A Kilonova Simulated in 3D

An artists impression of a kilonova, the moment where two neutron stars merge. Credit: Dana Berry, Skyworks Digital, Inc.

In 2017, astronomers detected gravitational waves from colliding neutron stars for the first time: a kilonova. Enormous amounts of heavy metals were detected in the light from the explosion, and astronomers continued to watch the expanding debris cloud.

Researchers have continued to study this event. Now, using a three-dimensional computer simulation, they have created a new recreation of this merger — second by second, as it happened — giving insights into all the high-energy mayhem and heavy elements formation in this catastrophic event.

Continue reading “A Kilonova Simulated in 3D”

An Unusual Crater on Pluto Might be a Supervolcano

Two features that could be cryovolcanoes exist on Pluto. They lay on either side of heart-shaped Sputnik Planitia in this color-enhanced image of Pluto from NASA’s New Horizons spacecraft taken in July 2015. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory (JHUAPL) / Southwest Research Institute (SwRI))
Two features that could be cryovolcanoes exist on Pluto. They lay on either side of heart-shaped Sputnik Planitia in this color-enhanced image of Pluto from NASA’s New Horizons spacecraft taken in July 2015. (Credit: NASA / Johns Hopkins University Applied Physics Laboratory (JHUAPL) / Southwest Research Institute (SwRI))

Pluto with a super-cryovolcano? Why not! All the elements are there, just not in the way we normally think of volcanoes. And, cryovolcanoes are the reason why Pluto’s surface looks the way it does. A recent research paper explains why Pluto could be the home of the latest supervolcano discovery in the Solar System.

Continue reading “An Unusual Crater on Pluto Might be a Supervolcano”

JWST Looks at the Debris Disc Around a White Dwarf

Illustration of a debris disk around a white dwarf star. Credit: NASA’s Goddard Space Flight Center/Scott Wiessinger

Debris disks are quite common in the Universe. Young stars have protoplanetary disks from which planets form. Black holes have accretion disks that are the source of the galactic jets. Supernova remnants can form a disk around neutron stars. So what about white dwarfs?

Continue reading “JWST Looks at the Debris Disc Around a White Dwarf”

Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second

Artist rendition of a radio telescope discovering ultra-fast radio bursts that were recently discovered and the focus of this recent study. (Credit: Daniëlle Futselaar/www.artsource.nl)

A recent study published in Nature Astronomy examines the discovery of what astronomers are dubbing “ultra-fast radio bursts”, a new type of fast radio bursts (FRBs) that the team determined lasts for a mind-boggling ten millionths of a second or less. Traditionally, FRBs have been found to last only thousandths of a second, but this study builds on a 2021 study that hypothesized FRBs could possibly last for millionths of a second. This also comes after astronomers recently announced the discovery of the oldest and farthest FRB ever observed, approximately 8 billion light-years from Earth.

Continue reading “Now Astronomers have Discovered “Ultra-Fast Radio Bursts” Lasting Millionths of a Second”

NASA Tests a 3D Printed Aluminum Rocket Nozzle

The RAMFIRE nozzle performs a hot fire test at Marshall’s East test area stand 115. Credit: NASA

When it comes to the current era of space exploration, one of the most important trends is the way new technologies and processes are lowering the cost of sending crews and payloads to space. Beyond the commercial space sector and the development of retrievable and reusable rockets, space agencies are also finding new ways to make space more accessible and affordable. This includes NASA, which recently built and tested an aluminum rocket engine nozzle manufactured using their new Reactive Additive Manufacturing for the Fourth Industrial Revolution (RAMFIRE) process.

Continue reading “NASA Tests a 3D Printed Aluminum Rocket Nozzle”

A Russian Satellite Has Shifted Within 60 km of Another Spacecraft

Geostationary orbits are where telecommunication satellites and other monitoring satellites operate. This image shows one of the NOAA's Geostationary Operational Environmental Satellites. Image Credit: NOAA.

When it comes to saber-rattling, few countries employ it as much as Russia does. During their ongoing invasion and occupation of Ukraine, the country’s leadership has repeatedly threatened to use atomic weapons. But the threats don’t stop there.

A private company called Slingshot Aerospace says Russia has maneuvered one of their Luch satellites uncomfortably close to Western spacecraft in GEO (geostationary orbit.)

And it’s not the first time.

Continue reading “A Russian Satellite Has Shifted Within 60 km of Another Spacecraft”

The Solar Wind Whistles as it Passes Mercury

Image of chorus wave generation on Mercury. Credit: NASA/JHUAPL/Carnegie Institution of Washington

Mercury is the closest planet to our Sun, ranging from 46 million km (28.58 million mi) at perihelion to 69.82 million km (43.38 million mi) at aphelion. Because of its proximity, Mercury is strongly influenced by the steam of plasma constantly flowing from the Sun to the edge of the Solar System (aka. solar wind). Beginning with the Mariner 10 mission in 1974, robotic explorers have been sent to Mercury to measure how solar wind interacts with Mercury’s magnetic field to produce whistler-mode chorus waves – natural radio emissions that play a key role in electron acceleration in planetary magnetospheres.

In addition to being the cause of geomagnetic storms and auroras in planetary atmospheres, these waves also lead to electromagnetic vibrations at the same frequencies as sound, producing chirps and whistles. In a recent study, an international research team consulted data from the BepiColombo International Mercury Exploration Project, which gathered data on Mercury’s magnetosphere during its first and second flyby. Their results are the first direct probing of chorus waves in Mercury’s dawn sector, which showed evidence of possible background variations in magnetic field.

Continue reading “The Solar Wind Whistles as it Passes Mercury”

In 1952, A Group of Three “Stars” Vanished. Astronomers Still Can’t Find Them

The vanishing of three stars. Credit: Palomar Observatory/Solano, et al

On July 19, 1952, Palomar Observatory was undertaking a photographic survey of the night sky. Part of the project was to take multiple images of the same region of sky, to help identify things such as asteroids. At around 8:52 that evening a photographic plate captured the light of three stars clustered together. At a magnitude of 15, they were reasonably bright in the image. At 9:45 pm the same region of sky was captured again, but this time the three stars were nowhere to be seen. In less than an hour they had completely vanished.

Continue reading “In 1952, A Group of Three “Stars” Vanished. Astronomers Still Can’t Find Them”

A New Weather Feature was Hiding in JWST’s Picture of Jupiter

Image of Jupiter taken by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) in July 2022 displays striking features of the largest planet in the solar system in infrared light, with brightness indicating high altitudes. One of these features is a jet stream within the large bright band just above Jupiter’s equator, which was the focus of this study. (Credit: NASA, ESA, CSA, STScI, R. Hueso (University of the Basque Country), I. de Pater (University of California, Berkeley), T. Fouchet (Observatory of Paris), L. Fletcher (University of Leicester), M. Wong (University of California, Berkeley), J. DePasquale (STScI))

In July 2022, NASA’s James Webb Space Telescope (JWST) used its NIRCam (Near-Infrared Camera) to capture stunning infrared images of the largest planet in the solar system, Jupiter. Within these striking images, scientists recently discovered a jet stream in the northern latitudes just over Jupiter’s equator and 20-35 kilometers (12-21 miles) above Jupiter’s cloud tops. This jet stream stretches approximately 4,800 kilometers (3,000 miles) with speeds of 515 kilometers per hour (320 miles per hour), more than double the speed of a Category 5 hurricane on Earth.

Continue reading “A New Weather Feature was Hiding in JWST’s Picture of Jupiter”

Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?

This artist's concept illustrates a red dwarf star surrounded by exoplanets. Credit: NASA/JPL-Caltech

Earth is our only example of a habitable planet, so it makes sense to search for Earth-size worlds when we’re hunting for potentially-habitable exoplanets. When astronomers found seven of them orbiting a red dwarf star in the TRAPPIST-1 system, people wondered if Earth-size planets are more common around red dwarfs than Sun-like stars.

But are they? Maybe not.

Continue reading “Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?”