NASA Planetary Science Trio Honored as ‘Best of What’s New’ in 2011- Curiosity/Dawn/MESSENGER

Popular Science magazine names NASA’s Mars Science Laboratory, Dawn and MESSENGER missions as ‘Best of What’s New’ in innovation in 2011. Artist concept shows mosaic of MESSENGER, Mars Science Laboratory and Dawn missions. Credit: NASA/JPL-Caltech

[/caption]

A trio of NASA’s Planetary Science mission’s – Mars Science Laboratory (MSL), Dawn and MESSENGER – has been honored by Popular Science magazine and selected as ‘Best of What’s New’ in innovation in 2011 in the aviation and space category.

The Curiosity Mars Science Laboratory was just launched to the Red Planet on Saturday, Nov. 26 and will search for signs of life while traversing around layered terrain at Gale Crater. Dawn just arrived in orbit around Asteroid Vesta in July 2011. MESSENGER achieved orbit around Planet Mercury in March 2011.

Several of the top mission scientists and engineers provided exclusive comments about the Popular Science recognitions to Universe Today – below.

“Of course we are all very pleased by this selection,” Prof. Chris Russell, Dawn Principal Investigator, of UCLA, told Universe Today.


Dawn is the first mission ever to specifically investigate the main Asteroid Belt between Mars and Jupiter and will orbit both Vesta and Ceres – a feat enabled solely thanks to the revolutionary ion propulsion system.

“At the same time I must admit we are also not humble about it. Dawn is truly an amazing mission. A low cost mission, using NASA’s advanced technology to enormous scientific advantage. It is really, really a great mission,” Russell told me.

Vesta is the second most massive asteroid and Dawn’s discoveries of a surprisingly dichotomous and battered world has vastly exceeded the team’s expectations.

Asteroid Vesta from Dawn - Exquisite Clarity from a formerly Fuzzy Blob
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Before Dawn, Vesta was just a fuzzy blob in the most powerful telescopes. Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body before firing up the ion propulsion system to break orbit and speed to Ceres, the largest Asteroid. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“Dawn is NASA at its best: ambitious, exciting, innovative, and productive,” Dr. Marc Rayman, Dawn’s Chief Engineer from the Jet Propulsion Lab (JPL), Pasadena, Calif., told Universe Today.

“This interplanetary spaceship is exploring uncharted worlds. I’m delighted Popular Science recognizes what a marvelous undertaking this is.”

JPL manages both Dawn and Mars Science Laboratory for NASA’s Science Mission Directorate in Washington, D.C.

Dawn is an international science mission. The partners include the German Aerospace Center (DLR), the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute.

“Very cool!”, John Grotzinger, the Mars Science Laboratory Project Scientist of the California Institute of Technology, told Universe Today.

“MSL packs the most bang for the buck yet sent to Mars.”

Last View of Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC.
Curiosity just before Encapsulation for 8 month long interplanetary Martian Journey and touchdown inside Gale Crater. Credit: Ken Kremer

Curiosity is using an unprecedented precision landing system to touch down inside the 154 km (96 miile) wide Gale Crater on Aug. 6, 2012. The crater exhibits exposures of phyllosilicates and other minerals that may have preserved evidence of ancient or extant Martian life and is dominated by a towering mountain.

“10 instruments all aimed at a mountain higher than any in the lower 48 states, whose stratigraphic layering records the major breakpoints in the history of Mars’ environments over likely hundreds of millions of years, including those that may have been habitable for life.”

“It’s like a trip down the Grand Canyon 150 years ago, with the same sense of adventure, but with a lot of high tech equipment,” Grotzinger told me.

MSL also has an international team of over 250 science investigators and instruments spread across the US, Europe and Russia.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

MESSENGER is the first probe to orbit Mercury and the one year primary mission was recently extended by NASA.

Sean Solomon, of the Carnegie Institution of Washington, leads the MESSENGER mission as principal investigator. The Johns Hopkins University Applied Physics Laboratory built and operates the MESSENGER spacecraft for NASA.

“Planetary has 3 missions there… Dawn, MESSENGER, and MSL,” Jim Green proudly said to Universe Today regarding the Popular Science magazine awards. Green is the director, Planetary Science Division, NASA Headquarters, Washington

“Three out of 10 [awards] is a tremendous recognition of the fact that each one of our planetary missions goes to a different environment and takes on new and unique measurements providing us new discoveries and constantly changes how we view nature, ourselves, and our place in the universe.”

The First Solar Day
After its first Mercury solar day (176 Earth days) in orbit, MESSENGER has nearly completed two of its main global imaging campaigns: a monochrome map at 250 m/pixel and an eight-color, 1-km/pixel color map. Apart from small gaps, which will be filled in during the next solar day, these global maps now provide uniform lighting conditions ideal for assessing the form of Mercury’s surface features as well as the color and compositional variations across the planet. The orthographic views seen here, centered at 75° E longitude, are each mosaics of thousands of individual images. At right, images taken through the wide-angle camera filters at 1000, 750, and 430 nm wavelength are displayed in red, green, and blue, respectively.
Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Read more about the Popular Science citations and awards here
.
Read continuing features about Curiosity, Dawn and MESSENGER by Ken Kremer starting here:

Curiosity Mars Rover Launch Gallery – Photos and Videos
Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Dawn Discovers Surprise 2nd Giant South Pole Impact Basin at Strikingly Dichotomous Vesta
Amazing New View of the Mt. Everest of Vesta
MESSENGER Unveiling Mercurys Hidden Secrets

Microscopic Worms May Help to Colonize Mars

A Caenorhabditis elegans worm. Credit: Creative Commons

[/caption]

Once the realm of science fiction, the prospect of colonizing other planets is getting closer to reality. The most logical first place, besides the Moon, has always been Mars. Venus is a bit closer, but the scorching conditions there are, well, much less than ideal. There is still technology that needs to be developed before we can send humans to Mars at all, never mind stay there permanently. But now there may be help from an unlikely and lowly companion. – worms.

Ok, not the kind of worms you find in your garden, but tiny microscopic worms called Caenorhabditis elegans (C. elegans). Similar biologically to humans in some ways, they are being studied by scientists at the University of Nottingham in the UK to help see how people are affected by long-duration space travel.

In December 2006, 4,000 of them were sent into orbit aboard the Space Shuttle Discovery. This was followed by another mission in 2009. The scientists found that in space, the worms develop and produce progeny just as they do on Earth. The research has been published in the November 30, 2011 issue of Interface, a journal of The Royal Society.

According to Dr. Nathaniel Szewczyk of the Division of Clinical Physiology in the School of Graduate Entry Medicine, “While it may seem surprising, many of the biological changes that happen during spaceflight affect astronauts and worms and in the same way. We have been able to show that worms can grow and reproduce in space for long enough to reach another planet and that we can remotely monitor their health. As a result C. elegans is a cost-effective option for discovering and studying the biological effects of deep space missions. Ultimately, we are now in a position to be able to remotely grow and study an animal on another planet.”

He added: “Worms allow us to detect changes in growth, development, reproduction and behaviour in response to environmental conditions such as toxins or in response to deep space missions. Given the high failure rate of Mars missions use of worms allows us to safely and relatively cheaply test spacecraft systems prior to manned missions.”

So while a manned space mission to Mars is still a ways off, some lucky worms may get there first, making the voyage of a lifetime, even if they don’t realize it!

Empowering Curiosity, Numerous Systems Required to Land Martian Rover

If all goes according to how it is planned, Curiosity will touch down safely on the surface of Mars in August of 2012. Photo Credit: Alan walters/awaltersphoto.com


Launch video provided courtesy of United Launch Alliance

CAPE CANAVERAL, Fla – It is a mission years in the making. However, it would not be possible without the hard work of an army’s worth of engineers – and the systems that they built. How many different systems and engines are required to get the Mars Science Laboratory (MSL) rover named Curiosity to the surface of the Red Planet? The answer might surprise you.

Including the two engines that are part of the Atlas V 541 launch vehicle, it will take 50 different engines and thrusters in total to work perfectly to successfully deliver Curiosity to the dusty plains of Mars.

Starting with the launch vehicle itself, there are six separate engines that power the six-wheeled rover, safely ensconced in its fairing, out of Earth’s gravity well. For the first leg of the journey four powerful Solid Rocket Boosters (SRBs) provided by Aerojet (each of these provides 400,000 lbs of thrust) will launch the rover out of Earth’s atmosphere.

The United Launch Alliance (ULA) Atlas launch vehicle has two rocket engines that provide the remaining amount of thrust required to get MSL to orbit and send the rover on its way to Mars. The first is the Russian-built RD-180 engine (whose thrust is split between two engine bells) the second is the Centaur second stage. There are four Aerojet solid rocket motors that help the booster and Centaur upper stage to separate.

The Centaur’s trajectory is controlled by both thrust vector control of the main engine as well as a Reaction Control System or RCS comprised of liquid hydrazine propulsion systems (there are twelve roll control thrusters on the Centaur upper stage).

MSL’s cruise stage separates entirely from the Centaur upper stage and is on the long road to the Red Planet. The cruise stage has eight one-pound-thrust hydrazine thrusters that are used for trajectory maneuvers for the nine-month journey to Mars. These are used for minor corrections to keep the spacecraft on the correct course.

Curiosity’s first physical encounter with the Martian environment is referred to as Entry, Descent and Landing (EDL) – more commonly known as “six minutes of terror” – the point when mission control, back on Earth, loses contact with the spacecraft as it enters the Martian atmosphere.


Video courtesy of Lockheed Martin

Even though Mars only has roughly one percent of Earth’s atmosphere, the friction of the atmosphere caused by a spacecraft impacting it at 13,200 miles per hour (about 5,900 meters per second) – is enough to melt Curiosity if it were exposed to these extremes. The heat shield, located at the base of the cruise stage, prevents this from happening.

The heat shield, provided by Lockheed-Martin, on MSL’s cruise stage is 14.8 feet (4.5 meters) in diameter. By comparison, the heat shields that were used on the Apollo manned missions to the Moon were 13 feet (4 meters) in diameter and the ones that allowed the Mars Exploration Rovers Spirit and Opportunity to safely reach the surface of Mars were 8.7 feet (2.65 meters) in diameter.

[/caption]

At this point in the mission eight engines, each providing 68 pounds of thrust come into play. These engines provide all of the trajectory control during EDL – meaning they will fire almost continuously.

Shortly thereafter – BOOM – the parachute deploy. Then the heat shield is ejected. After the parachute slow the spacecraft down to a sufficient degree, both they and the back aeroshell depart leaving just the rover and its jet pack.

Curiosity will employ a very unique method to touch down on Mars. What is essentially a jet-pack, called the SkyCrane will be used to allow the rover to hover in mid-air as it is lowered via cables to the ground. Photo Credit: Alan Walters/awaltersphoto.com

During the landing phase the “SkyCrane” comes alive with eight powerful hydrazine engines, each of which give Curiosity 800 pounds of thrust. Aerojet’s Redmond Site Executive, Roger Myers, talked a bit about this segment of the landing, considered by many to be the most dramatic method of getting a vehicle to the surface of Mars.

“Because of the control requirements for the SkyCrane these engines had to be very throttleable,” Myers said. “Keeping the SkyCrane level is a must, you must have very fine control of those engines to ensure stability.”

Although the SkyCrane is often highlighted as an aspect that will add complexity to MSL's mission - there are numerous systems that can cause an early end to the mission. Image Credit: NASA/JPL

If all has gone well up to this point, the Curiosity rover will be lowered the remaining distance to the ground via cables. Once contact with the Martian surface is detected, the cables are cut, the SkyCrane’s engines throttle up and the jet pack flies off to conduct a controlled crash (approximately a mile or so away from where Curiosity is located).

Every powered landing on Mars conducted in the U.S. unmanned space program has utilized Aerojet’s thrusters. The reliability of these small engines was recently proven – in a mission that is now almost three-and-a-half decades old.

Tucked in between the aeroshell and the heat shield, Curiosity is prepared to take the long trip to the Red Planet. Photo Credit: NASA/JPL

Voyager recently conducted a course correction some 34 years after it was launched – highlighting the capability of these thrusters to perform well after launch.

“Our engines have allowed missions to fly to every planet in the solar system and we are currently on our way to Mercury and Pluto,” Myers said. “When NASA explores the solar system – Aerojet provides the propulsion components.”

Hundreds of different components, provided by numerous contractors and sub-contractors all must work perfectly to ensure that the Mars Science Laboratory makes it safely to Mars. Photo Credit: Alan Walters/awaltersphoto.com

New Planet Kepler-21b Confirmed From Both Space And Ground

The Kepler field as seen in the sky over Kitt Peak National Observatory. The approximate position of HD 179070 is indicated by the circle (sky imaged using a diffraction grating to show spectra of brighter stars, credit J. Glaspey; telescopes imaged separately and combined, credit P. Marenfeld)

[/caption]

Are you ready to add another planet to the growing list of discoveries? Thanks to work done by Steve Howell of the NASA Ames Research Center and his research team, the Kepler Mission has scored another. Cataloged as 21-b, this “new” planet measures about one and half times the Earth’s radius and no more than 10 times the mass… but its “year” is only 2.8 days long!

With such a speedy orbit around its parent star, this little planet quickly drew attention to itself. Kepler 21-b’s sun is much like our own and one of the brightest in the Kepler field. Given its unique set of circumstances, it required a team of over 65 astronomers (that included David Silva, Ken Mighell and Mark Everett of NOAO) and cooperation with several ground-based telescopes including the 4 meter Mayall telescope and the WIYN telescope at Kitt Peak National Observatory to confirm its existence.

At this point, observations place this hot little planet at about 6 million kilometers away from the parent star, where it has estimated temperatures of about 1900 K, or 2960 F. While this isn’t even anywhere near a life-supporting type of planet, Kepler 21-b remains of interest because of its size. The parent star, HD 179070, is just slightly larger than the Sun and about half its age. Regardless, it can still be seen with optical aid and it is only about 352 light years away from Earth.

Kepler light curve of HD 179070 showing the eclipse of Kepler-21b. The data cover 15 months. The figure shows the binned, and phase folded-data based on 164 individual transits over-plotted by the model fit (red line).

Why are findings like these exciting? Probably because a large amount of stars show short period brightness oscillations – which means it’s difficult to detect a planetary passage from a normal light curve. In this case, it took 15 long months to build up enough information – including spectroscopic and imaging data from a number of ground based telescopes – to make a confident call on the planet’s presence.

It ain’t easy being a little planet… But they can be found!

Original Story Source: NOAO News Release.

Good and Bad News Comes With NASA’s 2012 Budget

An Artist's Conception of the James Webb Space Telescope. Credit: ESA.

[/caption]

On November 14, President Obama signed an Appropriations bill that solidified NASA’s budget for fiscal year 2012. The space agency will get $17.8 billion. That’s $648 million less than last year’s funding and $924 million below what the President had asked for. But it’s still better than the $16.8 billion proposed earlier this year by the House of Representatives.

To most people, $17.8 billion is a huge amount of money. And it absolutely is, but not when you’re  NASA and have multiple programs and missions to fund. So where does it all go?

The bill highlights three major items when it comes to NASA’s budget. Of its total funding, $3.8 billion is set aside for Space Exploration. This includes research and development of the the Orion Multi-Purpose Crew Vehicle and Space Launch System, hopefully keeping both programs on schedule.

The Orion Multi-Purpose Crew Vehicle. Credit: NASA.

$4.2 billion has been allocated for Space Operations. This includes funds to tie up the loose ends of the Space Shuttle program, the end of which is expected to save more than $1 billion. The Space Operations budget, however, is $1.3 billion below last year’s level.

Coming to a very popular topic, the bill dedicates $5.1 billion to NASA Science Programs, a division that includes the James Webb Space Telescope. The JWST has garnered much attention this year, usually for being badly behind schedule and cripplingly over budget. Of the funding dedicated to Science Programs, $530 million is directed to the JWST project.

There’s a little problem hidden in this item in the bill. The $5.1 billion is just over the $150 million funding the Science Programs got last year. With $380 million on top of that increased promised to the JWST, where’s the money coming from? Other programs. As the bill says, “the agreement accommodates cost growth in the James Webb Space Telescope (JWST) by making commensurate reductions in other programs.” NASA will get the money for the telescope the only place it can – by cutting other programs.

This means potential major cuts to planetary programs since NASA’s manned program traditionally gets the most money. And understandably so. Aside from the real space enthusiasts who track robotic missions with gusto, an astronaut provides a great human link to space for the everyman. So even without an active manned program, it’s highly unlikely NASA will find the funds for the JWST program in its manned budget.

Planetary missions will likely take the hit. And a funding cut now could seriously affect NASA’s long range plans, such as its planned missions to Mars through 2020. Prospective missions to Europa will face difficulties too, a real shame since liquid water was recently discovered under the icy surface of that Jovian moon.

Unfortunately, NASA’s budget just can’t match its goals. For the near future, NASA will have to do what it can with what it’s got. As NASA Administrator Charles Bolden said in reference to the budget the House of Representatives originally proposed in February, it “requires us to live within our means so we can invest in our future.” Let’s all hope for some wise investing on NASA’s part.

Sources: “Summary: Fiscal Year 2012 Appropriations “Mini-Bus”, “2012 Budget is Set” from the Planetary Society.

Curiosity Mars Rover Launch Gallery – Photos and Videos

NASA’s Curiosity Mars Science Laboratory (MSL) rover blasts off on Nov. 26. NASA's 1 ton Curiosity Mars rover soars skyward lift bound for Mars atop the United Launch Alliance Atlas V rocket at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST on Nov. 26. Credit: Alan Walters/awaltersphoto.com

[/caption]

NASA’s Curiosity Mars Science Lab (MSL) rover is speeding away from Earth on a 352-million-mile (567-million-kilometer) journey to Mars following a gorgeous liftoff from Cape Canaveral Air Force Station, Florida aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. EST on Nov. 26.

Enjoy the gallery of Curiosity launch images collected here from the Universe Today team and local photographers as well as NASA and United Launch Alliance.

The historic voyage of the largest and most sophisticated Martian rover ever built by humans seeks to determine if Mars ever offered conditions favorable for the genesis of microbial life.

Curiosity Mars Science Laboratory rover soars to Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

“We are very excited about sending the world’s most advanced scientific laboratory to Mars,” NASA Administrator Charles Bolden said. “MSL will tell us critical things we need to know about Mars, and while it advances science, we’ll be working on the capabilities for a human mission to the Red Planet and to other destinations where we’ve never been.”

The mission will pioneer a first of its kind precision landing technology and a sky- crane touchdown to deliver the car sized rover to the foothills of a towering and layered mountain inside Gale Crater on Aug. 6, 2012.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

Curiosity Mars rover launch. Credit: Mike Deep/David Gonzales

The robot is equipped with a drill and scoop at the end of its robotic arm to gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover.

The 1 ton Curiosity rover sports a science payload that’s 15 times heavier than NASA’s previous set of rovers – Spirit and Opportunity – which landed on Mars in 2004. Some of the tools are the first of their kind on Mars, such as a laser-firing instrument for checking the elemental composition of rocks from a distance, and an X-ray diffraction instrument for definitive identification of minerals in powdered samples.

Curiosity rover bound for Mars punches through Florida clouds. Credit: Ken Kremer
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
Curiosity rover launches to Mars on Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News
A United Launch Alliance Atlas V rocket blasts off from Space Launch Complex-41 at 10:02 p.m. EST with NASA’s Mars Science Lab rover Curiosity. Credit: Pat Corkery/ULA
Credit: NASA/KenThornsley
Curiosity Mars Science Laboratory launches. Credit: ULA


Launch Video – Credit: Matthew Travis/Spacearium

MSL launch. Credit: Julian Leek
MSL launch. Credit: Julian Leek

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?
Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Canary Islands Antenna Being Modified to Boost Signal to Struggling Russian Mars Probe

Maspalomas station hosts a 15-metre antenna with reception in S- and X-Band and transmission in S-band. It is located on the campus of the Instituto Nacional de Tecnica Aerospacial (INTA), in the southern part of the Canary Islands' Gran Canaria, at Montaña Blanca.Credit: ESA

[/caption]

Editor’s note: Dr. David Warmflash, principal science lead for the US team from the LIFE experiment on board the Phobos-Grunt spacecraft, provides an update on the mission for Universe Today.

As part of an effort to improve communication with the Russian Space Agency’s Phobos-Grunt spacecraft, modifications are being made to a 15-meter dish antenna at Maspalomas station. Located in the Canary Islands off the Atlantic coast of North Africa, the station provides tracking, telemetry, and other functions in support of the European Space Operations Centre (ESOC) of the European Space Agency (ESA).

Last week, ESA succeeded in communicating with Phobos-Grunt on two successive days after a feedhorn antenna was added to an antenna near Perth, Australia similar to the facility in Maspalomas. Although this enabled the downloading of spacecraft telemetry, attempts later in the week to make renewed contact failed. After no attempts were made over the weekend, commands aimed at getting the spacecraft to boost its orbit were sent yesterday, also from Perth, but tracking this morning revealed that the commands had not been executed.

Launched November 9 from the Baikonur Cosmodrome, in Kazakhstan, Grunt is an unpiloted science probe built to travel to Phobos, the larger of Mars’ two small moons. On board is a science payload consisting of numerous instruments designed to elucidate the structure and origin of Phobos, the composition of its surface material, and possibly dust from Mars that may be present as well. A Chinese probe called Yinhuo-1 is to be delivered into orbit around Mars, while the rest of the payload is to land on the Phobosian surface. Some time after landing, a 200 gram sample of the surface is to be deposited into a capsule which then will launch for a journey back to Earth. Also traveling in the return capsule is the Planetary Society’s Living Interplanetary Flight Experiment (LIFE), which I helped to design. As with the Phobosian surface sample, the LIFE experiment will be valuable scientifically, only if the return capsule can be returned to Earth.

Although Phobos-Grunt was delivered into space nearly three weeks ago by a Zenit 2 rocket launch that appeared flawless, an upper stage rocket known as Fregat failed to ignite. This left the spacecraft in a low Earth orbit that improved as a result of the automated maneuvering, but that will decay by mid-January if the altitude is not boosted more significantly. Because a low orbit requires a spacecraft to move more swiftly with respect to the ground, communication is extremely limited due both to time and geometry. By allowing Maspalomas to operate similarly to Perth, but from its different location, both geometric and time factors affecting communication will be improved. Should this result in the spacecraft executing commands to climb to a higher orbit, further communication and diagnosis of spacecraft systems then would become much easier.

Learn more about the Maspalomas antenna here.

Could Curiosity Determine if Viking Found Life on Mars?

The landing site of Viking 1 on Mars in 1977, with trenches dug in the soil for the biology experiments. Credit: NASA/JPL

[/caption]

One of the most controversial and long-debated aspects of Mars exploration has been the results of the Viking landers’ life-detection experiments back in the 1970s. While the preliminary findings were consistent with the presence of bacteria (or something similar) in the soil samples, the lack of organics found by other instruments forced most scientists to conclude that the life-like responses were most likely the result of unknown chemical reactions, not life. Gilbert V. Levin, however, one of the primary scientists involved with the Viking experiments, has continued to maintain that the Viking landers did indeed find life in the Martian soil. He also now thinks that the just-launched Curiosity rover might be able to confirm this when it lands on Mars next summer.

Curiosity is not specifically a life-detection mission. Rather, it continues the search for evidence of habitability, both now and in the past. But is it possible that it could find evidence for life anyway? Levin believes it could, between its organics detection capability and its high-resolution cameras.

The major argument against the life-detection claims was the lack of organics found in the soil. How could there be life with no organic building blocks? It has since been thought that any organics were destroyed by the harsh ultraviolet radiation or other chemical compounds in the soil itself. Perchlorates could do that, and were later found in the soil by the Phoenix mission a few years ago, closer to the north pole of Mars. The experiments themselves, which included baking the soil at high heat, may have destroyed any organics present (part of the studies involved heating the soil to kill any organisms and then study the residual gases released as a result, as well as feeding nutrients to any putative organisms and analyzing the gases released from the soil). If Curiosity can find organics, either in the soil or by drilling into rocks, Levin argues, that would bolster the case for life being found in the original Viking experiments, as they were the “missing piece” to the puzzle.

So what about the cameras? Any life would have to be macro, of visible size, to be detected. Levin and his team had also found “greenish coloured patches” on some of the nearby rocks. (I still have a little booklet published by Levin at the time, “Color and Feature Changes at Mars Viking Lander Site” which describes these in more detail). When as a test, lichen-bearing rocks on Earth were viewed with the same camera system using visible and infrared spectral analysis, the results were remarkably similar to what was seen on Mars. Again, since then though, those results have been widely disputed, with most scientists thinking the patches were mineral coatings similar to others seen since then. Of course, there is also the microscopic imager, similar to that on the Spirit and Opportunity rovers, although microorganisms would still be too small to be seen directly.

Regardless, Levin feels that Curiosity just might be able to vindicate his earlier findings, stating “This is a very exciting time, something for which I have been waiting for years. At the very least, the Curiosity results may bring about my long-requested re-evaluation of the Viking LR results. The Viking LR life detection data are the only data that will ever be available from a pristine Mars. They are priceless, and should be thoroughly studied.”

365 Days of Astronomy Podcast to Continue for its 4th Year in 2012

I’m going to put on a different hat here and post something about the “other” website that’s been keeping me busy for the past three years, the 365 Days of Astronomy podcast. Our team is proud to announce that the podcast is continuing for another year in 2012. So, if you’ve been considering contributing a podcast to the 365 Days of Astronomy but just haven’t gotten around to it yet, here’s your chance.

I’ve said this before, but as far as we can tell, 365 Days of Astronomy is the most popular and successful user-generated podcast ever, as each podcast is heard thousands of times. If you’re looking to share your experiences, thoughts, feelings, discoveries, or anything about space and astronomy, this is an opportunity to find your voice and an audience to listen.

The past three years I’ve been the Project Manager for 365 Days, but we’ve hired a new PM, Avivah Yamani, an educator and writer who is involved extensively with astronomy communication to the public, so she’s perfect for the job! I’m not going anywhere, and am now an advising producer for the show.

How can you get involved? Visit the 365 Days of Astronomy’s “Join In!” webpage for more information. Below is our official press release:

The award-winning 365 Days of Astronomy Podcast is proud to announce the project will continue for yet another year – its fourth consecutive year — and is now accepting sign-ups for participants for more podcasts in 2012.

365 Days of Astronomy is a legacy project of the International Year of Astronomy (IYA), and in 2009 was a major project of the IYA. All the podcast episodes are written, recorded and produced by people all around the world.

“During the past three years, we’ve shared astronomy with the world, and we’ve heard from many different voices in astronomy – from professionals and amateurs to those who just enjoy the all the incredible discoveries and beautiful images of our Universe,” said Nancy Atkinson, who is now an advising producer for the project.

During the previous years, 365 Days of Astronomy published one podcast for every day of the year. In 2012, the podcast will combine new podcasts with “encore” editions of popular past shows.

The 365 Days of Astronomy podcast is now looking for individuals, organizations, schools, companies and clubs to submit 5 – 10 minutes of audio for the “new” daily podcasts which will air Monday-Friday. Participants can sign up to record just 1 episode or up to 12 episodes (one per month.)

People from every continent except Antarctica have submitted podcasts the past three years, and the 365 Days of Astronomy team encourages a more diverse population from even more countries to sign up for 2012.

To help facilitate that, 365 Day of Astronomy has a new Project Manager, who is based in Southeast Asia.

“We are hoping to increase our international voices, and have hired Avivah Yamani as our new project manager to help us in this goal,” said Dr. Pamela Gay, Executive Director of Astrosphere New Media, which is “home” to the 365 Days of Astronomy podcast. “As in previous years, we are looking to sign up a variety of participants, from amateur astronomers, classroom teachers and students to scientists, science bloggers and big media companies.”

2012 continues the Year of the Solar System, which marks an unprecedented flurry of robotic exploration of space, and is the perfect opportunity for more of the public to become involved in creating podcasts to share astronomy with the world.

The 365 Days of Astronomy has gained a wide audience, and each podcast is heard by 3,000 – 10,000 listeners. The project was awarded a Parsec Award in 2009 for “The Best Info-tainment” podcast in 2009, and was nominated for the “Best Fact Behind the Fiction” award in 2010.

The project is also asking individuals and organizations for financial support.

The podcast team also invites people and organizations to sponsor the podcast by donating $30 to support 1 day of the podcast, with your dedication appearing at the start of the show. For just $360, it is possible to sponsor 1 episode per month. Alternatively, you can also have a dedication message at the end of the show for a week, for a donation at the $100 level. These donations will help pay for editing, and posting of the podcasts.

For more information visit:

365 Days of Astronomy: http://365DaysOfAstronomy.org.

Astrosphere New Media: http://www.astrosphere.org/

Year of the Solar System: http://solarsystem.nasa.gov/yss/index.cfm

“Star Wars” Laser Methods Tracks Greenhouse Gases

A green laser was used to guide the invisible infrared beam from La Palma to Tenerife as part of an experiment to test a new satellite concept for measuring atmospheric greenhouse gases and turbulence. Credits: ESA

[/caption]

It may have looked like a futuristic scene from Star Wars, but ESA’s latest technique for aiding space exploration might shed some “green light” on greenhouse gases. A recent experiment involving the Spanish Canary Islands was conducted by shooting laser beams from a peak on La Palma to Tenerife. The two-week endeavor not only increased the viability of using laser pulses to track satellites, but increased our understanding of Earth’s atmosphere.

ESA runs an optical ground station in Tenerife for communications links with satellites. The facility is part of a larger astronomical installation Observatorio del Teide run by Instituto de Astrofisica de Canarias. Credit: ESA
Known as infrared differential absorption spectroscopy, the laser method is an accurate avenue to measure trace gases such as carbon dioxide and methane. It is accomplished by linking two Earth-orbiting satellites – one a transmitter and the other a receiver – and examining the atmosphere as the beam passes between the two. As satellites orbit, they both rise and set behind Earth and radio occultation occurs. It’s a time-honored way of employing microwave signals to measure Earth’s atmosphere, but new wave thinking employs shortwave infrared laser pulses. When the correct wavelength is achieved, the atmospheric molecules impact the beam and the resultant data can then be used to establish amounts of trace gases and possibly wind. By different angular repetitions, a vertical picture can be painted which stretches between the lower stratosphere to the upper troposphere.

While it all sounded good on paper – the proof of a working model is when it is tested. Enter ESA’s optical ground station on Tenerife – a facility built on a peak 2390 meters above sea level and part of a larger astronomical installation called the Observatorio del Teide run by the Instituto de Astrofisica de Canarias (IAC).With equipment placed on two islands, the Tenerife location offered the perfect setting to install receiver hardware grafted to the main telescope. The transmitter was then assigned to a nearly identical peak on La Palma. With nothing but 144 kilometers of ocean between them, the scenario was ideal for experimentation.

Over the course of fourteen days, the team of researchers from the Wegener Center of the University of Graz in Austria and the Universities of York and Manchester in the UK were poised to collect this unique data.

The Observatorio del Roque de los Muchachos on the island of La Palma housed the equipment to transmit the infrared signal and green guidance laser across the Atlantic Ocean to the receiving station in Tenerife. The experiment was carried out to test a new satellite mission concept for measuring concentrations of atmospheric carbon dioxide and methane. Credit: ESA
While the infrared beam wasn’t visible to the unaided eye, the green guidance laser lit up the night during its runs to record atmospheric turbulence. Gottfried Kirchengast from the Wegener Center said, “The campaign has been a crucial next step towards realising infrared-laser occultation observations from space. We are excited that this pioneering inter-island demonstration for measuring carbon dioxide and methane was successful.”

Armin Loscher from ESA’s Future Mission Division added, “It was a challenging experiment to coordinate, but a real pleasure to work with the motivated teams of renowned scientists and young academics.” The experiment was completed within ESA’s Earth Observation Support to Science Element.

Nice shootin’!

Original Story Source: ESA News Release.