Goldilocks Moons

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

[/caption]

The search for extraterrestrial life outside our Solar System is currently focused on extrasolar planets within the ‘habitable zones’ of exoplanetary systems around stars similar to the Sun. Finding Earth-like planets around other stars is the primary goal of NASA’s Kepler Mission.

The habitable zone (HZ) around a star is defined as the range of distances over which liquid water could exist on the surface of a terrestrial planet, given a dense enough atmosphere. Terrestrial planets are generally defined as rocky and similar to Earth in size and mass. A visualization of the habitable zones around stars of different diameters and brightness and temperature is shown here. The red region is too hot, the blue region is too cold, but the green region is just right for liquid water. Because it can be described this way, the HZ is also referred to as the “Goldilocks Zone”.

Normally, we think of planets around other stars as being similar to our solar system, where a retinue of planets orbits a single star. Although theoretically possible, scientists debated whether or not planets would ever be found around pairs of stars or multiple star systems. Then, in September, 2011, researchers at NASA’s Kepler mission announced the discovery of Kepler-16b, a cold, gaseous, Saturn-sized planet that orbits a pair of stars, like Star Wars’ fictional Tatooine.

This week I had the chance to interview one of the young guns studying exoplanets, Billy Quarles. Monday, Billy and his co-authors, professor Zdzislaw Musielak and associate professor Manfred Cuntz, presented their findings on the possibility of Earth-like planets inside the habitable zones of Kepler 16 and other circumbinary star systems, at the AAS meeting in Austin, Texas.

The Goldilocks Zones around various type stars. Credit: NASA/JPL-Caltech

“To define the habitable zone we calculate the amount of flux that is incident on an object at a given distance,” Billy explained. “We also took into account that different planets with different atmospheres will retain heat differently. A planet with a really weak greenhouse effect can be closer in to the stars. For a planet with a much stronger greenhouse effect, the habitable zone will be further out.”

“In our particular study, we have a planet orbiting two stars. One of the stars is much brighter than the other. So much brighter, that we ignored the flux coming from the smaller fainter companion star altogether. So our definition of the habitable zone in this case is a conservative estimate.”

Quarles and his colleagues performed extensive numerical studies on the long-term stability of planetary orbits within the Kepler 16 HZ. “The stability of the planetary orbit depends on the distance from the binary stars,” said Quarles. “The further out the more stable they tend to be, because there is less perturbation from the secondary star.”

For the Kepler 16 system, planetary orbits around the primary star are only stable out to 0.0675 AU (astronomical units). “That is well inside the inner limit of habitability, where the runaway greenhouse effect takes over,” Billy explained. This all but rules out the possibility of habitable planets in close orbit around the primary star of the pair. What they found was that orbits in the Goldilocks Zone farther out, around the pair of Kepler 16’s low-mass stars, are stable on time scales of a million years or more, providing the possibility that life could evolve on a planet within that HZ.

Kepler 16's orbit from Quarles et al

Kepler 16b’s roughly circular orbit, about 65 million miles from the stars, is on the outer edge of this habitable zone. Being a gas giant, 16b is not a habitable terrestrial planet. However, an Earth-like moon, a Goldilocks Moon, in orbit around this planet could sustain life if it were massive enough to retain an Earth-like atmosphere. “We determined that a habitable exomoon is possible in orbit around Kepler-16b,” Quarles said.

I asked Quarles how stellar evolution impacts these Goldilocks Zones. He told me, “There are a number of things to consider over the lifetime of a system. One of them is how the star evolves over time. In most cases the habitable zone starts out close and then slowly drifts out.”

During a star’s main sequence lifetime, nuclear burning of hydrogen builds up helium in its core, causing an increase in pressure and temperature. This occurs more rapidly in stars that are more massive and lower in metallicity. These changes affect the outer regions of the star, which results in a steady increase in luminosity and effective temperature. The star becomes more luminous, causing the HZ to move outwards. This movement could result in a planet within the HZ at the beginning of a star’s main sequence lifetime, to become too hot, and eventually, uninhabitable. Similarly, an inhospitable planet originally outside the HZ, may thaw out and enable life to commence.

“For our study, we ignored the stellar evolution part,” said lead author, Quarles. “We ran our models for a million years to see where the habitable zone was for that part of the star’s life cycle.”

Being at the right distance from its star is only one of the necessary conditions required for a planet to be habitable. Habitable conditions on a planet require various geophysical and geochemical conditions. Many factors can prevent, or impede, habitability. For example, the planet may lack water, gravity may be too weak to retain a dense atmosphere, the rate of large impacts may be too high, or the minimum ingredients necessary for life (still up for debate) may not be there.

One thing is clear. Even with all the requirements for life as we know it, there appear to be plenty of planets around other stars, and very likely, Goldilocks Moons around planets, orbiting within the habitable zones of stars in our galaxy, that detecting the signature of life in the atmosphere of a planet or moon around another Sun seems like only a matter of time now.

Scientists Still Searching for the Beagle 2 Crash Site on Mars

An image from the HiRISE camera of the Isidis basin region where the Beagle 2 lander was supposed to touch down. Credit: NASA/JPL/University of Arizona

[/caption]

Since its disappearance in December 2003, scientists and citizen scientists alike have continued the search for Europe’s Beagle 2 lander which likely crashed on Mars. Its disappearance is a mystery and if the spacecraft could be located, it might be possible to discover what went wrong.

The Mars Reconnaissance Orbiter’s powerful HiRISE camera has been regularly taking high-resolution images of the Isidis basin region where the Beagle 2 lander was supposed to touch down.

“Nothing resembling the Beagle lander has been seen in any of the HiRISE images, although we aren’t sure that they’ve been thoroughly searched,” said HiRISE Principal Investigator Alfred McEwen, writing on the HiRISE website.

So, join in the search and take a look!

Above is the 12th such image taken by HiRISE.

McEwen said the easiest thing to spot would be the bright parachute — if it actually deployed. Remember how HiRISE was able to find the parachutes at the MER landing sites, and even capture the Phoenix lander descending on its parachute? The Beagle 2’s parachute would be a good clue to search for.

(As we reported earlier, the HiRISE team will attempt to image the Mars Science Laboratory during its descent to Mars’ surface in August, as it did for Phoenix.)

Dust should not be a problem as far as hiding the lander or parachutes, McEwen said. “Dust deposition over the past eight years probably would not disguise the bright feature over equatorial regions of Mars,” he said noting that the parachutes are still easy to spot at the MER and Pathfinder landing sites. “At high latitudes the brightness patterns are reset each winter by the seasonal deposits of carbon-dioxide and dust, as seen at the Phoenix landing site.”

All contact with Beagle 2 was lost after its separation from the Mars Express spacecraft, just six days before atmospheric entry. McEwen said the lack of telemetry on its way to the surface means there is little information about where the spacecraft may have landed on the surface, but searching in the region where it was expected to land is a good place to start.

You can download high-resolution version of this images here.

For an idea of what the Beagle 2 hardware might look like, see this web page.

Coming to an IMAX Near You (and just in time!): Space Junk 3-D

Serendipitously, at the same time we are waiting to see when and where the Russian Phobos-Grunt satellite will crash back to Earth, a new IMAX movie called “Space Junk 3-D” will open in giant screen and dome theaters. “The timing is uncanny, but we hope it will underscore the film’s intention: to raise awareness of the orbital debris issue to ensure the future of space exploration and satellite communications,” said the makers of the film.

Continue reading “Coming to an IMAX Near You (and just in time!): Space Junk 3-D”

As Seen From Space: Beautiful Swirling Phytoplankton Blooms

A phytoplankton bloom swirls a figure-8 in the South Atlantic Ocean. Credit: ESA, Envisat

[/caption]

One of the orbiting windows to our world, an Earth-observing satellite named Envisat, took this image in early December 2011 showing a phytoplankton bloom swirling into a figure-8 in the South Atlantic Ocean about 600 km east of the Falkland Islands. The European Space Agency says that since the phytoplankton are sensitive to environmental changes, it is important to monitor and model them for climate change calculations and to identify potentially harmful blooms. Sensors on the satellites can monitor these algal blooms and make an initial identification of its species and toxicity.

Blooms like this are common in the spring and summer, and it is currently summer in the southern hemisphere.

These microscopic organisms are the base of the marine food chain, and play a huge role in the removal of carbon dioxide from the atmosphere and the production of oxygen in the oceans. Besides being beautiful to see from space, phytoplankton help regulate the carbon cycle, and are important to the global climate system.

Source: ESA

NASA’s Airborne Observatory Targets Newborn Stars

Infrared image of the W3A star cluster in Perseus. (SOFIA image -- NASA / DLR / USRA / DSI / FORCAST team Spitzer image -- NASA / Caltech - JPL.)

[/caption]

(DING!) “The captain has turned off the safety lights – you are now free to explore the infrared Universe.”

Mounted inside the fuselage of a Boeing 747SP aircraft, NASA’s Stratospheric Observatory for Infrared Astronomy, or SOFIA, is capable of searching the sky in infrared light with a sensitivity impossible from ground-based instruments. Cruising at 39,000 to 45,000 feet, its 100-inch telescope operates above 99% of the atmospheric water vapor that would otherwise interfere with such observations, and thus is able to pierce through vast interstellar clouds of gas and dust to find what lies within.

Its latest discovery has uncovered a cluster of newborn stars within a giant cloud of gas and dust 6,400 light-years from Earth.

The massive stars are still enshrouded in the gas cloud from which they formed, a region located in the direction of Perseus called W3. The Faint Object Infrared Camera for the SOFIA Telescope (FORCAST) instrument was able to peer through the cloud and locate up to 15 massive young stars clustered together in a compact region, designated W3A.

SOFIA's 747SP on the ground at NASA's Dryden Flight Research Center on Edwards Air Force Base, CA. (NASA/Tony Landis)

W3A’s stars are seen in various stages of formation, and their effects on nearby clouds of gas and dust are evident in the FORCAST inset image above. A dark bubble, which the arrow is pointing to, is a hole created by emissions from the largest of the young stars, and the greenish coloration surrounding it designates regions where the dust and large molecules have been destroyed by powerful radiation.

Without SOFIA’s infrared imaging capabilities newborn stars like those seen in W3A would be much harder to observe, since their visible and ultraviolet light typically can’t escape the cool, opaque dust clouds where they are located.

The radiation emitted by these massive young stars may eventually spur more star formation within the surrounding clouds. Our own Sun likely formed in this same way, 5 billion years ago, within a cluster of its own stellar siblings which have all long since drifted apart. By observing clusters like W3A astronomers hope to better understand the process of star birth and ultimately the formation of our own solar system.

Read more on the SOFIA news release here.

The observation team’s research principal investigator is Terry Herter of Cornell University. The data were analyzed and interpreted by the FORCAST team with Francisco Salgado and Alexander Tielens of the Leiden Observatory in the Netherlands plus SOFIA staff scientist James De Buizer. These papers have been submitted for publication in The Astrophysical Journal.

Crucial Rocket Firing Puts Curiosity on Course for Martian Crater Touchdown

[/caption]

NASA’s car-sized Curiosity Mars Science Lab (MSL) rover is now on course to touch down inside a crater on Mars in August following the completion of the biggest and most crucial firing of her 8.5 month interplanetary journey from Earth to the Red Planet.

Engineers successfully commanded an array of thrusters on MSL’s solar powered cruise stage to carry out a 3 hour long series of more than 200 bursts last night (Jan. 11) that changed the spacecraft’s trajectory by about 25,000 miles (40,000 kilometers) – an absolute necessity that actually put the $2.5 Billion probe on a path to Mars to “Search for Signatures of Life !”

“We’ve completed a big step toward our encounter with Mars,” said Brian Portock of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., deputy mission manager for the cruise phase of the mission. “The telemetry from the spacecraft and the Doppler data show that the maneuver was completed as planned.”

Mars Science Lab and cruise stage separate from Centaur upper stage just minutes after Nov. 26, 2011 launch. Thrusters on cruise stage performed course correction on Jan. 11, 2012. Up to 6 firings total will put the NASA robot on precision course to Mars.
Credit: NASA TV

This was the first of six possible TCM’s or trajectory correction maneuvers that may be required to fine-tune the voyage to Mars.

Until now, Curiosity was actually on a path to intentionally miss Mars. Since the Nov. 26, 2011 blastoff from Florida, the spacecraft’s trajectory was tracking a course diverted slightly away from the planet in order to prevent the upper stage – trailing behind – from crashing into the Red Planet.

The upper stage was not decontaminated to prevent it from infecting Mars with Earthly microbes. So, it will now sail harmlessly past the planet as Curiosity dives into the Martian atmosphere on August 6, 2012.

The thruster maneuver also served a second purpose, which was to advance the time of the Mars encounter by about 14 hours. The TCM burn increased the velocity by about 12.3 MPH (5.5 meters per second) as the vehicle was spinning at 2 rpm.

“The timing of the encounter is important for arriving at Mars just when the planet’s rotation puts Gale Crater in the right place,” said JPL’s Tomas Martin-Mur, chief navigator for the mission.


Video caption: Rob Manning, Curiosity Mars Science Lab Chief Engineer at NASA JPL describes the Jan. 11, 2012 thruster firing that put the robot on a precise trajectory to Gale Crater on Mars. Credit: NASA/JPL

As of today, Jan. 12, the spacecraft has traveled 81 million miles (131 million kilometers) of its 352-million-mile (567-million-kilometer) flight to Mars. It is moving at about 10,300 mph (16,600 kilometers per hour) relative to Earth, and at about 68,700 mph (110,500 kilometers per hour) relative to the Sun.

The next trajectory correction maneuver is tentatively scheduled for March 26, 2012.

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Credit: Ken Kremer

The goal of the 1 ton Curiosity rover is to investigate whether the layered terrain inside Gale Crater ever offered environmental conditions favorable for supporting Martian microbial life in the past or present and if it preserved clues about whether life ever existed.

Curiosity will search for the ingredients of life, most notably organic molecules – the carbon based molecules which are the building blocks of life as we know it. The robot is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

Curiosity’s Roadmap through the Solar System-From Earth to Mars
Schematic shows 8.5 month interplanetary trajectory of Curiosity. Credit: NASA/JPL-Caltech

Curiosity Countdown – 205 days to go until Curiosity lands at Gale Crater on Mars !

January 2012 marks the 8th anniversary of the landings of NASA’s Spirit and Opportunity Mars rovers back in January 2004.

Opportunity continues to operate to this day. Read my salute to Spirit here

Read continuing features about Curiosity and Mars rovers by Ken Kremer starting here:
8 Years of Spirit on Mars – Pushing as Hard as We Can and Beyond !
2011: Top Stories from the Best Year Ever for NASA Planetary Science!
Opportunity Discovers Most Powerful Evidence Yet for Martian Liquid Water
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life

Virtual Star Party with Stuart Forman – Jan. 11th, 2012

Jupiter photo by Stuart Forman
Jupiter photo by Stuart Forman


I organized three astronomers on Wednesday, but only one had clear skies: Stuart Forman. We got some great views of Jupiter, and attempted a few other objectives. We were joined by Phil Plait, Gary Gonella and Mike Phillips, to showcase some of the recent photos they’ve taken and to talk about gear.

If you want to participate in a future Hangout, please let me know. You just need the ability to display live images or video from your telescope into your computer. From there we can get your view into the Hangout. If you want to participate, please drop me an email at [email protected]. And if you want to be notified when future virtual star parties are happening, circle me on Google+.

[/caption] Here’s a photograph of Jupiter that Stuart created based on the video he captured during the hangout. He stacked the video frames together using a software tool called Registax.

Mike Fossum Answers Your Questions

NASA astronaut Mike Fossum, Expedition 29 commander, works with the Combustion Integrated Rack (CIR) Multi-user Drop Combustion Apparatus (MDCA) in the Destiny laboratory of the International Space Station. Image Credit: NASA

[/caption]We recently launched a new “Ask” feature here at Universe Today. Our inaugural launch featured Dr. Alan Stern, Principal Investigator for the New Horizons mission to Pluto and the Kuiper Belt.

Following up on the success of our first “Ask” feature, we’ve followed up with a new installment featuring Expedition 29 commander Mike Fossum. We collected your questions and passed them along to Mike who graciously took the time to answer them.

Here are the questions picked by you, the readers, and Fossum’s responses. Special thanks to NASA and Mike Fossum for their participation.

1.) Living on the ISS is sometimes said to be a difficult experience – if you could make any one change to the ISS to make it more comfortable, what would it be?

Mike Fossum: “Get the transporter working – it would be great to be home for the weekend.” Fossum also added, “I loved living and working there (The ISS) and there’s very few things I’d change. I had a great window view and my own personal quarters. I guess if anything I missed being able to sit in a chair – that and being able to have a cup of coffee (instead of out of a bag) and read the newspaper in the morning.”

2.) As a trained astronaut, what are your thoughts on the feasibility of making space flight a routine for normal civilians ( besides tourists) especially with regard to interplanetary/beyond earth orbit flights?

Mike Fossum: “I think we’ll see low Earth-orbit very soon.” Fossum also mentioned, “I was born a few months after Sputnik’s launch, the changes in spaceflight over the past 54 years are staggering. The potential for changes over the next fifty years is unimaginable.” Fossum also had a parting thought on the rise of commercial space travel, “I have a nagging voice telling me to say “be careful”, we’ve learned hard and costly lessons”.

3.) While in the Earth’s shadow, could you see the stars, constellations and planets? If you could, did they look any better or brighter?

Mike Fossum: “Oh, Yes! The key is to be in a place where you can dark adapt – any sunlight overpowers night vision.” Fossum mentioned that during some “down” time on a spacewalk, he was able to turn off his helmet lights and immerse himself in the “3-d feeling” of being in the stars. Describing the quality of the views, Fossum stated, “The Milky Way was clear, and no twinkle in stars. The different colors of stars were more intense”.

4.) After a typical stay on the ISS, how long does it take an astronaut to recover from the effects of weightlessness?

Mike Fossum: “There’s a great deal of recovery in the first three weeks. Balance, running, walking, I’d say I’m at about 90%” Fossum mentioned one other side effect of his stay on the ISS – apparently he’s in better physical shape than before he left. Fossum speculated that the improvements in his physical shape were due to the rigorous exercise routines he performed during his stay on the ISS.

5.) What would you say is the strongest asset that each of the space fairing countries brings to the table when it comes to our forward progress into space as a species?

Mike Fossum: “The Russians have a different design process than we (The United States) do. They evolve, rather than start over.” Fossum added, “Looking at their station module design, they took stuff that worked from MIR and improved upon it, they analyzed and tested and broke stuff and added more steel. Americans analyze and analyze – it was a real shock to NASA on how Russia built things.” Fossum mentioned that in 2008, he helped install the JAXA Kibo module on the International Space Station and was impressed by the efficiency of JAXA engineers.

Regarding some of the other partner nations participating in the ISS, Fossum mentioned, “ESA has the best of German efficiency and Italian flexibility.” Fossum also discussed the Canadians niche in robotics, stating that they’ve been leaders who are proud of their work. Fossum cited the success of the remote manipulator arm on the space shuttles, as well as the “big arm” on the ISS and the DEXTRE manipulator.

Fossum shared a final thought regarding all the nations participating in the ISS, stating, “There’s a common passion for space among the big partners on the ISS.” Fossum also mentioned to “Look at history” regarding Russia, Germany, Italy, Japan and the U.S, emphasizing that nations who were at war with each other not that long ago are working together to achieve common goals in space.

This wraps up our latest “Ask” feature. Once again we’d like to thank Mike Fossum and NASA for taking the time to answer your questions.

ISS Will do Maneuver Friday to Avoid Collision with Satellite Debris

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

[/caption]

It’s the gift that keeps on giving, unfortunately. Debris from the 2009 collision between an inactive Russian Cosmos 2251 satellite and a commercial Iridium satellite in low Earth orbit is coming dangerously close to the International Space Station. U.S. Space Command has suggested the space station perform a debris avoidance maneuver on Friday, January 13, 2012 to move out of harms’ way and dodge a possible collision with the piece of space junk, said to be about 10 centimeters in diameter.

UPDATE: The ISS has successfully been boosted about 300 meters (1,000 feet) by firing the thrusters on the Zarya module for 54 seconds.

This will be the 13th time since 1998 that the station has moved because of debris.

The thrusters on the Zvezda service module are planned to burn at 1610 UTC (11:10 a.m. EST) on Friday. Without the maneuver, the object would have made two close approaches to the station on consecutive orbits on Friday, passing within the “pizza box” -shaped region around the station, measuring 0.75 kilometers above and below the station and 25 kilometers on each side (2,460 feet above and below and 15.6 by 15.6 miles). NASA said ISS flight controllers are preparing for the maneuver and the crew onboard has been informed.

This debris avoidance maneuver does have one benefit, as the station needed a reboost anyway, and so it will eliminate the need for a reboost of the station next week. The reboost had been planned to put the station at the proper altitude for the launch and docking later this month of the ISS Progress 46 cargo ship.

There are more than 20,000 pieces of debris larger than a softball orbiting the Earth. They travel at speeds up to 17,500 mph, fast enough for a relatively small piece of orbital debris to damage a satellite or a spacecraft. There are 500,000 pieces of debris the size of a marble or larger. There are many millions of pieces of debris that are so small they can’t be tracked.

NASA says that even tiny paint flecks can damage a spacecraft when traveling at these velocities. In fact a number of space shuttle windows have been replaced because of damage caused by material that was analyzed and shown to be paint flecks.

“The greatest risk to space missions comes from non-trackable debris,” said Nicholas Johnson, NASA chief scientist for orbital debris.

Debris avoidance maneuvers are conducted when the probability of collision from a conjunction reaches specific limits set for the Space Station flight rules. If the probability of collision is greater than 1 in 100,000, a maneuver will be conducted if it will not result in significant impact to mission objectives. If it is greater than 1 in 10,000, a maneuver will be conducted unless it will result in additional risk to the crew.

These collision avoidance maneuvers for the ISS require about 30 hours to plan and execute, mainly due to the need to use the station’s Russian thrusters, or the propulsion systems on one of the docked Russian or European spacecraft.

Source: NASA