The enormous sunspot region responsible for all the recent fuss and flares was easily visible from Earth yesterday… easily visible, that is, with the help of a natural filter provided by a New Mexico dust storm!
Photographer David Tremblay captured this image on March 7 through the dust-laden sky of Alto, New Mexico. Active Region 1429 can be seen on the upper right side of the Sun’s disk. Many times the size of Earth, this sunspot region has already erupted with several X-class solar flares and sent numerous CMEs our way — with potential for more to come!
“Blowing dust from the Tularosa Basin is so very dense that observing the sun was possible with the naked eye this evening,” noted David on SpaceWeather.com, where you can see more of his solar photos taken about the same time.
The image above was captured at 560mm with a Canon MKlll ESO1D.
Leave it to Mr. Wizard, a.k.a. astronaut Don Pettit on board the International Space Station, to give a detailed demonstration to explain how physics works in space, including demonstrating trajectories in microgravity by catapulting an Angry Bird through the space station. The video coincides with the release of a new Angry Birds game, “Angry Birds Space,” and the game’s developers have incorporated concepts of human space exploration into the new game to provide a little education along with the latest version of the popular time-waster game, which was produced in cooperation with NASA. From the weightlessness of space to the gravity wells of nearby planets, players can use physics as they explore the various levels of the game set both on planets and in microgravity.
Astronaut Don Pettit posted this beautiful image on his Google+ page showing a view from the space station reminiscent of science-fiction. Of course, that’s the constellation Orion off in the distance, but there’s a bit of a debate going on at Pettit’s post whether the diffusion of light seen emanating from the ISS is just light from inside the space station windows (it appears to be the Cupola) spreading out into total darkness, or if the effect is actually from a reboost of the ISS for a Debris Avoidance Maneuver that was performed around the time this image was taken.
The only clue Pettit provided is the title he gave the image, “Orion in the headlights,” which would point to the effect coming from the light shining from the Cupola windows. But the The DAM took place at 10.12 GMT (5:12 a.m. EST) on February 29, 2012 and as commenter Peter Caltner points out, “the scenic lighting effect ends exactly in [the series of images that Pettit took] at the end of the 76 seconds of the burn duration.”
The original can be found here on the NASA Gateway to Astronaut Photography website, and here’s another image in the sequence.
OK, all you imaging experts out there: until Pettit gives us the real scoop, what are your thoughts?
NASA’s twin lunar orbiting GRAIL (Gravity Recovery and Interior Laboratory) spacecraft christened Ebb and Flow have kicked off their science collection phase aimed at precisely mapping our Moon’s gravity field, interior composition and evolution, the science team informed Universe Today.
“GRAIL’s science mapping phase officially began Tuesday (March 6) and we are collecting science data,” said Maria Zuber, GRAIL principal investigator of the Massachusetts Institute of Technology in Cambridge, to Universe Today.
“It is impossible to overstate how thrilled and excited we are !”
“The data appear to be of excellent quality,” Zuber told me.
GRAIL’s goal is to provide researchers with a better understanding of how the Moon, Earth and other rocky planets in the solar system formed and evolved over its 4.5 billion years of history.
NASA’s Dawn spacecraft is currently mapping the gravity field of Asteroid Vesta in high resolution from low orbit.
Despite more than 100 missions to the Moon there is still a lot we don’t know about the Moon says Zuber, like why the near side is flooded with magma and smooth and the back side is rough, not smooth and completely different.
The formation-flying spacecraft will make detailed science measurements from lunar orbit with unparalleled precision to within 1 micron – the width of a human red blood cell – by transmitting Ka-band radio signals between each other and Earth to help unlock the mysteries of the Moon’s deep interior.
“We’ve worked on calibrating the alignment of the Ka-band antennae to establish the optimal alignment. We’ve verified the data pipeline and are spending a lot of time working with the raw data to make sure that we understand its intricacies,” Zuber explained.
The washing-machine sized probes have been flying in tandem around the Moon since entering lunar orbit in back to back maneuvers over the New Year’s weekend. Engineers have spent the past two months navigating the spaceship duo into lower, near-polar and near-circular orbits with an average altitude of 34 miles (55 kilometers), that are optimized for science data collection, and simultaneously checking out the spacecraft systems.
Ebb and Flow were launched to the Moon on September 10, 2011 aboard a Delta II rocket from Cape Canaveral, Florida and took a circuitous 3.5 month low energy path to the moon to minimize the overall costs. The Apollo astronauts reached the Moon in just 3 days.
I asked Zuber to describe the team’s activities putting the mirror image probes to work peering to the central core of our nearest neighbor in unprecedented detail.
“Last Wednesday (Feb. 29) we achieved the science orbit and on Thursday (March 1) we turned the spacecraft to ‘orbiter point’ configuration to test the instrument and to monitor temperatures and power.”
“When we turned on the instrument we established the satellite-to-satellite radio link immediately. All vital signs were nominal so we left the spacecraft in orbiter point configuration and have been collecting science data since then. At the same time, we’ve continued performing calibrations and monitoring spacecraft and instrument performance, such as temperatures, power, currents, voltages, etc., and all is well,” said Zuber.
Measurements gathered over the next 84 days will be used to create high-resolution maps of the Moon’s near side and far side gravitational fields that are 100 to 1000 times more precise than ever before and that will enable researchers to deduce the internal structure and composition of our nearest neighbor from the outer surface crust down to the deep hidden core.
As one satellite follows the other, in the same orbit, they will perform high precision range-rate measurements to precisely measure the changing distance between each other. As they fly over areas of greater and lesser gravity caused by visible features such as mountains, craters and masses hidden beneath the lunar surface, the distance between the two spacecraft will change slightly.
“GRAIL is great. Everything is in place to get science data now,” said Sami Asmar, a GRAIL co-investigator from NASA’s Jet Propulsion Lab in Pasadena, Calif. “Soon we’ll get a very high resolution and global gravity map of the Moon.”
The data collected will be translated into gravitational field maps of the Moon that will help unravel information about the makeup of the Moon’s core and interior composition.
GRAIL will gather three complete gravity maps over the three month mission which is expected to conclude around May 29. If the probes survive a solar eclipse in June and if NASA funding is available, then they may get a bonus 3 month extended mission.
NASA sponsored a nation-wide student contest for America’s Youth to choose new names for the twin probes originally known as GRAIL A and GRAIL B. 4th graders from the Emily Dickinson Elementary School in Bozeman, Montana submitted the winning entries -Ebb and Flow. The new names won because they astutely describe the probes movements in orbit to collect the science data.
The GRAIL twins are also equipped with a very special camera dubbed MoonKAM (Moon Knowledge Acquired by Middle school students) whose purpose is to inspire kids to study science.
By having their names selected, the 4th graders from Emily Dickinson Elementary have also won the prize to choose the first target on the Moon to photograph with the MoonKAM cameras, which are managed by Dr Sally Ride, America’s first female astronaut.
“MoonKAMs on both Ebb and Flow were turned on Monday, March 5, and all appears well, Zuber said. “The Bozeman 4th graders will have the opportunity to target the first images a week after our science operations begin.”
Here’s a close look at the large X5.4 solar flare that erupted on the Sun on March 7, 2012 at 00:28 UT, (7:28 PM EST on March 6). These high-definition views from the Solar Dynamics Observatory also show the subsequent solar tsunami that rippled across the Sun, appearing as though the Sun ‘shook’ from the force of the flare.
This storm is heading our way and will likely give Earth’s atmosphere and magnetosphere a little shake as well, but solar physicists aren’t sure yet what the full impact will be. NASA Goddard’s Space Weather Lab and NOAA Space Weather Prediction Center say surely there will be aurorae from this blast. Other potential impacts include some radio blackouts, single-event upsets to satellite operations, and airplane passengers in high latitude, high altitude flights may experience increased radiation exposures. Continue reading “A Close-up Look at the Massive Solar Storm that Shook the Sun”
Just over 42 years after Neil and Buzz became the first humans to experience the “stark beauty” of the lunar surface, the Lunar Reconnaissance Orbiter captured the remnants of their visit in the image above, acquired Nov. 5, 2011 from an altitude of only 15 miles (24 km). This is the highest-resolution view yet of the Apollo 11 landing site!
The Lunar Module’s descent stage, a seismic experiment monitor, a laser ranging reflector (LRRR, still used today to measure distances between Earth and the Moon) and its cover, and a camera can be discerned in the overhead image… as well as the darker trails of the astronauts’ bootprints, including Armstrong’s jaunt eastward to the rim of Little West crater.
The crater was the furthest the Apollo astronauts ventured; in fact, if you take the total area Neil and Buzz explored it would easily fit within the infield of a baseball diamond!
Neil Armstrong’s visit to the crater’s edge was an unplanned excursion. He used the vantage point to capture a panoramic image of the historic site:
“Isn’t that something! Magnificent sight out here.” Armstrong had stated before he was joined by Aldrin on the lunar surface. “It has a stark beauty all its own. It’s like much of the high desert of the United States. It’s different, but it’s very pretty out here.”
Previously the LROC captured the Apollo 15 landing site, which included the tracks of the lunar rover — as well as the rover itself! And, just yesterday, the LROC site operated by Arizona State University featured the latest similarly high-resolution view of the Apollo 12 site. This location has the honor of being two landing sites in one: Apollo 12 and the Surveyor 3 spacecraft, which had landed on April 20, 1967 – two and a half years earlier!
Even though the US flag planted by Apollo 12 astronauts Pete Conrad and Alan Bean isn’t itself visible, the shadow cast by it is.
Apollo 12 was the only mission to successfully visit the site of a previous spacecraft’s landing, and it also saw the placement of the first Apollo Lunar Surface Experiments Package (ALSEP), which included a seismometer and various instruments to measure the lunar environment.
Read more about this image on the LROC page here, and check out the video tour below of the Apollo 12 site.
Images and video courtesy of NASA/GSFC/Arizona State University
Mars orbiters, rovers and landers have all captured devils in action before. But this latest shot is a whopper (to speak in the vernacular of the peasantry…*) – not to mention incredibly awesome! The HiRISE camera (High Resolution Imaging Science Experiment) on the Mars Reconnaissance Orbiter has taken an image of an afternoon whirlwind on Mars lofting a twisting column of dust more than 800 meters (about a half a mile) high, with the dust plume about 30 meters or yards in diameter.
HiRISE captured the image on Feb. 16, 2012, in the Amazonis Planitia region of northern Mars. Evidence of many previous whirlwinds, or dust devils, are visible as streaks on the dusty surface shown in the image.
Scientists from JPL said the active dust devil and its delicate arc were produced by a westerly breeze partway up its height.
Just like on Earth, winds on Mars are powered by solar heating. However, Mars is now farthest from the Sun, and even though the exposure to the Sun’s rays is now less, even so, the dust devils are moving dust around on Mars’ surface.
Dust devils occur on Earth as well as on Mars. They are spinning columns of air, made visible by the dust they pull off the ground. Unlike a tornado, a dust devil typically forms on a clear day when the ground is heated by the sun, warming the air just above the ground. As heated air near the surface rises quickly through a small pocket of cooler air above it, the air may begin to rotate, if conditions are just right.
MRO and HiRISE continue to provide insights into the planet’s ancient environments and how processes such as wind, meteorite impacts and seasonal frosts continue to affect the Martian surface today. This mission – operating since 2006 in Mars orbit – has returned more data about Mars than all other orbital and surface missions combined.
Light can do some pretty strange stuff, like pass through objects and bounce off them; it can be broken up and recombined. In fact, everything we “see” is actually the end result of reflection and refraction of light. Time to understand how it all works.
Remember that we record every episode of Astronomy Cast as a live Google+ Hangout on Mondays at 12 pm PST / 3 pm EST / 2000 GMT. You can watch us record the episode and even jump into the Hangout and ask us some questions. Follow Fraser on Google+ to see when it happens.
Part science experiment, part publicity stunt, part life-long ambition, the Red Bull Stratos mission will feature skydiver Felix Baumgartner attempting to break the speed of sound with his body in a record-setting freefall from the edge of space. The team has been working for over 5 years to build the high-tech capsule that will bring Baumgartner to 36,500 meters (120,000 feet) above Earth, via a stratospheric balloon, and Red Bull Stratos has now released a few images of the capsule. The craft weighs 2,900 pounds fully loaded and it will act as Baumgartner’s life support system during his nearly three-hour ascent. Here’s the outside of the capsule, with Baumgarter standing by, along with the current record holder for such a jump, Joe Kittinger, who jumped from 31,333 meters (102,800 feet) in 1960.
Take a look inside the capsule:
The pressurized area inside the capsule has of less than 2 meters (6 feet) and contains the flight control panel with 89 different switches and various instrumentation, and a custom-made chair custom to fit Baumgartner and his space suit. It is molded from fiberglass and epoxy, while the door and windows are made of acrylic. The pressure sphere’s interior will be pressurized to 8 pounds per square inch (psi), the equivalent of 16,000 feet above sea level, to reduce the risk of decompression sickness during the ascent without requiring Felix to inflate his pressure suit.
The clear door will give Baumgartner the best view in the stratosphere, but it also puts just half an inch of acrylic between him and the edge of space.
A Chrome-Moly cage and an external foam-insulated shell surrounds the capsule, making it 3.3 meters high (11 feet) and 2.4 meters (8 feet) in diameter at its base.
According to Red Bull Stratos, the capsule will be suspended 45 meters (150 feet) below the balloon, and will protect Baumgartner from stratospheric temperatures reaching minus -55 C (-70 Fahrenheit), providing a pressurized environment during the ascent, with air to breathe so he can avoid decompression sickness. He will inflate his pressure suit only as he prepares to exit the capsule.
When Kittinger made his jump, he used a gondola instead of the sealed capsule that Baumgartner will use. Red Bull Stratos says that the additional altitude for this mission means that there are exponentially greater hazards from exposure to freezing temperatures, oxygen deprivation and low air pressure, and the capsule is designed to protect him from that.
The science team collaborated with aerospace engineers to overcome the challenges that the hostile environment of the stratosphere presents to the electronics, radio communications and camera systems vital to the capsule’s operation. They also wanted to build a vessel capable of capturing valuable scientific data as well, to help advance aerospace research. The capsule was designed and hand-constructed at Sage Cheshire Aerospace, Inc. in Lancaster, California.
Once the capsule has completed its ascent and Baumgartner has safely accomplished his mission, a remote triggering system will release the craft from the balloon. Tracked via a GPS system, a recovery parachute will bring the capsule slowly back to Earth, where the data can be extracted and evaluated.
The base of the capsule has a 5 cm (2-inch) thick aluminum honeycomb panel which protects the capsule from sharp objects during landing and provides a mounting for the balloon system control box and batteries. Attached to the base are the landing crush pads, made of a cell-paper honeycomb covered by a fiberglass/epoxy fairing. They are designed to handle as much as 8 Gs on impact. Taking more than 150 drop tests to develop, the crush pads can be used only once and must be replaced after every flight.
The capsule has been thoroughly tested, and the Red Bull Stratos team says they are ready to fly. An exact date for the jump has not been released, but sources say it will likely be in August or September 2012.
NASA’s Dawn mission is getting a whopping boost in science observing time at the closest orbit around Asteroid Vesta as the probe passes the midway point of its 1 year long survey of the colossal space rock. And the team informs Universe Today that the data so far have surpassed all expectations and they are very excited !
Dawn’s bonus study time amounts to an additional 40 days circling Vesta at the highest resolution altitude for scientific measurements. That translates to a more than 50 percent increase beyond the originally planned length of 70 days at what is dubbed the Low Altitude Mapping Orbit, or LAMO.
“We are truly thrilled to be able to spend more time observing Vesta from low altitude,” Dr. Marc Rayman told Universe Today in an exclusive interview. Rayman is Dawn’s Engineer at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif.
“It is very exciting indeed to obtain such a close-up look at a world that even a year ago was still just a fuzzy blob.”
The big extension for a once-in-a-lifetime shot at up close science was all enabled owing to the hard work of the international science team in diligently handling any anomalies along the pathway through interplanetary space and since Dawn achieved orbit in July 2011, as well as to the innovative engineering of the spacecraft’s design and its revolutionary ion propulsion system.
“This is a reflection of how well all of our work at Vesta has gone from the beginning of the approach phase in May 2011,” Rayman told me.
Dawn’s initially projected 10 week long science campaign at LAMO began on Dec. 12, 2011 at an average distance of 210 kilometers (130 miles) from the protoplanet and was expected to conclude on Feb. 20, 2012 under the original timeline. Thereafter it would start spiraling back out to the High Altitude Mapping Orbit, known as HAMO, approximately 680 kilometers above the surface.
“With the additional 40 days it means we are now scheduled to leave LAMO on April 4. That’s when we begin ion thrusting for the transfer to HAMO2,” Rayman stated.
And the observations to date at LAMO have already vastly surpassed all hopes – using all three of the onboard science instruments provided by the US, Germany and Italy.
“Dawn’s productivity certainly is exceeding what we had expected,” exclaimed Rayman.
“We have acquired more than 7500 LAMO pictures from the Framing Camera and more than 1 million LAMO VIR (Visible and Infrared) spectra which afford scientists a much more detailed view of Vesta than had been planned with the survey orbit and the high altitude mapping orbit (HAMO). It would have been really neat just to have acquired even only a few of these close-up observations, but we have a great bounty!”
“Roughly around half of Vesta’s surface has been imaged at LAMO.”
The bonus time at LAMO will now be effectively used to help fill in the gaps in surface coverage utilizing all 3 science instruments. Therefore perhaps an additional 20% to 25% extra territory will be imaged at the highest possible resolution. Some of this will surely amount to enlarged new coverage and some will be overlapping with prior terrain, which also has enormous research benefits.
“There is real value even in seeing the same part of the surface multiple times, because the illumination may be different. In addition, it helps for building up stereo,” said Rayman.
Researchers will deduce further critical facts about Vesta’s topography, composition, interior, gravity and geologic features with the supplemental measurements.
The foremost science goals at LAMO are collection of gamma ray and neutron measurements with the GRaND instrument – which focuses on determining the elemental abundances of Vesta – and collection of information about the structure of the gravitational field. Since GRaND can only operate effectively at low orbit, the extended duration at LAMO takes on further significance.
“Our focus is on acquiring the highest priority science. The pointing of the spacecraft is determined by our primary scientific objectives of collecting GRaND and gravity measurements.”
As Dawn continues orbiting every 4.3 hours around Vesta during LAMO, GRaND is recording measurements of the subatomic particles that emanate from the surface as a result of the continuous bombardment of cosmic rays and reveals the signatures of the elements down to a depth of about 1 meter.
“You can think of GRaND as taking a picture of Vesta but in extremely faint light. That is, the nuclear emissions it detects are extremely weak. So our long time in LAMO is devoted to making a very, very long exposure, albeit in gamma rays and neutrons and not in visible light,” explained Rayman.
Now with the prolonged mission at LAMO the team can gather even more data, amounting to thousands and thousands more pictures, hundreds of thousands of more VIR spectra and ultra long exposures by GRaND.
“HAMO investigations have already produced global coverage of Vesta’s gravity field,” said Sami Asmar, a Dawn co-investigator from JPL. Extended investigations at LAMO will likewise vastly improve the results from the gravity experiment.
“We always carried 40 days of “margin,” said Rayman, “but no one who was knowledgeable about the myriad challenges of exploring this uncharted world expected we would be able to accomplish all the complicated activities before LAMO without needing to consume some of that margin. So although we recognized that we might get to spend some additional time in LAMO, we certainly did not anticipate it would be so much.”
“As it turned out, although we did have surprises the operations team managed to recover from all of them without using any of those 40 days.”
“This is a wonderful bonus for science,” Rayman concluded.
“We remain on schedule to depart Vesta in July 2012, as planned for the past several years.”
Dawn’s next target is Ceres, the largest asteroid in the main Asteroid Belt between Mars and Jupiter