First Earth-Sized Exoplanets Found by Kepler

The Kepler-20 planetary system contains five planets that alternate in size: large, small, large, small, large, as shown in this artist's rendering. Credit: David A. Aguilar (CfA)

[/caption]

December 2011 will go down in history as the first time humanity was able to detect an Earth-sized planet around another Sun-like star, said Francois Fressin, an astronomer from Harvard-Smithsonian Center for Astrophysics. Fressin and his team used the Kepler planet-hunting spacecraft to find two rocky worlds – one just a bit bigger than Earth and the other slightly smaller than Venus.

The two planets, named Kepler-20e and 20f, are the smallest planets found to date. They have diameters of 11,000 km (6,900 miles) and 13,190 km (8,200 miles) – equivalent to 0.87 and 1.03 times Earth. Astronomers expect these worlds to have rocky compositions, so their masses should be less than 1.7 and 3 times Earth’s.

The two worlds are part of a multiple-planet system with five planets around the same star, and is located about 1,000 light years away in the constellation of Lyra. “People can point to that area in the sky and say this is where the era of exo-Earth’s began,” said Fressin, adding that the two rocky worlds are too close to their star — and thus too hot — to be habitable.

Artist's Concept of Kepler-20e, one of two Earth-sized planets found by the Kepler spacecraft. Credit: NASA/Ames/JPL-Caltech

Kepler-20e orbits every 6.1 days at a distance of 4.7 million miles. Kepler-20f orbits every 19.6 days at a distance of 10.3 million miles. Due to their tight orbits, they are heated to temperatures of 760 Celcius (1,400 degrees Fahrenheit) and 426 C (800 degrees F.)

The solar system where these planets exists is quite unusual, where rocky and gas planets alternate in their positions instead of being separated into groups like in our own solar system.

The first planet is a Neptune-like world; then the first rocky planet, Kepler 20e; next is another Neptune world; following is the next rocky world 20f, and then another Neptune-like gas planet.

“So, big, little, big, little, big — which is unlike any other system so far,” said David Charbonneau, from Harvard University. “We were surprised to find this system of flip-flopping planets. It’s very different than our solar system.”

Additionally, all the planets are very closely compact, lying within the orbit of Mercury around our Sun.

This unusual system of alternating planets may not be unusual at all, as our sample of solar systems is still relatively small.

“This really is a problem for our community to explain,” said Linda Elkins-Tanton, director of the Carnegie Institution for Science’s Department of Terrestrial Magnetism in Washington, in response to a question posed by Universe Today about the dynamics of such a system. “We are really challenging the community for the reason why this happened, and it may well be that our solar system may be in the minority.”

Artist's Concept of Kepler-20f. Credit: NASA/Ames/JPL-Caltech

The astronomers don’t think the planets of Kepler-20 formed in their current locations. Instead, they must have formed farther from their star and then migrated inward, probably through interactions with the disk of material from which they all formed. This allowed the worlds to maintain their regular spacing despite alternating sizes.

“We think they migrated because we can’t imagine all this stuff so close to the star, where it is warm and only portions of the material is in solid form,” Charbonneau told Universe Today. “We think the birth place of a Neptune-like world is farther from the star and then over time the planets migrate in. Wouldn’t be surprised if we see more systems like this as we keep exploring.”

Asked when the Kepler team might find a “best of both worlds” planet — one that is the right size and in the right place to be habitable, Nick Gautier, Kepler project scientist said they may find one in the next year or two, but the Kepler mission may need an extension to ensure finding the Holy Grail of exoplanets — one that is just like Earth.

Kepler identifies “objects of interest” by looking for stars that dim slightly, which can occur when a planet crosses the star’s face. To confirm a transiting planet, astronomers look for the star to wobble as it is gravitationally tugged by its orbiting companion (a method known as radial velocity).

The radial velocity signal for planets weighing one to a few Earth masses is too small to detect with current technology. Therefore, other techniques must be used to validate that an object of interest is truly a planet.

A variety of situations could mimic the dimming from a transiting planet. For example, an eclipsing binary-star system whose light blends with the star Kepler-20 would create a similar signal. To rule out such imposters, the team simulated millions of possible scenarios with Blender – custom software developed by Fressin and Willie Torres of CfA. They concluded that the odds are strongly in favor of Kepler-20e and 20f being planets.

Fressin and Torres also used Blender to confirm the existence of Kepler-22b, a planet in the habitable zone of its star that was announced by NASA earlier this month. However, that world was much larger than Earth.

“These new planets are significantly smaller than any planet found up till now orbiting a Sun-like star,” added Fressin.

For further reading:

Paper in Nature

Harvard CfA press release

NASA

New Plans for ESA’s Experimental Re-entry Vehicle

ESA’s new IXV (Intermediate eXperimental Vehicle) Credit: ESA

[/caption]
ESA and Arianespace have signed a contract planning the launch of ESA’s new IXV (Intermediate eXperimental Vehicle) on Europe’s new Vega Rocket in 2014. Vega is Europe’s new small launch system and it is designed to complement the heavy Ariane 5 and medium Soyuz Rocket systems launched from French Guiana.

The small rocket is capable of a wide range of payloads up to 1.5 tonnes, compared to Ariane 5 which can lift 20 tonnes, making it especially suitable for the commercial space market. The Vega Rocket will launch the IXV into a suborbital trajectory from Europe’s Spaceport in French Guiana, IXV will then return to Earth as if from a low-orbit mission, to test and qualify new critical technologies for future re-entry vehicles.

Vega Rocket Credit: Arianespace

The IXV will reach a velocity of 7.5km/s at an altitude of around 450km and then re-enter the Earth’s atmosphere gathering data about its flight. The vehicle will encounter hypersonic and supersonic speeds and will be controlled with complex avionics, thrusters and flaps.

Once the vehicle’s speed has been reduced enough, it will deploy a parachute, descend and land safely in the Pacific Ocean.

This flight will record data for the next five VERTA missions (Vega Research and Technology Accompaniment – Programme), which will demonstrate the systems re-usable versatility.

Two launches a year are planned for the new programme and construction of infrastructure including mission control and communications networks is currently underway.

Development and completion of the design, manufacturing and assembly is now underway for a flight window between January and September 2014.

VERTA (Vega Research and Technology Accompaniment – Programme) Credit: Arianespace

Source: ESA

Underwater Neutrino Detector Will Be Second-Largest Structure Ever Built

Artist's rendering of the KM3NeT array. (Marco Kraan/Property KM3NeT Consortium)

[/caption]

The hunt for elusive neutrinos will soon get its largest and most powerful tool yet: the enormous KM3NeT telescope, currently under development by a consortium of 40 institutions from ten European countries. Once completed KM3NeT will be the second-largest structure ever made by humans, after the Great Wall of China, and taller than the Burj Khalifa in Dubai… but submerged beneath 3,200 feet of ocean!

KM3NeT – so named because it will encompass an area of several cubic kilometers – will be composed of lengths of cable holding optical modules on the ends of long arms. These modules will stare at the sea floor beneath the Mediterranean in an attempt to detect the impacts of neutrinos traveling down from deep space.

Successfully spotting neutrinos – subatomic particles that don’t interact with “normal” matter very much at all, nor have magnetic charges – will help researchers to determine which direction they originated from. That in turn will help them pinpoint distant sources of powerful radiation, like quasars and gamma-ray bursts. Only neutrinos could make it this far and this long after such events since they can pass basically unimpeded across vast cosmic distances.

“The only high energy particles that can come from very distant sources are neutrinos,” said Giorgio Riccobene, a physicist and staff researcher at the National Institute for Nuclear Physics. “So by looking at them, we can probe the far and violent universe.”

Each Digital Optical Module (DOM) is a standalone sensor module with 31 3-inch PMTs in a 17-inch glass sphere.

In effect, by looking down beneath the sea KM3NeT will allow scientists to peer outward into the Universe, deep into space as well as far back in time.

The optical modules dispersed along the KM3NeT array will be able to identify the light given off by muons when neutrinos pass into the sea floor. The entire structure would have thousands of the modules (which resemble large versions of the hovering training spheres used by Luke Skywalker in Star Wars.)

In addition to searching for neutrinos passing through Earth, KM3NeT will also look toward the galactic center and search for the presence of neutrinos there, which would help confirm the purported existence of dark matter.

Read more about the KM3NeT project here, and check out a detailed article on the telescope and neutrinos on Popsci.com.

Height of the KM3NeT telescope structure compared to well-known buildings

Images property of KM3NeT Consortium 

How the ISS Astronauts Film Time-lapse Photography

The past few months, we’ve been posting all the incredible time-lapse video that the astronauts on the space station have been taking. Just how can they shoot such amazing footage? In Episode 2 of the new NASA video series, “Inside the International Space Station,” Expedition 29 Commander Mike Fossum speaks from space with astronaut Mike Massimino about Fossum’s amazing time lapse photography.

Curiosity Starts First Science on Mars Sojurn – How Lethal is Space Radiation to Life’s Survival

NASA's Mars Science Laboratory Curiosity rover will investigate Mars' past or present ability to sustain microbial life. Curiosity is cruising to Mars and has already investigating the lethality of the space radiation environment to humans. Credit: NASA/JPL-Caltech

[/caption]

Barely two weeks into the 8 month journey to the Red Planet, NASA’s Curiosity Mars Science Lab (MSL) rover was commanded to already begin collecting the first science of the mission by measuring the ever present radiation environment in space.

Engineers powered up the MSL Radiation Assessment Detector (RAD) that monitors high-energy atomic and subatomic particles from the sun, distant supernovas and other sources.

RAD is the only one of the car-sized Curiosity’s 10 science instrument that will operate both in space as well as on the Martian surface. It will provide key data that will enable a realistic assessment of the levels of lethal radiation that would confront any potential life forms on Mars as well as Astronauts voyaging between our solar systems planets.

“RAD is the first instrument on Curiosity to be turned on. It will operate throughout the long journey to Mars,” said Don Hassler, RAD’s principal investigator from the Southwest Research Institute in Boulder, Colo.

These initial radiation measurements are focused on illuminating possible health effects facing future human crews residing inside spaceships.


Video Caption: The Radiation Assessment Detector is the first instrument on Curiosity to begin science operations. It was powered up and began collecting data on Dec. 6, 2011. Credit: NASA

“We want to characterize the radiation environment inside the spacecraft because it’s different from the radiation environment measured in interplanetary space,” says Hassler.

RAD is located on the rover which is currently encapsulated within the protective aeroshell. Therefore the instrument is positioned inside the spacecraft, simulating what it would be like for an astronaut with some shielding from the external radiation, measuring energetic particles.

“The radiation hitting the spacecraft is modified by the spacecraft, it gets changed and produces secondary particles. Sometimes those secondary particles can be more damaging than the primary radiation itself.”

“What’s new is that RAD will measure the radiation inside the spacecraft, which will be very similar to the environment that a future astronaut might see on a future mission to Mars.”

Curiosity Mars Science Laboratory (MSL) Spacecraft During Cruise with Navigation Stars. Artist's concept of Curiosity during its cruise phase between launch on Nov. 26, 2011 and final approach to Mars in August 2012. Credit: NASA/JPL-Caltech

Curiosity’s purpose is to search for the ingredients of life and assess whether the rovers landing site at Gale Crater could be or has been favorable for microbial life.

The Martian surface is constantly bombarded by deadly radiation from space. Radiation can destroy the very organic molecules which Curiosity seeks.

“After Curiosity lands, we’ll be taking radiation measurements on the surface of another planet for the first time,” notes Hassler.

RAD was built by a collaboration of the Southwest Research Institute, together with Christian Albrechts University in Kiel, Germany with funding from NASA’s Human Exploration Directorate and Germany’s national aerospace research center, Deutsches Zentrum für Luft- und Raumfahrt.

“What Curiosity might find could be a game-changer about the origin and evolution of life on Earth and elsewhere in the universe,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington. “One thing is certain: The rover’s discoveries will provide critical data that will impact human and robotic planning and research for decades.”

Curiosity was launched from Florida on Nov. 26. After sailing on a 254 day and 352-million-mile (567-million-kilometer) interplanetary flight from the Earth to Mars, Curiosity will smash into the atmosphere at 13,000 MPH on August 6, 2012 and pioneer a nail biting and first-of-its-kind precision rocket powered descent system to touchdown inside layered terrain at Gale Crater astride a 3 mile (5 km) high mountain that may have preserved evidence of ancient or extant Martian life.

Miraculously, NASA’s Opportunity Mars rover and onboard instruments and cameras have managed to survive nearly 8 years of brutally harsh Martian radiation and arctic winters.

Curiosity MSL science instruments are state-of-the-art tools for acquiring information about the geology, atmosphere, environmental conditions, and potential biosignatures on Mars. Credit: NASA

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:
Flawlessly On Course Curiosity Cruising to Mars – No Burn Needed Now
NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER
Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

In The Still Of The Night… Listening To The “Heartbeat” Of A Tiny Black Hole

Artist's rendering showing the jet fully established. Credit: NASA/Goddard Space Flight Center/CI Lab

[/caption]

Is everything quiet in deep space?  Not hardly.  It’s a place jammed with noises of all kinds.  So much noise, in fact, that it could be quite difficult to pick up a faint signature of something small…  something like the smallest black hole known.  Thanks to  NASA’s Rossi X-ray Timing Explorer (RXTE) , an international team of astronomers have found the pulse they were looking for and it’s a pattern that’s only been seen in one other black hole system.

Its name is IGR J17091-3624 and it’s a binary system which consists of a normal star and a black hole with a mass that measures only about three times solar.  In theoretical terms, that’s right at the edge where possibility of being a black hole begins.

Here’s the picture…  In this binary system, escaping gas from the “normal” star flows across space in the direction of the black hole.  This action creates a disk where friction heats it to millions of degrees – releasing X-rays.  Periodic changes in the strength of the X-ray emissions point towards the actions taking place within the gas disk.  Scientists theorize that fast changes occur at the event horizon… the point of no return.

IGR J17091-3624 was discovered when it went into outburst in 2003. Current observations have it becoming active every few years and its most recent flare began in February of this year and has been kicking up cosmic dust ever since. Observations place it in the general direction of Scorpius, but astronomers aren’t sure of an exact distance – somewhere between 16,000 light years to more than 65,000. However, IGR J17091-3624 isn’t absolutely alone in its unique changes. Black hole binary, GRS 1915+105, also displays a number of well-ordered rhythms, too.

This animation compares the X-ray ‘heartbeats’ of GRS 1915 and IGR J17091, two black holes that ingest gas from companion stars. GRS 1915 has nearly five times the mass of IGR J17091, which at three solar masses may be the smallest black hole known. A fly-through relates the heartbeats to hypothesized changes in the black hole’s jet and disk. Credit: NASA/Goddard Space Flight Center/CI Lab

“We think that most of these patterns represent cycles of accumulation and ejection in an unstable disk, and we now see seven of them in IGR J17091,” said Tomaso Belloni at Brera Observatory in Merate, Italy. “Identifying these signatures in a second black hole system is very exciting.”

Binary GRS 1915 has some very cool characteristics.  Right now astronomers have observed jets blasting out in opposite directions cruising along at 98% the speed of light.  These originate at the event horizon where strong magnetic fields fuel them and each pulsation matches the occurrence of the jets. By observing the X-ray spectrum with RXTE, researchers have discovered the interior of the disk creates enough radiation to halt the gas flow – an outward wind which negates the inward flow – and shuts down activity.  As a result, the inner disk glows hot and bright, eliminating itself as it flows toward the black hole and kick starts the jet activity again.  It’s a process that happens in as little as 40 seconds!

Right now astronomers aren’t able to prove that IGR J17091 has a particle jet, but the regular pulsations indicate it. Records show this “heartbeat” occurs about every five seconds – about 8 times faster than its counterpart and some 20 times more faint. Numbers like this would make it a very tiny black hole.

“Just as the heart rate of a mouse is faster than an elephant’s, the heartbeat signals from these black holes scale according to their masses,” said Diego Altamirano, an astrophysicist at the University of Amsterdam in The Netherlands and lead author of a paper describing the findings in the November 4 issue of The Astrophysical Journal Letters. It’s just the beginning of a full scale program involving RXTE to compare information from both black holes.  Even more detailed data will be added from NASA’s Swift satellite and XMM-Newton, too.

“Until this study, GRS 1915 was essentially a one-off, and there’s only so much we can understand from a single example,” said Tod Strohmayer, the project scientist for RXTE at NASA’s Goddard Space Flight Center in Greenbelt, Md. “Now, with a second system exhibiting similar types of variability, we really can begin to test how well we understand what happens at the brink of a black hole.”

Original Story Source: NASA Mission News

Missions that Weren’t: NASA’s Manned Mission to Venus

Venus. Image Credit: NASA/courtesy of nasaimages.org

[/caption]

In the mid-1960s, before any Apollo hardware had flown with a crew, NASA was looking ahead and planning its next major programs. It was a bit of a challenge. After all, how do you top landing a man on the Moon? Not wanting to start from scratch, NASA focused on possible missions that would use the hardware and software developed for the Apollo program. One mission that fit within these parameters was a manned flyby of our cosmic twin, Venus. 

As one of our neighbouring planets, a mission to Venus made sense; along with Mars, it’s the easiest planet to reach. Venus was also a mystery at the time. In 1962, the Mariner 2 spacecraft became the first interplanetary probe. It flew by Venus, gathered data on its temperature and atmospheric composition before flying off into a large heliocentric orbit. But there was more to learn, making it a destination worth visiting.

A scale comparison of terrestrial planets Mercury, Venus, Earth, and Mars. That Earth and Venus are of a similar size led many to draw comparisons between the planets before better scientific experiments revealed Venus is closer to the Earth inside out. Image Credit: NASA/courtesy of nasaimages.org

But beyond being relatively practical with great potential for scientific return, a manned mission to Venus would prove that NASA’s spacecraft and astronauts were up for the challenges of long-duration interplanetary flight. In short, it would give NASA something exciting to do.

The mission proposal was published early in 1967. It enhanced the Apollo spacecraft with additional modules, then took the basic outline of an Apollo mission and aimed it towards Venus instead of the Moon.

The crew would launch on a Saturn V rocket in November of 1973, a year of minimal solar activity. They would reach orbit in the same Command and Service Modules (CSM) that took Apollo to the Moon. Like on Apollo, the CSM would provide the main navigation and control for the mission.

Going to the Moon, Apollo missions had the crew turn around in the CSM to pull the LM out of its launch casing. On the mission to Venus, the crew would do the same, only instead of an LM they would dock and extract the Environmental Service Module (ESM). This larger module would supply long-duration life support and environmental control and serve as the main experiment bay.

An artist's impression of the Mariner 2 probe. Image Credit: NASA/courtesy of nasaimages.org

With these two pieces mated, the upper S-IVB stage of Saturn V would propel the spacecraft towards Venus. Once its fuel store was spent, the crew would repurpose the S-IVB into an additional habitable module. Using supplies stored in the ESM, they would turn the rocket stage into their primary living and recreational space. On its outside, an array of solar panels would power each piece of the spacecraft throughout the mission.

The crew would spend 123 days traveling to Venus. Ten hours of each day would be dedicated to science, mainly observations of the solar system and beyond with a telescope mounted in the ESM. UV, X-ray, and infrared measurements could create a more complete picture of our corner of the universe. The rest of each day would be spent sleeping, eating, exercising, and relaxing — a full two hours of every day would be dedicated to unstructured leisure, a first for astronauts.

Like Mariner 2 before them, the crew would flyby Venus rather than go into orbit. They would only have 45 minutes to do close optical observations and deploy probes that would send back data on the Venusian atmosphere in realtime.

After the flyby, the spacecraft would swing around Venus and start its 273 day trip back to Earth. Like on an Apollo lunar mission, the crew would transfer back into the Command Module before reentry taking anything that had to return to Earth with them. They would jettison the S-IVB, the ESM, and the Service Module, switch the CM to battery power, and plunge through the atmosphere. Around December 1, 1974, they would splashdown somewhere in the Pacific Ocean.

Though worked out in great detail, the proposal was a thought experiment rather than something NASA was seriously considering. Nevertheless, Apollo-era technology would have managed the mission.

Source: NASA Manned Venus Flyby Study

The surface of Venus as captured by Soviet Venera 13 lander in March of 1982. NASA/courtesy of nasaimages.org

Surprising Comet Lovejoy Now Becoming Merry and Bright

Comet Lovejoy photographed remotely with the FRAM telescope in Argentina on Dec. 17 by a Czech team of Jakub Cerny, Jan Ebr, Martin Jelinek, Petr Kubanek, Michael Prouza and Michal Ringes. Click to original image and more on the kommet.cz website.

[/caption]

It was almost a pre-holiday miracle that Comet Lovejoy survived its close encounter with the Sun on Dec. 15, 2011. But now, the feisty comet is making a ‘merry and bright’ comeback, re-sprouting its tail and showing up brilliantly when seen with binoculars and in telescopic images from southern hemisphere skywatchers.

“It was a big surprise that after going through the solar atmosphere it re-emerged with a beautiful tail,” Karl Battams told Universe Today. Battams is with Naval Research Laboratory and has been detailing the Comet Lovejoy’s incredible journey on the Sungrazing Comets website. “And basically within a day it was as bright after the encounter as it was before.”

The beautiful image above was taken on Dec. 17, 2011, clearly showing two gorgeous tails on Comet Lovejoy. See more from the Czech team that took the image at their website, Kommet.cz.

As much as this comet has surprised everyone, no one is going out on a limb and predicting it will become visible with the naked eye. But who knows? The comet’s discoverer, Austrailian amateur astronomer Terry Lovejoy was able to image the comet in the day time! ” I am hopeful of a nice binocular comet low in the dawn around Christmas time,” Lovejoy said on the Ice in Space website.

Comet Lovejoy in the early morning hours of Dec. 20, 2011. Credit: Ian Musgrave, Adelaide, South Australia, Australia

“Southern hemisphere viewers can see it now early in the morning,” Battams said via phone this morning. “It is going to become increasingly easy for them to see as it moves away from the Sun. I’m not sure it will increase in brightness anymore, as it has leveled off a little bit now. Odds are stacked in the favor of a nice nighttime show for southern viewers, and gradually it will fade away.”

Of course, Comet Lovejoy isn’t the only comet that has survived a close encounter with the Sun; in fact, some comets have even brightened to naked eye visibility after surviving a scorching from the Sun. The “Great Comets” of 1843 and 1882, and Comet Ikeya-Seki of 1965 were all Kreutz sungrazers – like Comet Lovejoy — and they all became brilliant after their solar encounters, with extraordinarily long tails.

Normally these comets don’t survive and are completely obliterated by the Sun. But the few that do – only 2 or 3 a century — can be very bright.

I had asked Battams on Friday – just after the comet emerged from behind the Sun – his thoughts on Comet Lovejoy and if it might follow the example of those previous surviving sungrazers.

“All bets are off as far as I’m concerned,” he wrote via email. “We thought this was a relatively small one — maybe a hundred or two meters in diameter. Clearly it can’t be. I did not expect it to survive perihelion as anything more than a diffuse blob that would rapidly dissipate. Instead it is pretty much as bright as it was before, just with less of a tail now.”

So keep a lookout for the holiday comet of 2011, the merry and bright Comet Lovejoy!

Former Astronaut John Grunsfeld to Lead NASA Science Directorate

John Grunsfeld. Credit: NASA

[/caption]

As was rumored earlier, NASA has named physicist and former astronaut John Grunsfeld as their new associate administrator for the Science Mission Directorate.

“It is an honor and a privilege to be offered the opportunity to lead NASA’s Science Mission Directorate during this exciting time in the agency’s history,” Grunsfeld said. “Science at NASA is all about exploring the endless frontier of the Earth and space. I look forward to working with the NASA team to help enable new discoveries in our quest to understand our home planet and unravel the mysteries of the universe.”

Grunsfeld is taking over for Ed Weiler, who retired from NASA on Sept. 30, and Grunsfeld will officially start his new job on Jan. 4, 2012.

Grunsfeld currently serves as the deputy director of the Space Telescope Science Institute in Baltimore, which manages the science program for the Hubble Space Telescope and is a partner in the forthcoming James Webb Space Telescope. His background includes research in high energy astrophysics, cosmic ray physics and in the emerging field of exoplanet studies with specific interest in future astronomical instrumentation.

As a scientist, as well as a veteran of five space shuttle flights, Grunsfeld brings a unique viewpoint to the science directorate, and supporters are hoping for an increased association of science and human missions. “John’s understanding of the critical connection between scientific research and the human exploration of space makes him an ideal choice for this job,” NASA Administrator Charles Bolden said. “I look forward to working with him to take the agency’s science programs to even greater heights and make more of the ground-breaking discoveries about Earth and our universe for which NASA is known.”

Three of Grunsfeld’s flights were Hubble telescope repair missions, and he performed a total of eight spacewalks to service and upgrade the observatory. Additionally, in 2004 and 2005, Grunsfeld served as the commander and science officer on the backup crew for Expedition 13 to the International Space Station.

Read more about Grunsfeld here.

New NASA Probe – The Comet Harpoon

This is an artist's concept of a comet harpoon embedded in a comet. The harpoon tip has been rendered semi-transparent so the sample collection chamber inside can be seen. Credit: NASA/Chris Meaney/Walt Feimer

[/caption]

It’s not easy to sample a comet. These outer solar system travelers speed around the inner solar system at 241,000 km/h (150,000 mph) – twisting and turning while spewing chunks of ice, dust and debris. To consider landing on one becomes a logistical nightmare, but how about shooting at it? Why not send a mission to rendezvous with these frozen, inhospitable rocks and insert a probe? A method like this could even mean a sample could be taken where a landing would be impossible!

Thanks to the work of scientists at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, a new comet “harpoon” is being designed to make comet sample returns not only more efficient, but more detailed.


Roughly the size of a clothes closet, this syringe-like probe stands roughly two meters tall and will be inserted with a cross-bow like arrangement that will contact the surface of the comet. Positioned to fire vertically downward, this bow arrangement consists of a pair of truck leaf springs and 1/2 inch steel cable.. an arrangement which could fire up to a mile if pointed in the wrong direction! When it impacts, an electric winch will draw the bow back into position and eject the harpoon with 1,000 pounds of force at 100 feet per second.

So what would it be like to witness the harpooning of the cosmic whale? An explosive adventure, to be sure. Donald Wegel of NASA Goddard, lead engineer on the project, has been experimenting with the ballista and the core sample box in various impact environments. According to the press release, the resultant impact is something of a combination of rifle report and cannon blast.

This is a photo of the ballista testbed preparing to fire a prototype harpoon into a bucket of material that simulates a comet. Credit: NASA/Rob Andreoli

“We had to bolt it to the floor, because the recoil made the whole testbed jump after every shot,” said Wegel. “We’re not sure what we’ll encounter on the comet – the surface could be soft and fluffy, mostly made up of dust, or it could be ice mixed with pebbles, or even solid rock. Most likely, there will be areas with different compositions, so we need to design a harpoon that’s capable of penetrating a reasonable range of materials. The immediate goal though, is to correlate how much energy is required to penetrate different depths in different materials. What harpoon tip geometries penetrate specific materials best? How does the harpoon mass and cross section affect penetration? The ballista allows us to safely collect this data and use it to size the cannon that will be used on the actual mission.”

Studying comet core samples will provide researchers with important information on the original solar nebula and help us to further understand how life may have originated. “One of the most inspiring reasons to go through the trouble and expense of collecting a comet sample is to get a look at the ‘primordial ooze’ – biomolecules in comets that may have assisted the origin of life,” says Wegel. Comet sample return missions – such as the one from Wild 2 – have shown us that that amino acids exist in these inhospitable places, yet may have helped stimulate life here on Earth.

However, there’s more to the story than just searching out reasons for life… the biggest being the preservation of life itself. As we know, there’s always a possibility that a comet could impact Earth and create an extinction level event. By understanding comet composition, we can get a better grip on what we might need to do should a cataclysmic scenario rear its ugly head. For example, we’d know if a certain type of comet might tend to fragment – or another explode. “So the second major reason to sample comets is to characterize the impact threat,” according to Wegel. “We need to understand how they’re made so we can come up with the best way to deflect them should any have their sights on us.”

“Bringing back a comet sample will also let us analyze it with advanced instruments that won’t fit on a spacecraft or haven’t been invented yet,” adds Dr. Joseph Nuth, a comet expert at NASA Goddard and lead scientist on the project.

If we were to be in a movie, perhaps we might consider getting a comet sample through a method like drilling – but lack of gravity on these small, moving worlds isn’t going to allow that to happen. “A spacecraft wouldn’t actually land on a comet; it would have to attach itself somehow, probably with some kind of harpoon. So we figured if you have to use a harpoon anyway, you might as well get it to collect your sample,” says Nuth.

This is a demonstration of the sample collection chamber. Credit: NASA/Rob Andreoli

At the present, the design team is currently hard at work studying the harpoon’s reactions to different mediums – and what needs to be done to sample and collect what they might encounter. This isn’t easy considering they are working with a basic unknown.

“You can’t do this by crunching numbers in a computer, because nobody has done it before — the data doesn’t exist yet,” says Nuth. “We need to get data from experiments like this before we can build a computer model. We’re working on answers to the most basic questions, like how much powder charge do you need so your harpoon doesn’t bounce off or go all the way through the comet. We want to prove the harpoon can penetrate deep enough, collect a sample, decouple from the tip, and retract the sample collection device.”

Nothing will be left to chance, however. By creating multiple tips, collection devices and planning for different firing techniques and needs, the team is sure to make the most of their research dollars and the spacecraft that will be available to them. To further assist in their planning, they will also be able to use data from the current Rosetta mission and its lander, Philae, which will hook up with “67P/Churyumov-Gerasimenko” in 2014.

“The Rosetta harpoon is an ingenious design, but it does not collect a sample,” says Wegel. “We will piggyback on their work and take it a step further to include a sample-collecting cartridge. It’s important to understand the complex internal friction encountered by a hollow, core-sampling harpoon.” Even more information will be added from recent NASA mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security — Regolith Explorer), which is an asteroid sample return mission. It will all add up to some very unique findings and one thing we do know is…

“Admiral? Thar’ be whales here…”