3 Generations of NASA’s Mars Rovers

Three Generations of Mars Rovers in the Mars Yard. This grouping shows 3 generations of NASA’s Mars rovers from 1997 to 2012 set inside the Mars Yard at the Jet Propulsion Lab in Pasadena, Calif. The Mars Pathfinder Project (front) landed the first Mars rover - Sojourner - in 1997. The Mars Exploration Rover Project (left) landed Spirit and Opportunity on Mars in 2004. The Mars Science Laboratory Project (right) is on course to land Curiosity on Mars in August 2012. Credit: NASA/JPL-Caltech

[/caption]

NASA Mars rovers have come a long way in terms of size and capability since the rebirth of Red Planet surface exploration just 15 years ago – spanning from 1997 to 2012.

To get a really excellent sense of just how far America’s scientists and engineers have pushed the state of the art in such a short time – when the willpower and funding existed and coincided to explore another world – take a good look at the new pictures here showing 3 generations of NASA’s Mars rovers; namely Mars Pathfinder (MPF), the 1st generation Mars rover, Mars Exploration Rover (MER), the 2nd generation, and Mars Science Laboratory (MSL), the 3rd and newest generation Mars rover.

The newly released pictures graphically display a side by side comparison of the flight spare for Mars Pathfinder (1997 landing) and full scale test rovers of the Mars Exploration Rover (2004 landing) and Mars Science Laboratory (in transit for a 2012 planned landing). The setting is inside the “Mars Yard” at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. where the teams conduct mission simulations.

It’s been nothing less than a quantum leap in advancement of the scientific and technological capability from one generation to the next.

Sojourner - NASA’s 1st Mars Rover
Sojourner takes an Alpha Proton X-ray Spectrometer (APXS) measurement of Yogi rock after Red Planet landing on July 4, 1997 landing. Sojourner was only 2 feet long, the size of a microwave oven.
Credit: NASA

Just consider the big increase in size – growing from a microwave oven to a car !

The “Marie Curie” flight spare and the actual “Sojourner” rover on Mars are 2 feet (65 centimeters) long – about the size of a microwave oven. The MER rovers “Spirit and Opportunity” and the “Surface System Test Bed” rover are 5.2 feet (1.6 meters) long – about the size of a golf cart. The MSL “Curiosity” and the “Vehicle System Test Bed” rover are 10 feet (3 meters) long – about the size of a car.

Side view of Three Generations of Mars Rovers
Front; flight spare for the first Mars rover, Sojourner. Left; Mars Exploration Rover Project test rover. Right; Mars Science Laboratory test rover Credit: NASA/JPL-Caltech

With your own eyes you can see the rapid and huge generational change in Mars rovers if you have the opportunity to visit the Kennedy Space Center Visitor Complex and stroll by the Mars exhibit with full scale models of all three of NASA’s Red Planet rovers.

At the KSC Visitor Complex in Florida you can get within touching distance of the Martian Family of Rovers and the generational differences in size and complexity becomes personally obvious and impressive.

NASA’s Family of Mars rovers at the Kennedy Space Center
Full scale models on display at the Kennedy Space Center Visitor Complex. Curiosity and Spirit/Opportunity are pictured here. Sojourner out of view. Credit: Ken Kremer

All of the Mars rovers blasted off from launch pads on Cape Canaveral Air Force Station, Florida.

Sojourner, Spirit and Opportunity launched atop Delta II rockets at Space Launch Complex 17 in 1996 and 2003. Curiosity launched atop an Atlas V at Space Launch Complex 41 in 2011.

Three Generations of Mars Rovers with Standing Mars Engineers
The rovers are pictured here with real Mars Engineers to get a sense of size and perspective. Front rover is the flight spare for the first Mars rover, Sojourner. At left is a Mars Exploration Rover Project test rover, working sibling to Spirit and Opportunity. At right is a Mars Science Laboratory test rover the size of Curiosity which is targeting a August 2012 Mars landing. The Mars engineers are JPL's Matt Robinson, left, and Wesley Kuykendall. Credit: NASA/JPL-Caltech

Opportunity is still exploring Mars to this day – 8 years after landing on the Red Planet, with a warranty of merely 90 Martian days.

Curiosity is scheduled to touch down inside Gale crater on 6 August 2012.

So, what comes next ? Will there be a 4th Generation Mars rover ?

Stay tuned – only time and budgets will tell.

Journal Club – When White Dwarfs Collide

Today's Journal Club is about a new addition to the Standard Model of fundamental particles.

[/caption]

According to Wikipedia, a journal club is a group of individuals who meet regularly to critically evaluate recent articles in scientific literature. Being Universe Today if we occasionally stray into critically evaluating each other’s critical evaluations, that’s OK too. And of course, the first rule of Journal Club is… don’t talk about Journal Club.

So, without further ado – today’s scheduled-for-demolition journal article is about the ongoing problem of figuring out what events precede a Type 1a supernova.

Today’s article:
Dan et al How the merger of two white dwarfs depends on their mass ratio: orbital stability and detonations at contact.

There is growing interest about the nature of the events that precede Type 1a supernovae. We are confident that the progenitor stars of Type 1a supernovae are white dwarfs – but these stars have generally very long lives, making it difficult to identify stars that are potentially on the brink of exploding.

We are also confident that something happens to cause a white dwarf to accumulate extra mass until it reached its Chandrasekhar limit (around 1.4 solar masses, depending on the star’s spin).

For a long time, it had been assumed that a Type 1a supernova probably arose from a binary star system with a white dwarf and another star that had just evolved into a red giant, its outer layers swelling out into the gravitational influence of the white dwarf star, This new material was accreted onto the white dwarf until it hit its Chandrasekhar limit – and then kabloowie.

However, the white-dwarf-red-giant-binary hypothesis is currently falling out of favour. It has always had the problem that any Type 1 supernovae has, by definition, almost no hydrogen absorption lines in its light spectrum – which makes sense for a Type 1a supernovae arising from a hydrogen-expended white dwarf – but then what happened to the new material supposedly donated by a red giant partner (which should have been mostly hydrogen)?

Also, the recently discovered Type 1a SN2011fe was observed just as its explosion was commencing, allowing constraints to be placed on the nature of its progenitor system. Apparently there is no way the system could have included something as big as a red giant and so the next most likely cause is the merging (or collision) of two white dwarfs.

Other modelling research has also concluded that the two white dwarf merger scenario maybe statistically more likely to take place than the red giant accretion scenario – since the latter requires a lot of Goldilocks parameters (where everything has to be just right for a Type 1a to eventuate).

This latest paper expands the possible scenarios under which a two white dwarf merger could produce a Type 1a supernovae – and finds a surprising number of variations with respect to mass, chemistry and the orbital proximities of each star. Of course, it is just modelling but it does challenge the current assertion at the relevant Wikipedia entry that white dwarf mergers are a second possible, but much less likely, mechanism for Type 1a supernovae formation.

So – comments? Anyone want to defend the old red-giant-white-dwarf scenario? Does computer modelling count as a form of evidence? Want to suggest an article for the next edition of Journal Club?

Beneath the Surface: Seeing Jupiter’s Hidden Storms

Juno will repeatedly dive between the planet and its intense belts of charged particle radiation, coming only 5,000 kilometers (about 3,000 miles) from the cloud tops at closest approach. (NASA/JPL-Caltech)


Launched on August 5, 2011, NASA’s Juno spacecraft will arrive at Jupiter in 2016 to study its magnetic field and atmosphere. Using its suite of science instruments Juno will peer inside the gas giant’s thick clouds, revealing hidden structures and powerful storms. To help people visualize what it means to see the invisible, JPL’s visual strategist Dan Goods created the exhibit above, titled Beneath the Surface. It’s an installation of lights, sound and fog effects that dramatically recreates what Juno will experience as it orbits Jupiter. By using their cell phone cameras, viewers can see lightning “storms” hidden beneath upper, opaque layers of “atmosphere”… in much the same way Juno will.

Goods explains: “Humans are only able to see a little, tiny sliver of what there is available in light. There’s gamma rays, microwaves, ultraviolet and infrared light also, and infrared is close enough to the visible part of the spectrum that cell phone cameras can pick it up. Cell phones normally produce more grainy photos at night because they don’t try to cut out the infrared light the way higher-end digital cameras do so in this case, the cell phone cameras are an advantage.” (Via the Pasadena Weekly.)

I had a chance to meet Dan Goods during a Tweetup event for the Juno launch at Kennedy Space Center. He’d brought a table that had magnetic elements set beneath a flat black surface, and by passing a handheld magnet over the table you could “detect” the different magnetic fields… in some cases rather strongly, even though they were all obviously invisible. It was an ingenious way that Juno’s abilities could be demonstrated in a “hands-on” manner.

Watch my video of the Juno launch from the KSC press site.

[/caption]

Beneath the Surface takes that kind of demonstration to an entirely new level.

“I love to work with the world of things that are right in front of you but you just can’t see,” Goods said. “With Juno, there’s all this structure just under the surface of Jupiter, but humans can develop tools that help us understand things we’d never have seen before.”

The exhibit was installed at the Pasadena Museum of California Art until January 8. It will now travel to science museums around the country.

Video: watch how the exhibit was constructed.

Juno’s primary goal is to improve our understanding of Jupiter’s formation and evolution. The spacecraft will spend a year investigating the planet’s origins, interior structure, deep atmosphere and magnetosphere. Juno’s study of Jupiter will help us to understand the history of our own solar system and provide new insight into how planetary systems form and develop in our galaxy and beyond.

Explore the Juno mission more at http://missionjuno.swri.edu/.

Gallery: Cosmonaut Winter Survival Training

Cosmonaut Sergei Prokopiev participating in winter survival training in Russia. Credit: Yuri Gagarin Cosmonaut Training Center (CPC)

[/caption]

When cosmonauts and astronauts now return from a long-duration space mission on board the International Space Station, they are always coming home on a Soyuz capsule, landing in northern Kazakhstan. The Kazakh Steppe is known for its bitter winters (I just checked the local weather in Ayagoz, Kazakhstan and there is currently a blizzard going on with heavy snow, high winds and a current temperature of -26 C [-15 F] )

When a Soyuz lands, it usually takes at least an hour for the rescue team to arrive. But a blizzard or other unforeseen problems could leave the crew stranded for longer periods of time. So, cosmonauts and astronauts undergo special survival training, just in case. Here are some images from the latest crew to undergo the training, featuring cosmonaut Sergei Prokopyeva, ESA astronauts Thomas Pesquet and Samantha Cristoforetti. Remember that complicating any return from long-duration space flight is the weakness the space travelers will experience after six months in weightlessness.

ESA astronaut Thomas Pesquet, Cosmonaut Sergey Prokopiev and ESA astronaut Samantha Cristoforetti during winter survival training. Credit: GCTC

In addition to the technical knowledge related to the landing capsule, the cosmonauts/astronauts need to practice practical skills like constructing a shelter and building a fire. They have a special emergency kit in the Soyuz which includes weapons, lights, water (6 liters for three people), dried food, first aid kit, tools and equipment that may be useful in extreme conditions, and clothing such as a heat suit, woolen cap, headset, gloves, socks and fur socks.

The Cosmonaut Training Center website says that “to successfully complete the test (training), crews have to show courage, self-discipline, perseverance, and patience.”

Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center
Credit: Cosmonaut Training Center

Don’t worry — Samantha Cristoforetti said on Google+ that the can near the fire is water, not gasoline!

Source: Yuri Garagain Cosmonaut Training Center

Astrophoto: Stunning Alaskan Sun Pillar

A brilliant Sun pillar in Fairbanks, Alaska on January 17, 2012. Credit: Jason Ahrns

[/caption]

Cold enough for you? Jason Ahrns captured this brilliant Sun pillar, “reaching down into the trees just below the Geophysical Institute, University of Alaska Fairbanks on a nice -40 C (or F — its all the same) day,” Jason said.

A Sun (or solar) pillar is a vertical shaft of light extending upward or downward from the Sun, and are typically seen in cold weather when sunlight reflects off the surfaces of falling ice crystals associated with thin, high-level clouds.

Jason used a Nikon D7000 camera.

Want to get your astrophoto featured on Universe Today? Join our Flickr group, or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Rocks From Mars

DARRYL PITT, MACOVICH COLLECTION

[/caption]

Scientists studying life on Mars got a late Christmas present this year: confirmation that meteorites found in Morocco in December are of Martian origin. It’s a significant discovery; Martian meteorites fall to Earth only about once every 50 years making this a once-in-a-lifetime, and for many a once-in-a-career, event. The Mars rocks are worth more than their weight in gold, but what they can tell us could be even more valuable. 

Astronomers suspect that the meteorite has been wandering around the solar system for millions of years, ever since something big smashed into the red planet and sent debris flying all directions. One of those pieces has wandered its way towards Earth and plunged through the atmosphere.

ALH 84001, the meteorite found in Antarctica in 1984. Evidence of fossilized life inside the rock sparked a search for life on Mars. Image credit: NASA/ JSC

This is only the fifth time scientists have chemically confirmed the Martian origin of meteorites. Rocks found in France in 1815, in India in 1865, in Egypt in 1911, and in Nigeria in 1962 have all been positively identified as being from Mars.

The chemical signature of the Moroccan rocks and the Martian air match said Tony Irving of the University of Washington who did the scientific analysis. But this discovery is different. The rocks weren’t just found, they were seen streaking through the sky in July 2011, which makes them extremely valuable.

These rocks have only had six months to accumulate Earth-based materials and traces of life; typically Martian meteorites found on Earth have been here anywhere from decades to millennia, giving them ample time to become tainted.

These new rocks, while still contaminated because they have been on Earth for months, are relatively pure. “It’s incredibly fresh. It’s highly valuable for that reason,” said Carl Agee, director of the Institute of Meteoritics and curator at the University of New Mexico.

It’s also a rare find. This new sample, about 15 pounds of rocks, brings the total weight of all Martian samples on Earth to just 240 pounds.

Meteorite dealer Darryl Pitt is cashing in on the rocks’ rarity and selling pieces for $11,000 to $22,500 an ounce and has sold most of his supply already. At that price, the Martian meteorite costs about 10 times as much as gold.

An artist's conception of early Mars being hit by an asteroid wider than Texas. Scientists believe the impact melted the planet's crust in its northern hemisphere, flung crust into space, and sent shock wave through the planet's molten core (inset). This explains why Mars' crust is thinner in the northern hemisphere, according to three new studies. Image courtesy Jeff Andrews-Hanna; inset courtesy Francis Nimmo.

Cornell University astronomer Steve Squyres, the principal investigator for NASA’s Mars Exploration Rover Program, is less excited. The rocks, he said, are not the kind scientists are most hoping for. They are hard, igneous or volcanic rock. A softer kind of rock capable of holding water or life would be better. But he also points that these rocks aren’t likely to come streaking through the atmosphere. Any soft rock would be unlikely to survive the fiery entry through Earth’s atmosphere.

Former NASA sciences chief Alan Stern, director of the Florida Space Institute at the University of Central Florida, takes a brighter outlook. “It’s nice to have Mars sending samples to Earth,” he said, “particularly when our pockets are too empty to go get them ourselves.”

Until we manage a sample return mission from Mars, this is the best shot scientists have to study the red planet up close.

Source: physorg.

 

Delta IV Rocket Launches from Cape Canaveral with US Military Satellite

A beautiful night for a launch Thursday evening as a heavy-lift Delta IV rocket thundered off the launchpad at Cape Canaveral Air Force Station, sending a broadband communications satellite into orbit for the US military. Observers at the launch site said they could see the rocket several minutes into the flight, witnessing the separation of the strap-on boosters.

The WGS-4 mission is the fourth satellite for the Wideband Global SATCOM (WGS) system. The WGS satellites will provide enhanced communications capabilities to US soldiers in the field for the next decade and beyond.
Continue reading “Delta IV Rocket Launches from Cape Canaveral with US Military Satellite”

NASA Finds 2011 is Ninth-Warmest Year on Record

While average global temperature will still fluctuate from year to year, scientists focus on the decadal trend. Nine of the 10 warmest years since 1880 have occurred since the year 2000, as the Earth has experienced sustained higher temperatures than in any decade during the 20th century. As greenhouse gas emissions and atmospheric carbon dioxide levels continue to rise, scientists expect the long-term temperature increase to continue as well. (Data source: NASA Goddard Institute for Space Studies. Image credit: NASA Earth Observatory, Robert Simmon)

[/caption]

From a NASA press release:

The global average surface temperature in 2011 was the ninth warmest since 1880, according to NASA scientists. The finding continues a trend in which nine of the 10 warmest years in the modern meteorological record have occurred since the year 2000.

NASA’s Goddard Institute for Space Studies (GISS) in New York, which monitors global surface temperatures on an ongoing basis, released an updated analysis that shows temperatures around the globe in 2011 compared to the average global temperature from the mid-20th century. The comparison shows how Earth continues to experience warmer temperatures than several decades ago. The average temperature around the globe in 2011 was 0.92 degrees F (0.51 C) warmer than the mid-20th century baseline.

“We know the planet is absorbing more energy than it is emitting,” said GISS Director James E. Hansen. “So we are continuing to see a trend toward higher temperatures. Even with the cooling effects of a strong La Niña influence and low solar activity for the past several years, 2011 was one of the 10 warmest years on record.”

The difference between 2011 and the warmest year in the GISS record (2010) is 0.22 degrees F (0.12 C). This underscores the emphasis scientists put on the long-term trend of global temperature rise. Because of the large natural variability of climate, scientists do not expect temperatures to rise consistently year after year. However, they do expect a continuing temperature rise over decades.

The first 11 years of the 21st century experienced notably higher temperatures compared to the middle and late 20th century, Hansen said. The only year from the 20th century in the top 10 warmest years on record is 1998.

Global temperatures have warmed significantly since 1880, the beginning of what scientists call the “modern record.” At this time, the coverage provided by weather stations allowed for essentially global temperature data. As greenhouse gas emissions from energy production, industry and vehicles have increased, temperatures have climbed, most notably since the late 1970s. In this animation of temperature data from 1880-2011, reds indicate temperatures higher than the average during a baseline period of 1951-1980, while blues indicate lower temperatures than the baseline average. (Data source: NASA Goddard Institute for Space Studies. Visualization credit: NASA Goddard Space Flight Center Scientific Visualization Studio)

Higher temperatures today are largely sustained by increased atmospheric concentrations of greenhouse gases, especially carbon dioxide. These gases absorb infrared radiation emitted by Earth and release that energy into the atmosphere rather than allowing it to escape to space. As their atmospheric concentration has increased, the amount of energy “trapped” by these gases has led to higher temperatures.

The carbon dioxide level in the atmosphere was about 285 parts per million in 1880, when the GISS global temperature record begins. By 1960, the average concentration had risen to about 315 parts per million. Today it exceeds 390 parts per million and continues to rise at an accelerating pace.

The temperature analysis produced at GISS is compiled from weather data from more than 1,000 meteorological stations around the world, satellite observations of sea surface temperature and Antarctic research station measurements. A publicly available computer program is used to calculate the difference between surface temperature in a given month and the average temperature for the same place during 1951 to 1980. This three-decade period functions as a baseline for the analysis.

The resulting temperature record is very close to analyses by the Met Office Hadley Centre in the United Kingdom and the National Oceanic and Atmospheric Administration’s National Climatic Data Center in Asheville, N.C.

Hansen said he expects record-breaking global average temperature in the next two to three years because solar activity is on the upswing and the next El Niño will increase tropical Pacific temperatures. The warmest years on record were 2005 and 2010, in a virtual tie.

“It’s always dangerous to make predictions about El Niño, but it’s safe to say we’ll see one in the next three years,” Hansen said. “It won’t take a very strong El Niño to push temperatures above 2010.”

For more information:

More information on the GISS temperature analysis
2010: Despite Subtle Differences, Global Temperature Records in Close Agreement (01.13.11)

ISS Caught Between the Moon and New York City

The ISS passes across the face of a daytime Moon. © Alan Friedman.

[/caption]

Now as the theme from Arthur plays in your head you can enjoy this GIF animation of the ISS passing across the face of a daytime Moon, photographed by Alan Friedman from his location in upstate New York.

I know it’s crazy, but it’s true.

Alan captured these images at 10:30 a.m. EST back on September 2, 2007, and slowed down the animation a bit; in real-time the event lasted less than half a second. (Click the image for an even larger version.)

Atmospheric distortion creates the “wobbly” appearance of the Moon.

Alan Friedman is a talented photographer, printer (and avid vintage hat collector) living in Buffalo, NY. His images of the Sun in hydrogen alpha light are second-to-none and have been featured on many astronomy websites. When he’s not taking amazing photos of objects in the sky he creates beautiful hand-silkscreened greeting cards at his company Great Arrow Graphics.

See more of Alan’s astrophotography on his website, Averted Imagination.

Image © Alan Friedman. All rights reserved.

_____________

NOTE: Although this article previously stated that the images were taken Jan. 12, 2012, they were actually captured in September 2007 and re-posted on Jan. 13 of this year. Alan states that he’s since learned how to judge exposure so the ISS doesn’t appear as a streak, but personally he likes (as do I) how this one came out.

Let’s see… September 2007… that would have been Expedition 15!

Amazing Radar Image from Space Highlights Costa Concordia Catastrophe

Space Radar Image of Costa Concordia Cruise Ship Catastrophe, Giglio, Italy- January 17, 2012. Image mosaic shows side-by-side comparison of radar and photo imagery from space satellites showing the deadly wreckage of the Costa Concordia luxury cruise ship which ran aground off the shoreline of Giglio,Italy on Friday, January 13, 2012. Image Credit: COSMO-SkyMed (left, bottom right) & DIGITALGLOBE (top, middle right). Mosaic: Marco di Lorenzo/Ken Kremer More Images and Passenger Video below

[/caption]

An amazing new radar image from space (above and below) shows the wreckage of the deadly Costa Concordia catastrophe just hours after the luxury cruise liner struck gigantic rocks jutting up from the shoreline of the Island of Giglio [Isola del Giglio] off the coast of Tuscany, Italy on Friday the 13th of January 2012, sending thousands of terrified tourists screaming for their very lives.

The radar image was snapped by chance during a routine reconnaissance survey by an Italian COSMO-SkyMed satellite orbiting above the Earth, according to the Italian Space Agency (ASI) and clearly shows the Costa Concordia wreckage and entire island of Giglio.

Our composite mosaic above combines the COSMO-SkyMed space radar image with the DigitalGlobe WorldView satellite photo, to provide a side-by-side comparison of the wreckage from the two different satellite systems which have different resolutions. Read my prior story with the stunning DigitalGlobe image – here at Universe Today.

At least 11 people were killed in the still unfolding tragedy and another two dozen people are still missing today, January 19.

Look at this dramatic new YouTube video of passengers scrambling to stay alive

The COSMO-SkyMed satellite normally takes repeat radar images every 16 days. In the case of an oil spill, the satellite would enter automatically an “emergency mode” and start taking very-high resolution images of the affected region, according to ASI.

Severe weather is approaching and could break the ship apart according to news reports.

Space Radar Image of Costa Concordia Cruise Ship Wreckage, Giglio, Italy- January 13, 2012
COSMO-SkyMed space radar image taken just hours after Costa Concordia luxury cruise ship ran aground off the shoreline of Giglio, Italy on 13 Jan. 2012. Credit: COSMO-SkyMed

The Costa Concordia is loaded with several thousand gallons of diesel fuel oil and officials are concerned about the very real potential for a leak which could contaminate the beautiful surroundings and harm the local environment

Location Map of Costa Concordia Shipwreck
off the Tuscan coastline of Giglio, Italy

The deadly Jan. 13 collision tore a 70 meter long gash in the ship’s hull, causing the Costa Concordia cruise liner to begin listing. Ultimately the ship fell on its side as it was steered into shallow waters.

Rescue operations resumed today although the ship is still shifting and hazardous to the brave rescue teams.

Helicopters lowered emergency workers onto the top of the wreckage. Divers working below used explosives to blast open new holes in the hull to get to any survivors.

And still more Italian emergency personnel could be seen scaling up the sides – all in a desperate attempt to reach survivors from every possible angle.

But sadly, hopes are fading. A 5 year old Italian girl and her father are among the missing.

Costa Concordia Shipwreck occurred on January 13, 2012

COSMO-SkyMed is a constellation of four Italian satellites that are equipped with Synthetic Aperture Radar (SAR) sensors that provide global coverage of the planet that serves both military and civilian uses such as seismic hazard analysis, environmental disaster monitoring, and agricultural mapping.

The COSMO-SkyMed space radar system provides all weather imagery and is funded by the Italian government and managed by the Italian Space Agency (ASI).

Satellite Close-up of Wreckage of Costa Concordia Luxury Cruise Ship of the coast of Giglio, Italy.
Credit: DIGITALGLOBE