes this close again in 2056, what sort of technology will we use to watch it then…

Find out more about the Eros Parallax Project and how to participate here.

And be sure to check out the article about the project on Astronomers Without Borders as well.

New Insights into the Moon’s Mysterious Magnetic Field

Lunar Dynamo
Moon with cut-away showing stylized interior with dynamo and magnetic field lines.

Ever since the Apollo era, scientist have known that the Moon had some kind of magnetic field in the past, but doesn’t have one now. Understanding why is important, because it can tell us how magnetic fields are generated, how long they last, and how they shut down. New studies of Apollo lunar samples answer some of these questions, but they also create many more questions to be answered.

The lunar samples returned by the Apollo missions show evidence of magnetization. Rocks are magnetized when they are heated and then cooled in a magnetic field. As they cool below the Curie temperature (about 800 degrees C, depending on the material), the metallic particles in the rock line up along ambient magnetic fields and freeze in that position, producing a remnant magnetization.

This magnetization can also be measured from space. Studies from orbiting satellites show that the Moon’s magnetization extends well beyond the regions sampled by Apollo astronauts. All this magnetization means that the Moon must have had a magnetic field at some point in its early history.

Most of the magnetic fields we know of in the Solar System are generated by a dynamo. Basically, this involves convection in a metallic liquid core, which effectively moves the metal atoms’ electrons, creating an electric current. This current then induces a magnetic field. The convection itself is thought to be driven by cooling. As the outer core cools, the colder portions sink to the interior and let the warmer interior sections move outwards towards the exterior.

Because the Moon is so small, a magnetic dynamo that is driven by convective cooling is expected to have shut down some time around 4.2 billion years ago. So, evidence of magnetization after this time would need either 1) an energy source other than cooling to drive the motion of a liquid core, or 2) a completely different mechanism for creating magnetic fields.

Laboratory experiments have suggested one such alternate method. Large basin-forming impacts could produce short-lived magnetic fields on the Moon, which would be recorded in the hot materials ejected during the impact event. In fact, some observations of magnetization are located at the opposite side of the Moon (the antipode) from large basins.

So, how can you tell if magnetization in a rock was formed by a core dynamo or an impact event? Well, impact-induced magnetic fields last only about 1 day. If a rock cooled very slowly, it would not record such a short-lived magnetic field, so any magnetism it retains must have been produced by a dynamo. Also, rocks that have been involved in impacts show evidence of shock in their minerals.

One lunar sample, number 76535, which shows evidence of slow cooling and no shock effects, has a distinct remnant magnetization. This, along with the age of the sample, suggests that the Moon had a liquid core and a dynamo-generated magnetic field 4.2 billion years ago. Such a core dynamo is consistent with convective cooling. But, what if there are younger samples?

New studies recently published in Science by Erin Shea and her colleagues suggest this may be the case. Ms Shea, a graduate student at MIT, and her team studied sample 10020, a 3.7 billion year old mare basalt brought back by the Apollo 11 astronauts. They demonstrated that sample 10020 shows no evidence of shock in its minerals. They estimated that the sample took more than 12 days to cool, which is much slower than the lifetime of an impact-induced magnetic field. And they found that the sample is very strongly magnetized.

From their studies, Ms Shea and her colleagues conclude that the Moon had a strong magnetic dynamo, and therefore a moving metallic core, around 3.7 billion years ago. This is well after the time a convective cooling dynamo would have shut down. It is not clear, however, if the dynamo was continually active since 4.2 billion years ago, or if the mechanism that moved the liquid core was the same at 4.2 and 3.8 billion years. So, what other ways are there to keep a liquid core moving?

Recent studies by a team of French and Belgian scientists, led by Dr. Le Bars, suggest that large impacts can unlock the Moon from its synchronous rotation with the Earth. This would create tides in the liquid core, much like the Earth’s oceans. These core tides would cause significant distortions at the core-mantle boundary, which could drive large-scale flows in the core, creating a dynamo.

In another recent study, Dr. Dwyer and colleagues suggested that precession of the lunar spin axis could stir the liquid core. The early Moon’s proximity to the Earth would have made the Moon’s spin axis wobble. This precession would cause different motions in the liquid core and overlying solid mantle, producing a long-lasting (longer than 1 billion years) mechanical stirring of the core. Dr. Dwyer and his team estimate that such a dynamo would naturally shut down about 2.7 billion years ago as the Moon moved away from the Earth over time, diminishing its gravitational influence.

Unfortunately, the magnetic field suggested by the study of sample 10020 doesn’t fit either of these possibilities. Both these models would provide magnetic fields that are too weak to have produced the strong magnetization observed in sample 10020. Another method for mobilizing the liquid core of the Moon will need to be found in order to explain these new findings.

Sources:
A Long-Lived Lunar Core Dynamo. Shea, et al. Science 27, January 2012, 453-456. doi:10.1126/science.1215359.

A long-lived lunar dynamo driven by continuous mechanical stirring. Le Bars et al. Nature 479, November 2011, 212-214. doi:10.1038/nature10564.

An impact-driven dynamo for the early Moon. Dwyer et al. Nature 479, November 2011, 215-218. doi:10.1038/nature10565.

How Well Can Astronomers Study Exoplanet Atmospheres?

Artist's impression of exoplanets around other stars. Credits: ESA/AOES Medialab

[/caption]

Exoplanet discoveries are happening at a frenetic pace, and some of the latest newly discovered worlds are sometimes described as “Earth-Like” and “potentially habitable.”

The basis of this comparison is, in many cases, based on the distance between the exoplanet and its host star. Unfortunately the distance between a planet and its host star is only half the picture. The other half is determining if an exoplanet has an atmosphere, and what the contents of said atmosphere may be.

Basically, just because an exoplanet is in the “habitable zone” around its host star, it may not necessarily be habitable. If an exoplanet has a thick, crushing, Venus-Like atmosphere, it would most likely be too hot for surface water. The opposite holds true as well, as it could be entirely possible for an exoplanet to have a thin, wispy Mars-like atmosphere where any water would be locked up as ice.

At this point, how well can astronomers study the atmosphere around an exoplanet?

The spectrum from a giant exoplanet, orbiting around the bright, young, star HR 8799. Image Credit: ESO/M. Janson
Currently, there are only a handful of methods researchers can use to make estimates of exoplanet atmospheres. Interestingly enough, one method makes use of the light coming from the host star. The basic principle is that the light from a star can be analyzed both before and after an exoplanet crosses in front of the star. By comparing the spectrum from the host star, and the spectrum of an exoplanet, the tell-tale signs of atmospheric contents can be detected.

Methods to detect the atmospheric composition of such distant worlds are fairly new, as shown by work done with the Spitzer Space Telescope and ESO’s Very Large Telescope

Recently, astronomers from The Sternberg Astronomical Institute at Moscow State University used data from the Hubble Space Telescope in an attempt to better detect atmospheres around exoplanets. Abubekerov and team created mathematical models to analyze light curves from distant stars. In the case of Abubekerov’s research, the selected star was HD 189733 – a K-class star a bit cooler and smaller than our Sun.

About 60 light-years from Earth, HD 189733 also happens to have a binary companion orbiting it at a radius of about 200 A.U. So far, one exoplanet is known to orbit HD 189733. Discovered in 2005, HD 189733 b is a roughly Jupiter-size exoplanet which orbits its host star in just over two days. While not mentioned directly in Abubekerov’s paper, other studies have detected methane, carbon monoxide, water vapor and sodium in HD 189733 b’s atmosphere.

Light curve from HD 189733 in 5500 - 6000 angstrom range.
By applying their models to the light curves from HD 189733, Abubekerov’s team was able to better understand how light at different wavelengths behaves when an exoplanet crosses in front of its host star.

According to Abubekerov and team, the end result of their research was unsuccessful. The team suspects dark spot activity on HD 189733 was a contributing factor to their models not agreeing with actual observations.

The team stressed that additional observational data from HD 189733 when spot activity is negligible would be required to further refine their work. Despite their models not being successful, the team is confident that exoplanet radius increases with decreasing wavelength, which may imply the presence of an atmosphere.

Research such as Abubekerov’s will help astronomers build better models and pave the way for “sniffing” exoplanet atmospheres. Newer technology such as the James Webb Space Telescope and the European Extremely Large Telescope will also provide better data. In the not-too-distant future, astronomers and astrobiologists should be able to examine the atmospheres of exoplanets in the habitable zone.

If you’d like to read the full research paper, you can access a pre-print version at: http://arxiv.org/pdf/1201.4043v1.pdf

Source(s): Analysis of Light Curves of Eclipsing Systems with Exoplanets:
HD 189733. M. K. Abubekerov, N. Yu. Gostev, and A. M. Cherepashchuk
, Extrasolar Planets Encyclopaedia

Students Discover Millisecond Pulsar, Help in the Search for Gravitational Waves

Using an array of millisecond pulsars, astronomers can detect tiny changes in the pulse arrival times in order to detect the influence of gravitational waves. Credit: NRAO

[/caption]

A special project to search for pulsars has bagged the first student discovery of a millisecond pulsar – a super-fast spinning star, and this one rotates about 324 times per second. The Pulsar Search Collaboratory (PSC) has students analyzing real data from the National Radio Astronomy Observatory’s (NRAO) Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. Astronomers involved with the project said the discovery could help detect elusive ripples in spacetime known as gravitational waves.

“Gravitational waves are ripples in the fabric of spacetime predicted by Einstein’s theory of General Relativity,” said Dr. Maura McLaughlin, from West Virginia University. “We have very good proof for their existence but, despite Einstein’s prediction back in the early 1900s, they have never been detected.”

Four other pulsars have been discovered by high school students participating in this project.

Pulsar hunters Sydney Dydiw of Trinity High School, Emily Phan of George C. Marshall High School, Anne Agee of Roanoke Valley Governor's School, and Jessica Pal of Rowan County High School. Not pictured: Max Sterling of Langley High School. Credit: NRAO

“When you discover a pulsar, you feel like you’re walking on air! It is the best experience you can ever have,” said student co-discoverer Jessica Pal of Rowan County High School in Kentucky. “You get to meet astronomers and talk to them about your experience. I still can’t believe I found a pulsar. It is wonderful to know that there is something out there in space that you discovered.”

The other student involved in the discovery was Emily Phan of George C. Marshall High School in Virginia, who along with Pal found the millisecond pulsar on January 17, 2012. It was later confirmed by Max Sterling of Langley High School, Sydney Dydiw of Trinity High School, and Anne Agee of Roanoke Valley Governor’s School, all in Virginia.

“I am considering pursuing astronomy as a career choice,” said Agee. “The Pulsar Search Collaboratory has opened my eyes to how fun astronomy can be!”

Once the pulsar candidate was reported to NRAO, a followup observing session was scheduled on the giant, 17-million-pound telescope. On January 24, 2012, observations confirmed that the pulsar was real.

Pulsars are spinning neutron stars that sling “lighthouse beams” of radio waves around as they rotate. A neutron star is what is left after a massive star explodes at the end of its “normal” life. With no nuclear fuel left to produce energy to offset the stellar remnant’s weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name “neutron star.” One tablespoon of material from a pulsar would weigh 10 million tons.

On January 24, 2012, observations with the Green Bank Telescope at 800 MHz confirmed that the signal was astronomical and zeroed in on its position. Pulsars are brighter at lower frequencies (like 350 MHz, above) than at higher frequencies, and so the confirmation plot is noisier than the original data. Since this pulsar spins so fast, it may be used as part of the pulsar timing array used to detect gravitational waves. Courtesy NRAO.

The object that the students discovered is a special class of pulsars called millisecond pulsars, which are the fastest-spinning neutron stars. They are highly stable and keep time more accurately than atomic clocks.

Astronomers don’t know much about them, however. But because of their stability, these pulsars may someday allow astronomers to detect gravitational waves.

Millisecond pulsars, however, could hold the key to that discovery. Like buoys bobbing on the ocean, pulsars can be perturbed by gravitational waves.

“Gravitational waves are invisible,” said McLaughlin. “But by timing pulsars distributed across the sky, we may be able to detect very small changes in pulse arrival times due to the influence of these waves.”

Millisecond pulsars are generally older pulsars that have been “spun up” by stealing mass from companion stars, but much is left to discover about their formation.

“This latest discovery will help us understand the genesis of millisecond pulsars,” said Dr. Duncan Lorimer, who is also part of the project. “It’s a very exciting time to be finding pulsars!”

Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF

The PSC is a joint project of the National Radio Astronomy Observatory and West Virginia University, funded by a grant from the National Science Foundation. The PSC includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from the GBT.

Approximately 300 hours of the observing data were reserved for analysis by student teams. These students have been working with about 500 other students across the country. The responsibility for the work, and for the discoveries, is theirs. They are trained by astronomers and by their teachers to distinguish between pulsars and noise.

The PSC will continue through the 2012-2013 school year. Teachers interested in participating in the program can learn more at this link. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.