Sun Unleashes Powerful X-Class Solar Flare

The Sun has been quiet recently but early today (04:13 UTC on March 5, 2012) it unleashed a powerful X1-class solar flare and coronal mass ejection. The latest estimates indicate the CME will probably miss Earth, but hit Mercury and Venus. Even so, the science team from the Solar Dynamics Observatory says that high-latitude skywatchers should still be alert for auroras in the nights ahead. There was also an M2-class eruption from the same big and active sunspot, Active Region 1429, on March 4th which produced another, wider CME that might yet intersect Earth. The cloud is expected to deliver a glancing blow to our planet’s magnetic field on March 6th at 04:30 UT (+/- 7 hrs).

Check the latest forecast of the CME’s arrival from the NASA Goddard Space Weather Lab, which includes a great animation.

So, what’s the difference in the classes of solar flares and how could they affect us on Earth?
Continue reading “Sun Unleashes Powerful X-Class Solar Flare”

Launch of a Lego Space Shuttle

While it didn’t quite make it to space, this Lego space shuttle got quite a ride on a weather balloon, reaching 35,000 meters (35 km, 21 miles) above Earth’s surface. “My Lego tribute to the end of the space shuttle era,” wrote Vinciverse on You Tube, “proving that although retired, this machine can still fly, albeit in toy form.”

The launch took place from central Germany using a 1,600 g helium balloon. The equipment included a GoPro Hero video camera, a Spot GPS and of course Lego Space Shuttle model 3367. The flight was apparently cleared with German air traffic control.

Pick Up Some Good Librations With This Stunning Moon Video

A waning gibbous moon. Rises after sunset, high in the sky after midnight, visible to the southwest after sunrise. (NASA/GSFC)


As the Moon orbits Earth, it rotates at such a rate as to keep the same face aiming our way… but not exactly the same face, as shown in this excellent video from NASA’s Goddard Space Flight Center (lovingly annotated by the Bad Astronomer himself, Dr. Phil Plait.)

[/caption]

The Moon has a slight wobble to its axial rotation, and over the course of a month its orientation shifts slightly — an effect called libration. Think of it like a top or gyroscope spinning on a table; it doesn’t spin perfectly vertically, but rather sways a bit while it spins. Libration is that sway.

In addition to that movement, the Moon also moves closer to and further from the Earth over the course of a year due to its elliptical orbit. This makes it appear to change size slightly.

Except for the Moon’s phases, such effects aren’t immediately obvious from one night to the next. But when assembled into a high-resolution video using images and laser altimetry data maps from the Lunar Reconnaissance Orbiter, the monthly motions of the Moon become incredibly clear!

This video shows all the views of the Moon for the entire year of 2012.

Thanks to Phil Plait of Discover Magazine’s Bad Astronomy blog for adding the music and descriptions to the GSFC’s amazing video. What a marvelous night for a Moon dance!

See the current Moon phase and the original video on the Goddard Space Flight Center’s “Dial-A-Moon” page here.

Video: NASA/Goddard Space Flight Center Visualization Studio. Notations by Phil Plait. Music by Kevin MacLeod/incomptech.com.

Weekly SkyWatcher’s Forecast: March 5-11, 2012

Open Cluster Messier 50 - Credit: NOAO/AURA/NSF

[/caption]

Greetings, fellow SkyWatchers! Our week begins with the dance of the planets and a gathering of asteroids. Keep watching as Mars makes its closest approach of the year – while Venus and Jupiter continue to get nearer. Celebrate the Full Worm Moon, interesting stars and beautful galaxies and clusters! Dust off those binoculars and telescopes and meet me in the backyard, because… Here’s what’s up!

Monday, March 5 – Today is the birthday of Gerardus Mercator, famed mapmaker, who started his life in 1512. Mercator’s time was a rough one for astronomy, but despite a prison sentence and the threat of torture and death for his “beliefs,” he went on to design a celestial globe in the year 1551.

Need a little celestial action of your own? Then be outside at twilight with a clear horizon to catch Mercury! joining the show with Venus and Jupiter. The swift inner planet will make a brief appearance on the western skyline just after the Sun dips below the horizon. To add to the fun, the planet Uranus is situated about 5 degrees to its southwest and asteroid Vesta is about 5 degrees south/southwest. More? Then know that asteroid Ceres is also here – just around 20 degrees to Mercury’s southeast. While the asteroids and Uranus really aren’t observable, it’s still fun to know they’re “hanging around” in the same small space!

Tonight we’ll ignore the Moon and use both Sirius and Beta Monocerotis as our guides to have a look at one fantastic galactic cluster for any optical aid – M50 (Right Ascension: 7 : 03.2 – Declination: -08 : 20). Hop about a fistwidth east-southeast of Beta, or northeast of Sirius…and be prepared!

Perhaps discovered as early as 1711 by G. D. Cassini, it was relocated by Messier in 1772 and confirmed by J. E. Bode in 1774. Containing perhaps as many as 200 members, this colorful old cluster resides almost 3000 light-years away. The light of the stars you are looking at tonight left this cluster at a time when iron was first being smelted and used in tools. The Mayan culture was just beginning to develop, while the Hebrews and Phoenicians were creating an alphabet. Do you wonder if it looked the same then as it does now? In binoculars you will see an almost heart-shaped collection of stars, while telescopes will begin to resolve out color and many fainter members – with a very notable red one in its midst. Enjoy this worthy cluster and make a note that you’ve captured another Messier object!

Now, point your telescope towards Mars! This universal date marks the closest approach of Mars and Earth (0.6737 AU = 100.78 million km). While it’s a far cry from being the much celebrated “size of the Moon”, Mars currently has an apparent diameter of 13.89″. This will make for some mighty fine observing, so be sure to check for a lot a great surface details!

Tuesday, March 6 – If you get a chance to see sunshine today, then celebrate the birthday of Joseph Fraunhofer, who was born in 1787. As a German scientist, Fraunhofer was truly a “trailblazer” in terms of modern astronomy. His field? Spectroscopy! After having served his apprenticeship as a lens and mirror maker, Fraunhofer went on to develop scientific instruments, specializing in applied optics. While designing the achromatic objective lens for the telescope, he was watching the spectrum of solar light passing through a thin slit and saw the dark lines which make up the “rainbow bar code.” Fraunhofer knew that some of these lines could be used as a wavelength standard so he began measuring. The most prominent of the lines he labeled with letters that are still in use. His skill in optics, mathematics and physics led Fraunhofer to design and build the very first diffraction grating which was capable of measuring the wavelengths of specific colors and dark lines in the solar spectrum. Did his telescope designs succeed? Of course! His work with the achromatic objective lens is the design still used in modern telescopes!

In 1986, the first of eight consecutive days of flybys began as VEGA 1 and Giotto became the very first spacecraft to reach Halley’s Comet. Tonight let’s just fly by the Moon and have a look at Theta Aurigae. 2.7 magnitude Theta is a four star system ranging in magnitudes from 2.7 to 10.7. The brightest companion – Theta B – is magnitude 7.2 and is separated from the primary by slightly more than 3 arc seconds. Remember that this is what is known as a “disparate double” and look for the two fainter members well away from the primary.

Wednesday, March 7 – Today the only child of William Herschel (the discoverer of Uranus) was born in 1792 – John Herschel. He became the first astronomer to thoroughly survey the southern hemisphere’s sky, and he was discoverer of photographic fixer. Also born on this day, but in 1837, was Henry Draper – the man who made the first photograph of a stellar spectrum.

Tonight the great Grimaldi, found in the central region of the Moon near the terminator is the best lunar feature for binoculars. If you would like to see how well you have mastered your telescopic skills, then let’s start there. About one Grimaldi length south, you’ll see a narrow black ellipse with a bright rim. This is Rocca. Go the same distance again (and a bit east) to spot a small, shallow crater with a dark floor. This is Cruger, and its lava-filled interior is very similar to another study – Billy. Now look between them. Can you see a couple of tiny dark markings? Believe it or not, this is called Mare Aestatis. It’s not even large enough to be considered a medium-sized crater, but is a mare!

Take the time tonight to have a look at Delta Monocerotis with binoculars. Although it is not a difficult double star, it is faint enough to require some optical aid. If you are using a telescope, hop to Epsilon. It’s a lovely yellow and blue system that’s perfect for small apertures.

Thursday, March 8 – On this day in 1977, the NASA airborne occultation observatory made a unique discovery – Uranus had rings!

Tonight we’ll play ring around the Full Moon. In many cultures, it is known as the “Worm Moon.” As ground temperatures begin to warm and produce a thaw in the northern hemisphere, earthworms return and encourage the return of robins. For the Indians of the far north, this was also considered the “Crow Moon.” The return of the black bird signaled the end of winter. Sometimes it has been called the “Crust Moon” because warmer temperatures melt existing snow during the day, leaving it to freeze at night. Perhaps you may have also heard it referred to as the “Sap Moon.” This marks the time of tapping maple trees to make syrup. To early American settlers, it was called the “Lenten Moon” and was considered to be the last full Moon of winter. For those of us in northern climes, let’s hope so!

Friday, March 9 – Today is the anniversary of the Sputnik 9 launch in 1966 which carried a dog named Chernushka (Blackie). Also today we recognize the birth of David Fabricius. Born in 1564, Fabricus was the discoverer of the first variable star – Mira. Tonight let’s visit with an unusual variable star as we look at Beta Canis Majoris – better known as Murzim.

Located about three fingerwidths west-southwest of Sirius, Beta is a member of a group of stars known as quasi-Cepheids – stars which have very short term and small brightness changes. First noted in 1928, Beta changes no more than .03 in magnitude, and its spectral lines will widen in cycles longer than those of its pulsations.

When you’ve had a look at Beta, hop another fingerwidth west-southwest for open cluster NGC 2204 (Right Ascension: 6 : 15.7 – Declination: -18 : 39). Chances are, this small collection of stars was discovered by Caroline Herschel in 1783, but it was added to William’s list. This challenging object is a tough call for even large binoculars and small telescopes, since only around a handful of its dim members can be resolved. To the larger scope, a small round concentration can be seen, making this Herschel study one of the more challenging. While it might not seem like it’s worth the trouble, this is one of the oldest of galactic clusters residing in the halo and has been a study for “blue straggler” stars.

Saturday, March 10 – Since this is a weekend night and we’ve a short time before Moonrise, why not break out the big telescope and do a little galaxy hopping in the region south of Beta Canis Majoris?

Our first mark will be NGC 2207 – a 12.3 magnitude pair of interacting galaxies. Located some 114 million light-years away, this pair is locked in a gravitational tug of war. The larger of the pair is NGC 2207 (Right Ascension: 6 : 16.4 – Declination: -21 : 22), and it is estimated the encounter began with the Milky Way-sized IC 2163 about 40 million years ago. Like the M81 and M82 pair, NGC 2207 will cannibalize the smaller galaxy – yet the true space between the stars is so far apart that actual collisions may never occur. While our eyes may never see as grandly as a photograph, a mid-sized telescope will make out the signature of two galactic cores with intertwining material. Enjoy this great pair!

Now shift further southeast for NGC 2223 (Right Ascension: 6 : 24.6 – Declination: -22 : 50). Slightly fainter and smaller than the previous pair, this round, low surface brightness galaxy shows a slightly brighter nucleus area and a small star caught on its southern edge. While it seems a bit more boring, it did have a supernova event as recently as 1993!

Sunday, March 11 – Tonight let’s return to Canis Major with binoculars and have a look at Omicron 1, the western-most star in the central Omicron pair. While this bright, colorful gathering of stars is not a true cluster, it is certainly an interesting group.

For larger binoculars and telescopes, hop on to Tau northeast of Delta and the open cluster NGC 2362 (Right Ascension: 7: 18.8 – Declination: -24 : 5). At a distance of about 4600 light-years, this rich little cluster contains about 40 members and is one of the youngest of all known star clusters. Many of the stars you can resolve have not even reached main sequence yet! Still gathering themselves together, it is estimated this stellar collection is less than a million years old. Its central star, Tau, is believed to be a true cluster member and one of the most luminous stars known. Put as much magnification on this one as skies will allow – it’s a beauty!

Until next week? Dreams really do come true when you keep on reaching for the stars!

If you enjoy this weekly observing column, then you’d love the fully illustrated The Night Sky Companion 2012. It’s available in both Kindle and soft cover formats!

Massive Fireball Witnessed Over The UK By Countless Observers

A large meteor seen in the sky over the UK, near a rainbow light display. Credit: Mike Ridley.

[/caption]

On the evening of March 3rd 2012 at approximately 21:40 GMT, an incredibly bright fireball/bollide was seen over the United kingdom.

Many people were outside enjoying a clear evening under the stars, or going about their ordinary business when they spotted the amazingly bright object shooting across the sky. Nearly all of the observations from the public from across much of the country described the object as a very bright fireball traveling from north to south and disappearing low in the sky.

The image above is from Mike Ridley, who said, “I was out tonight photographing the global rainbow display at Whitly Bay and saw this bright light hurtling across the sky. I quickly turned the camera to capture it as it flew overhead. With the naked eye I could see it white hot with an orange tail & really low in the sky. I thought it was a massive firework rocket.”

See two videos of the fireball, below.

Most accounts give a duration of around 10 to 15 seconds and the fireball showed a bright orange nucleus with a bright green tail. There was some fragmentation as the fireball ploughed through the atmosphere.

At present, it is unknown whether any pieces of the object survived and hit Earth’s surface, but there is a high possibility that if it did, it landed in the ocean.

Saturn’s “Wispy” Moon Has An Oxygen Atmosphere

Cassini has detected molecular oxygen ions around Saturn's icy Dione

[/caption]

There’s oxygen around Dione, a research team led by scientists at New Mexico’s Los Alamos National Laboratory announced on Friday. The presence of molecular oxygen around Dione creates an intriguing possibility for organic compounds — the building blocks of life — to exist on other outer planet moons.

Dione's signature "wispy lines" are actually the bright walls of long cliff faces. (NASA/JPL/SSI)

One of Saturn’s 62 known moons, Dione (pronounced DEE-oh-nee) is 698 miles (1,123 km) in diameter. It orbits Saturn at about the same distance that our Moon orbits Earth. Heavily cratered and crisscrossed by long, bright scarps, Dione is made mostly of water ice and  rock. It makes a complete orbit of Saturn every 2.7 days.

Data acquired during a flyby of the moon by the Cassini spacecraft in 2010 have been found by the Los Alamos researchers to confirm the presence of molecular oxygen high in Dione’s extremely thin atmosphere — so thin, in fact, that scientists prefer the term exosphere.

While you couldn’t take a deep breath on Dione, the presence of O2 indicates a dynamic process in action.

“The concentration of oxygen in Dione’s atmosphere is roughly similar to what you would find in Earth’s atmosphere at an altitude of about 300 miles,” said Robert Tokar, researcher at Los Alamos National Laboratory and lead author of the paper published in Geophysical Research Letters.  “It’s not enough to sustain life, but—together with similar observations of other moons around Saturn and Jupiter—these are definitive examples of a process by which a lot of oxygen can be produced in icy celestial bodies that are bombarded by charged particles or photons from the Sun or whatever light source happens to be nearby.”

On Dione the energy source is Saturn’s powerful magnetic field. As the moon orbits the giant planet, charged ions in Saturn’s magnetosphere slam into the surface of Dione, stripping oxygen from the ice on its surface and crust. This molecular oxygen (O2) flows into Dione’s exosphere, where it is then steadily blown into space by — once again — Saturn’s magnetic field.

Cassini’s instruments detected the oxygen in Dione’s wake during an April 2010 flyby.

Molecular oxygen, if present on other moons as well (say, Europa or Enceladus) could potentially bond with carbon in subsurface water to form the building blocks of life. Since there’s lots of water ice on moons in the outer solar system, as well as some very powerful magnetic fields emanating from planets like Jupiter and Saturn, there’s no reason to think there isn’t more oxygen to be found… in our solar system or elsewhere.

Read the news release from the Los Alamos National Laboratory here.

 

Image credits: NASA/JPL/Space Science Institute. Research citation: Tokar, R. L., R. E. Johnson, M. F. Thomsen, E. C. Sittler, A. J. Coates, R. J. Wilson, F. J. Crary, D. T. Young, and G. H. Jones (2012), Detection of exospheric O2+ at Saturn’s moon Dione, Geophys. Res. Lett., 39, L03105, doi:10.1029/2011GL050452.

 

SpaceX Completes Important “Wet Dress” Rehearsal Test for Upcoming Flight to Space Station

Photo from the successful Falcon 9 launch readiness test on March 1, 2012 in preparation for the upcoming mission to the International Space Station. Credit: SpaceX

[/caption]

SpaceX successfully completed a key test of the Falcon 9 rocket that will fly the first commercial flight to the International Space Station. Called a ‘wet dress rehearsal,’ SpaceX brought the Falcon 9 “stack” with the Dragon capsule atop to the launch pad at Cape Canaveral on March 1, and loaded it with 76,000 gallons of highly refined kerosene and liquid oxygen fuel. Pre-liftoff operations were conducted as engineers went through a full count-down simulation, stopping at 5 seconds before ‘launch.’

SpaceX said the test was a success and was an important step on the road to the Space Station. “The test went well,” said SpaceX spokeswoman Kirstin Grantham. “Over the coming days, we will continue to review the data as we prepare for our upcoming mission.”

The launch of this historic flight will likely be April 20, or later, depending on the results of this and other tests.

After the wet dress rehearsal, the fuel was drained, and the rocket was later rolled off the launch pad on March 2, and the SpaceX said Dragon will be taken off for additional testing.

Dawn at Cape Canaveral during the wet dress rehearsal test. Credit: SpaceX and Elon Musk, via Twitter.

Additionally, on March 2, SpaceX conducted another test, called a 9-engine test, firing the engines for a future Falcon 9 rocket. This took place near McGregor, Texas.

As the “real” launch date approaches for the current rocket, the Falcon 9 will again be brought to the Launchpad to fire the nine first-stage engines and practice late packing of cargo in the Dragon.

“These rehearsals allow SpaceX to test out both the vehicle and the ground systems before launch,” Grantham said.

SpaceX is working towards becoming the first commercial spacecraft to dock with the ISS under NASA’s commercial orbital transportation services (COTS) commercial crew development (CCDev) programs. Later this year, another COTS company, Orbital Sciences hopes to launch their Antares rocket and Cygnus capsule from Wallops Island, Virginia.

The Latest Exoplanet News from Kepler

We love exoplanets! And the Kepler mission is giving us more to love. Our special guest on our latest live interview via a Google+ Hangout On Air was astronomer Darin Ragozzine with the Kepler mission, sharing insight how Kepler is blowing our previous concepts on exoplanets out of the water. Darin is an ITC Fellow at the Harvard Institute for Theory and Computation. He studies the theory and dynamics of transiting exoplanets around other stars and Kuiper belt objects in the outer solar system.

A ‘Melted’ Moon Makes for Bad Future Landing Sites

Very rough melts show up as red in the mini-RF data (left), but still appear smooth in the corresponding LRO wide angle camera image (right). These impact melts are located just outside Tycho crater, whose rim is visible at the top left. Image Credit Left: Carter et al. Image Credit Right: NASA/GSFC/ASU

[/caption]

The miniature radio frequency (min-RF) radar instrument aboard the Lunar Reconnaissance Orbiter (LRO) is revealing some interesting things about how impact melts form around craters on the Moon. Impacts produce a crater, ejecta (pulverized rock that is thrown around the crater), and melt. A lot is known about craters and ejecta, because they form such spectacular features on the planetary surfaces. But melt is a fairly minor component of the impact process, and so is not as easily observed. Relatively little is therefore known about impact melts. Now, new data from the mini-RF radar instrument is helping to fill this knowledge gap and also offering insight into future landing spots on the Moon.

Radar is an active remote sensing system, meaning it transmits a signal and then records what bounces back, providing information about the surfaces that were encountered. If the transmitted signal hits a smooth surface, then the returned signal will have a polarization direction that is opposite to what was transmitted. But, if the surface is rough, the signal may bounce more than once, switching polarization each time, so the returned polarization will be the same as the transmitted signals. By controlling the polarization of the transmitted signal and monitoring the polarization of the returned signals, researchers can calculate the ratio of same-sense to opposite sense circular polarization, a parameter called CPR. Smooth surfaces will have a low CPR, while rough surfaces will have a high CPR.

Tycho Melt close up view with LROC data
Pressure ridges can be seen in the rough part of this melt, where the underlying fluid pushed the chilled crust and bunched it up like a table cloth. But even the smooth parts of this melt contain numerous bits of rock, which can't be seen at the scale of this LRO narrow angle camera image.
Image credit: NASA/GSFC/Arizona State University.
Click on the image to explore the LROC data from this area in greater detail.

The mini-RF transmits in the radar S band, at wavelengths of 12.6 cm, and so tells us about surface roughness at the 12.6 cm scale. For example, a sandy beach covered with sand grains that are about 1-2 mm in size (much smaller than the transmitted wavelength) will appear smooth to the Mini-RF (have low CPR values). But, a beach covered with hand-sized pebbles (about the size of the transmitted wavelength) will appear rough (have high CPR values). It is important to note that this kind of information is not currently available from our existing image data, which even at its best can only resolve things on the 50 cm scale. Furthermore, the mini-RF radar can penetrate up to 1 m below the surface, providing information about buried surfaces as well.

Working with the mini-RF data, Dr. Lynn Carter and a team of researchers from NASA Goddard Space Flight Centre, Johns Hopkins University, and the Lunar and Planetary Institute have taken a look at impact melts around a variety of craters. They found that impact melt ponds and flows tend to have CPR values that are greater than surrounding non-melt regions. This means that mini-RF data can be used to help find and identify melt materials, including buried ones! From their limited survey, Dr. Carter and her team have found that impact melt ponds and flows are more common on the Moon than was previously known. With more work, they will be able to better catalogue the number and size of melt ponds and flows around lunar craters, improving our understanding of how much melt is produced by impacts and how it travels.

Dr. Carter and her team also found that, within individual melt ponds or flows, roughness values can vary. Rough surfaces may represent bunching up of a partially cooled crust as it is pushed by the still fluid melt underneath. Such pressure ridges are seen in terrestrial lava flows. Smooth surfaces may represent melts that cooled quickly, or the last melts to arrive at a pond (and so not subject to pushing from more inflowing melt). But, even the “smooth” melts, which appear quite flat in visual imagery, tend to have very high CPR values, indicating that they are, in fact, very rough. There is probably a lot of solid rock and ejecta debris (something we can’t see in the currently available imagery) entrained in the melt material to make them so rough at this scale. To understand what this kind of surface might look like, we can consider terrestrial a’a flows (which are actually slightly less rough than lunar melts).

This work has important implications for future lunar exploration. Imagine how difficult landing on a surface as rugged at an a’a flow would be. This is why site selection scientists work very hard at identifying smooth areas for spacecraft to land. However, if surfaces that look extremely smooth in visual imagery are actually rough like an a’a flow, this can present a problem. Mini-RF data could be helpful in identifying such rough regions and eliminating them from consideration.

Even "smooth" impact melt flows are rougher than this a'a flow, produced by the Kamoamoa fissure eruption in Hawaii. Image Credit: U.S. Department of Interior, U.S. Geological Survey.

Source: Initial observations of lunar impact melts and ejecta flows with the Mini-RF radar, Carter et al., Journal of Geophysical Research V117, 2012, doi:10.1029/2011JE003911.

Weekly Space Hangout – Mar. 1, 2012

Another week, another space roundup. This week we talk about the redefinition of the term “Earthlike”, salty soil on Mars, how you can participate in SETI, asteroid dust from Hayabusa, and the dangers of a warp drive.

Just a warning, we somehow lost the first 10 minutes or so of the video, so you’ll have to imagine Ian’s awesome description of the scientists concerned with the definition “Earthlike”, and how that might be changed. We didn’t miss too much of the conversation, though.

Remember, we record this show live every Thursday at 10:00am PST / 1:00 pm EST / 1800 UTC. Join us at Cosmoquest Hangouts, or watch Fraser’s Google+ stream for the show to start.