Leonid Meteor Shower Peaks – November 17-19, 2011

Leonid meteors seen from 39,000 feet aboard an aircraft during the 1999 Leonids Multi-Instrument Aircraft Campaign (Leonid-MAC). Comet Tempel-Tuttle provides the cometary debris for the Leonid meteor storm, which takes place in mid-November. Credit: NASA/ISAS/Shinsuke Abe and Hajime Yano

[/caption]

Are you ready for a good, predictable meteor shower? Then break out your favorite skywatching gear because the 2011 Leonid meteor shower is already sparkling the skies…

In the pre-dawn hours on the mornings of November 17-19th, the offspring of Comet Temple/Tuttle will be flashing through our atmosphere at speeds of up to 72 kilometers per second – and enticing you to test your meteor watching skills against partially moonlit skies. Although the waning Moon will greatly interfere with fainter meteor trails, don’t let that stop you from enjoying early evening observations, or enjoying your morning coffee with a handful of “shooting stars” which will be emanating outward from the constellation of Leo.

Where in the skies do you look? For all observers the constellation of Leo is along the ecliptic plane and will be near its peak height during best viewing times. When? Because of the Moon, earlier evening observations are favored (before local midnight), but just a couple of hours before local dawn is the best time to watch. Why? Read on!

Although it has been a couple of years since Temple/Tuttle was at perihelion, don’t forget that meteor showers are wonderfully unpredictable and the Leonids are sure to please with fall rate of around 20 (average) per hour. Who knows what surprises it may bring! Each time the comet swings around our Sun it loses some of its material in the debris trail. Of course, we all know that is the source of a meteor shower, but what we don’t know is just how much debris was shed and where it may lay.

“The Moon is going to be a major interference, but we could see a rate of about 20 per hour,” said Bill Cooke, head of NASA’s Meteoroid Environments Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “Some models, including ours, indicate that particles may encounter Earth on November 16 at around 5:30 p.m. EST [2230 GMT], where we could see anywhere from 100 to 200 meteors per hour. So, we could get a Leonid outburst, but unfortunately it is not favorably placed for viewing from the United States.”

As our Earth passes through the dusty matter, it may encounter a place where the comet let loose with a large amount of its payload – or it may pass through an area where the “comet stuff” is thin. We might even pass through an area which produces an exciting “meteor storm” like the Leonids produced in 1883! For those in the know, the Leonid meteor shower also made a rather incredible appearance in 1866 and 1867 – dumping up to 1000 (not a typo, folks) shooting stars recorded even with a Moon present! It erupted again in 1966 and in 1998 and produced 3000 (yep. 3000!) video recorded meteors during the years of 2001 and 2002. But remember, human eyes may only be able to detect just a few. So what’s a realistic guess?

According to Cooke; “We could see rates of about five meteors per hour,” he explained. “If people want to see the Leonids, it might be good to watch the nights of November 16th and 17th. Instead of just going out one night, you might want to go out twice.”

Chart Courtesy of "Your Sky"

And to make this year’s show twice as nice, you’ll have a hard time not being distracted with the Moon and Mars being right on the radiant! You won’t be able to miss the Red Planet as the Moon slides along south… First to Mars’ west and then to the east on the nights of November 18th and 19th.

What a terrific show!

Saturn’s Moon Plays Hide-and-Seek With Cassini

Enceladus and Epimetheus as seen by Cassini on October 1, 2011.

[/caption]

Taken during the Cassini spacecraft’s October 1 flyby of Saturn’s ice-spewing moon, this image – released today – shows a crescent-lit Enceladus with southern geysers in action… and the much smaller Epimetheus peeking out from behind!

Epimetheus

The 70-mile (113-km) -wide Epimetheus is dwarfed by its larger sibling Enceladus, which is 313 miles (504 km) in diameter… about the width of the state of Arizona.

One of the most reflective objects in the solar system, Enceladus appears to be casting some reflected light onto Epimetheus as well. (Image processors at the Cassini Imaging Lab have brightened the moons by a factor of 1.8 relative to the rings in order to bring out detail.)

Some bright clumps of material can also be seen orbiting within Saturn’s rings at upper left, possibly stirred up by the movement of the shepherd moon Pan.

See this and more images at the CICLOPS site here.

Image credit: NASA / JPL / Space Science Institute.

 

 

Exploring the Atmosphere of Exoplanet WASP-14b

Conceptual orbit of WASP 14b system. Credit: SuperWASP team
Conceptual orbit of WASP 14b system. Credit: SuperWASP team

[/caption]

First discovered in 2008, WASP 14b is an interesting exoplanet. It is roughly seven times as massive as Jupiter, but only 30% larger, making it among the densest known exoplanets. Recently, it was the target of observations from the Spitzer space telescope which was able to pick out the infrared radiation emitted by the planet and is giving astronomers new clues to how the atmospheres of Hot Jupiters function, contradicting expectations based on observations of other exoplanet atmospheres.

Images of the system were taken by a team of astronomers led by Jasmina Blecic and Joseph Harrington at the University of Central Florida. The team took images using three filters which allowed them to analyze the light at specific wavelengths. The brightness in each one was then compared to predictions made by models of atmospheres which included molecules such as H2O, CO, CH4, TiO, and VO as well as more typical atmospheric gasses like hydrogen, oxygen, and nitrogen.

While not having a large number of filters wouldn’t allow the team to conclusively match a specific model, they were able to confidently rule out some possible characteristics. In particular, the team rules out the presence of a layer of atmosphere that changes sharply in temperature from the regions directly around it, known as a “thermal inversion layer”. This comes as quite a surprise since observations of other hot Jupiters have consistently shown evidence of just such a layer. It was believed that all hot Jupiter type exoplanets should feature them if their atmospheres contained TiO or VO, molecules which filter out visible light. If they were present at a specific altitude, then that sudden layer of absorption would create a sudden shift in the temperature. The lack of this layer supports a 2009 study which suggested that such heavy molecules should settle out of the atmosphere and not be responsible for the thermal inversion layers. But this leaves astronomers with a fresh puzzle: If those molecules don’t cause them, then what does?

The team also found that the planet was brighter than expected when it was near the full phase which suggested that it is not as capable of redistributing its heat as some other exoplanets have been found to be. The team also confirmed that the planet has a notably elliptical orbit, despite being close to the star which should circularize the orbit. The astronomers that originally made the discovery of this planet postulated that this may be due to the presence of another planet which had a recent interaction that placed WASP 14b into its present orbit.

Soyuz Launches to Station amid Swirling Snowy Spectacular

Blastoff of Soyuz TMA-22 amidst swirling snowstorm at 11:14:03 p.m. Nov. 13 from Baikonur Cosmodrome, Kazakhstan. The three man crew comprised NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin. Credit: NASA/Roscosmos

[/caption]

The future survival and fate of the International Space Station was on the line and is now firmly back on track following today’s (Nov. 13) successful, high stakes liftoff of a Russian Soyuz rocket carrying a three man crew of two Russians and one American bound for the orbiting research platform, amidst the backdrop of a spectacular snowstorm swirling about the Baikonur Cosmodrome in Kazakhstan – rare even by Russian standards.

The international crew comprises Expedition 29 Flight Engineer Dan Burbank from NASA – veteran of two prior shuttle missions to the station in 2000 and 2006 – and Anton Shkaplerov and Anatoly Ivanishin from Russia. It’s the rookie flight for both Russian cosmonauts.

Soyuz TMA-22 lifts off under near blizzard conditions on Nov.13. Credit: NASA/Roscosmos

This is the first flight of a manned Soyuz-FG rocket – and of humans to space – since NASA’s Space Shuttle was forcibly retired in July and the subsequent failure of a virtually identical unmanned Soyuz-U booster in August which grounded all Russian flights to the ISS and threatened to potentially leave the station with no human presence aboard.

Snowy Soyuz TMA -22 blast off on Nov.13. Credit: Roscosmos

The trio of space flyers soared to the heavens at 11:14:03 p.m. EST Sunday Nov. 13 (11:14:03 a.m. Baikonur time Monday, Nov. 14) abroad their Soyuz TMA-22 capsule which was mounted atop the 50 meter tall Soyuz rocket.

Blastoff occurred precisely on time at about the time when the frigid, snow bedecked launch pad rotated into the plane of the orbit of the ISS. The launch was carried live on NASA TV and the ship quickly disappeared from view behind the nearly blinging blizzard.

The Soyuz TMA-22 achieved orbital insertion some nine minutes later into an initial 143 by 118 mile orbit, inclined 51 degrees to the equator.

The vehicles antennae’s and solar arrays were quickly deployed per plan and all spacecraft systems were functioning perfectly according to Russian Ground Control in Moscow.

Soyuz TMA-22 launches in spectacular snowstorm on Nov. 13 with Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia. Credit: NASA/Joe Acaba

Following a two day orbital chase and three course correction burns the future ISS residents are due to dock at the Russian Poisk module at the complex at about 12:33 a.m. EST on Wednesday, Nov. 16.

In the hours prior to launch the crew received a religious blessing from the Russian Orthodox Church, took the bus for the 25 mile trip to the Cosmodrome, donned their white Sokol launch and entry suits and headed to the pad.

The crew boarded the capsule in the midst of an extremely heavy snow storm which struck the Baikonur region of Kazakhstan in the evening prior to launch. See photo from backup NASA astronaut Joe Acaba.

Soyuz TMA-22 crew boards capsule amidst snowstorm at Baikonur. Credit: NASA/Joe Acaba

Although snow is quite common at this time of year, the blizzard conditions at launch time were actually quite rare according to NASA spokesman Rob Navias at Baikonur.

American rockets would never blast off in such severe weather conditions – but it’s nothing for the Russians!

The temperature was about 24 F, roughly 6 inches (15 cm) of snow had accumulated on the ground at launch time and moderate wind gusts partially obscured the view.

For the first time ever, a Soyuz crew was dressed in parkas – See Joe Acaba twitpic below !

Gantry towers were retracted from the three stage Soyuz booster at about T minus 25 minutes. The umbilical’s retracted in the final seconds.

The three stage Soyuz-FG rocket lifted off from Launch Pad 1 (LC-1), the same pad from which Cosmonaut Yuri Gagarin flew as the first human to space 50 Years ago this year. The pad is named “Gagarin Start” in honor of Gagarin’s courageous achievement on April 12, 1961.

The rocket was fueled with kerosene (RP-1) and cryogenic liquid oxygen.

The ISS was flying some 248 miles above the Pacific Ocean and just west of Chile at launch time.

On the way to the Pad. Snow is falling. First time crew has had to wear these overcoats/parkas. All is go so far. Twitpic and comment from NASA astronaut Joe Acaba at Baikonur

The importance of the TMA-22 mission cannot be overstated because it restored confidence in Russian rockets which now serve as the world’s only pathway for providing human access to the $100 Billion earth orbiting outpost.

The cramped Soyuz capsule measures just 2.2 m wide by 2.1 m high and weighs 2200 kg.

Today’s critical launch had been delayed be nearly two months from September 22, following the failure of a nearly identical Soyuz-U booster in August which was carrying the Progress 44 cargo resupply spacecraft and crashed ignominiously in Siberia after the third stage shut down unexpectedly.

The Progress 44 was loaded with nearly 3 tons of supplies and was bound for the ISS.

The third stage is nearly identical for both the manned and unmanned versions of the normally highly reliable Soyuz booster rocket.

The launch came only after a thorough review of the causes of the accident by a special State Commision- which was traced to a clogged fuel line – introduction of new quality control measures and careful inspection of all the engines.

“We have no doubt in our minds both the rocket and the vehicle are ready, all the activities have been done at the appropriate level of quality and reliability,” said Vladimir Popovkin, Head of Roscosmos, the Russian Federal Space Agency, prior to liftoff.

Expedition 29 Flight Engineer Satoshi Furukawa, Commander Mike Fossum and Flight Engineer Sergei Volkov watch their new crew mates launch on time from inside the Destiny laboratory. Credit: NASA TV

The new crew will join the other half of Expedition 29 already in residence aboard the ISS; Expedition 29 Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia). This will temporarily restore the ISS to a full complement of 6 crewmembers – but only for a few days.

Fossum will hand over command of the station to the new crew within four days. His crew departs the ISS for Earth reentry on Nov. 21.

The successful launch means that the ISS will not have to be left unmanned for the first time since continuous manned occupation began over 11 years ago and which would have placed the station at risk in case of failures requiring human intervention.

Burbank, Shkaplerov and Ivanishin will spend 5 months aboard the station. They will be joined in December by the next trio to round out Expedition 30

Prelaunch photo of Soyuz-TMA-22/Expedition 29 crew - NASA astronaut Dan Burbank and Russian cosmonauts Anton Shkaplerov and Anatoly Ivanishin Credit: Roscosmos

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport

The Holidays Are Coming! A Beginner’s Guide to Telescopes

The holidays are fast approaching, and you may be looking for gift ideas for your friends, loved ones and even yourself. Are you considering buying a telescope this year?

There are many different types of astronomical telescope available on the market and for the beginner, selecting one can be a bewildering experience. Before buying a telescope it is important to ask yourself: What objects do you want to see through your new telescope and how much can the person buying it afford to pay?

Not all telescopes are the same nor do they give the same results. Many amateur astronomers have two or more different telescopes for different types of observing, but there are some which offer a good compromise and most objects can be seen through them.

Once you have decided on the telescope’s main purpose and what you want to see through it, choosing one can become much easier. With the exception of the Moon, planets and close star clusters, interesting night sky objects are faint; in fact most will appear as just points of light. As a new observer you may be mainly interested in viewing the Moon and planets, and if this is the case, a telescope with a small objective (primary mirror or lens) may be sufficient.

Most observers quickly graduate to galaxies, nebulae, globular clusters, open clusters etc. To view these objects you will require a telescope with the largest aperture that is possible for your circumstances, which includes things like cost, weight, portability, etc.

Below are the 3 main types of telescope worth considering as a beginner:

Newtonian reflector telescopes are a popular choice for astronomical use because they have the lowest cost per inch of aperture. Observations of faint deep sky objects, such as Galaxies and Nebulae, can be achieved at a relatively reasonable cost by reflectors with mirror diameters of 150 to 200mm (6 to 8 inches).

Celestron Astromaster 130

Refractor telescopes are good for achieving high power and contrast when viewing the planets and the moon. They have a reputation of providing crisp, sharp-quality images. Since they are virtually maintenance free, they are easy to operate, but due to high costs for the large aperture scopes, most beginners will choose a Newtonian reflector as a first scope for all round astronomy. Short-tube refractors are now another low cost option for beginners. Their smaller size makes them an excellent choice for a portable telescope and the beautiful wide-field star vistas which they provide are great for learning your way around the night sky.
Bresser Refractor Telescope

Dobsonian Telescopes are one of the best choices for a general telescope and have many advantages including simplicity, economy and large light gathering ability. Dobsonians are actually large Newtonian telescopes on a simple manual Alt/ Az (Up, down, side to side) mount. Due to the mount and optical tube assembly being so simple, Dobsonian telescopes are the most economical on a cost per inch basis. This enables massive apertures being made affordable, bringing fainter objects within the grasp of the amateur and usually well within budget with mirror diameters from 150mm to 400mm (6 to 16 inches) or much larger.
Dobsonian Telescope
The Meade 16" LightBridge

Another consideration when choosing a telescope is the mount – the part the optical tube assembly sits on. Usually a tripod with a head containing manual or motorised controls, which point the telescope and track an object observed.

The three main types are:

Equatorial – Usually found paired with all telescopes apart from Dobsonians. Equatorial mounts enable the telescope to follow the rotation of the sky with on axis parallel to the Earth’s axis of rotation. They can also be used in a basic manual mode which can be manually moved by hand in the Altitude (up/down) and Azimuth (left/right) axis. Many higher end mounts have computers and GoTo systems incorporated which are almost essential for astrophotography.

Hand operated Manual Alt/ Az (Altitude/ Azimuth) – Usually found on very cheap or small telescopes, Dobsonian telescopes, binocular mounts and photographic tripods. Simple and easy to use, however they do not track objects across the sky.

GoTo or Computerised – Found on many mid to high range telescopes of all sizes and extremely popular with astrophotographers and imagers. Unfortunately many beginners are drawn to the sexy marketing of scopes that are computerised and this can be an expensive mistake. Personally I believe it to be better to use manually guided telescopes when starting out instead of jumping in straight away with computerised ones. It is much better to concentrate on good optics and a solid mount rather than waste lots of money on often complicated and unnecessary electronics. For more info on mounts and GoTo Systems see the Beginners Guide to GoTo

Hopefully this guide has given you more insight into the complicated world of telescopes, and enable you to make a better decision when buying your new telescope. Your new purchase should be one that you can enjoy and get the most out of for many years.

Seeing the Phases of Exoplanets

Phases of Venus. Image credit: ESO

[/caption]

Everyone is familiar with the fact that the moon changes phases. But what many don’t know is that planets also go through phases. Shown above are the phases for Venus. We look inwards on Venus from a more distant vantage point in our solar system, but in principle, planets in other solar systems would also go through phases as they orbited. While we are far too distant to resolve these phases any time soon, the percentage of reflected light may give clues about the size, composition, and atmosphere of a potential planet.

A new study by astronomers at the University of Bordeaux in France, analyzes differences in the way light would be reflected from various exoplanet configurations.

In a previous paper by the same team, they had analyzed how much light planets at different phases should reflect in different wavelengths of light in the infrared. Planets with atmospheres showed significant lack of emission at some wavelengths while rocky planets with no atmosphere reflected most strongly at one wavelength and faded smoothly off. The heavier the atmosphere, the more pronounced this effect was. As such, the team concluded that simply by looking at the reflected light in a few wavelengths, they could quickly determine whether the planet were likely to have an atmosphere.

The new paper adds to this by exploring what the effects of properties such as stellar type, orbital distance, radius of the planet, and inclination would have on these observations. They found that the presence of an atmosphere made determining many of these properties more difficult since it would be able to retain heat and reradiate it different manners instead of simply reflecting.

Rocky, airless planets were simpler and the light curves could be used more directly to determine the radius of the planet with an accuracy of about 10% with an instrument such as the James Webb Space Telescope. The orbital inclination could be narrowed down to within 10°. Currently, the only way astronomers can determine this property is if the planet is in the narrow ranges of inclination that allow it to transit the star, so while observing the phases to determine this property leaves large uncertainties, it is a start at the very least. These observations could also be used to determine the albedo, or reflectivity of the planet. This property could be used to help constrain the possible chemicals on the surface or in the atmosphere.

Different Supernovae; Different Neutron Stars

Artist concept of a neutron star. Credit: NASA
Artist concept of a neutron star. Credit: NASA

[/caption]

Astronomers have recognized various ways that stars can collapse to undergo a supernova. In one situation, an iron core collapses. The second involves a lower mass star with oxygen, neon, and magnesium in the core which suddenly captures electrons when the conditions are just right, removing them as a support mechanism and causing the star to collapse. While these two mechanisms make good physical sense, there has never been any observational support showing that both types occur. Until now that is. Astronomers led yb Christian Knigge and Malcolm Coe at the University of Southampton in the UK announced that they have detected two distinct sub populations in the neutron stars that result from these supernova.

To make the discovery, the team studied a large number of a specific sub-class of neutron stars known as Be X-ray binaries (BeXs). These objects are a pair of stars formed by a hot B spectral class stars with hydrogen emission in their spectrum in a binary orbit with a neutron star. The neutron star orbits the more massive B star in an elliptical orbit, siphoning off material as it makes close approaches. As the accreted material strikes the neutron star’s surface it glows brightly in the X-rays, becoming, for a time, an X-ray pulsar allowing astronomers to measure the spin period of the neutron star.

Such systems are common in the Small Magellanic Cloud which appears to have a burst of star forming activity about 60 million years ago, allowing for the massive B stars to be in the prime of their stellar lives. It is estimated that the Small Magellanic Cloud alone has as many BeXs as the entire Milky Way galaxy, despite being 100 times smaller. By studying these systems as well the Large Magellanic Cloud and Milky Way, the team found that there are two overlapping but distinct populations of BeX neutron stars. The first had a short period, averaging around 10 seconds. A second group had an average of around 5 minutes. The team surmises that the two populations are a result of the different supernova formation mechanisms.

The two different formation mechanisms should also lead to another difference. The explosion is expected to give the star a “kick” that can change the orbital characteristics. The electron-captured supernovae are expected to give a kick velocity of less than 50 km/sec whereas the iron core collapse supernovae should be over 200 km/sec. This would mean the iron core collapse stars should have preferentially longer and more eccentric orbits. The team attempted to discern whether this too was supported by their evidence, but only a small fraction of the stars they examined had determined eccentricities. Although there was a small difference, it is too early to determine whether or not it was due to chance.

According to Knigge, “These findings take us back to the most fundamental processes of stellar evolution and lead us to question how supernovae actually work. This opens up numerous new research areas, both on the observational and theoretical fronts.

Another AMAZING Space Station Timelapse — with Aurora

What more can we say? The view from the International Space Station is incredible, and this latest time-lapse sequence of photographs was put together by Michael König. These views are taken with a special low-light 4K-camera now on the Space Station, and covers August to October, 2011. The crews of expedition 28 & 29 were behind the camera, while König refurbished, smoothed, retimed, denoised, deflickered, and cut, etc. You can see all the images taken with this new camera at the Image Science & Analysis Laboratory website, The Gateway to Astronaut Photography of Earth

Soyuz Poised for High Stakes November 13 Blastoff – Space Stations Fate Hinges on Success

The Soyuz TMA-22 spacecraft and its booster were moved to the launch pad at the Baikonur Cosmodrome in Kazakhstan on a railcar on November 11, 2011, for final preparations prior to launch to the International Space Station on November 14, Baikonur time. Credit: Roscosmos

[/caption]

The stakes could not be higher for the Russian Soyuz rocket now poised at the launch pad at Baikonur in Kazakhstan and which will loft the next trio of space flyers to the International Space Station on Sunday, Nov. 13. This is the first flight of a manned Soyuz rocket since the Space Shuttle was retired in July and the subsequent failure of an unmanned Soyuz booster in August of this year.

The booster was rolled out to the pad on Friday (Nov. 11) and the very fate of the Space Station and the partners $100 Billion investment hinges on a successful blastoff of the venerable Soyuz – which dates back to cosmonaut Yuri Gagarin and the inauguration of human spaceflight 50 years ago. This launch must succeed in order to keep a human presence aboard the ISS and comes in the wake of an upper stage failure days ago that left Russia’s ambitious Phobos-Grunt Mars mission stranded in Earth orbit and potentially doomed. See the Soyuz rollout video and pictures below

The Soyuz rocket and spacecraft were rolled out on a rail car at Baikonur


Video Caption – Rollout of Soyuz TMA-22 spacecraft and booster to Baikonur launch pad in Kazahkstan.

Following the August 24 launch failure and crash of a Soyuz rocket carrying the Progress 44 cargo resupply vehicle to the ISS, Russia’s manned space program was grounded because the third stage of the Soyuz rocket which malfunctioned is virtually identical for both the manned and unmanned versions.

Since NASA was forced to shut down the Space Shuttle program, the Russian Soyuz rocket and capsule are the sole method of transport to the ISS. Thus, American astronauts have no choice but to hitch a ride with the Russians.

No American replacement spacecraft will be ready for humans until 2014 at the very earliest. And significant NASA budget cuts are likely to delay the introduction of the proposed “space taxis” by several more years.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Liftoff off the three man crew aboard the Soyuz-TMA 22 capsule from the Baikonur Cosmodrome in Kazakhstan is slated for 11:14 p.m. EST Sunday Nov. 13 (11:14 a.m. Baikonur time Monday, Nov. 14) aboard the Soyuz TMA-22 spacecraft.

Originally, the launch of the Soyuz TMA-22 crew had been scheduled for September 22 but was immediately put on indefinite hold following the August 24 crash.

Russia promptly announced the formation of a special state commission to investigate the failure, which rapidly traced the malfunction to a clogged fuel line and instituted fixes and stricter quality control measures.

Fortunately, the program got back on track 10 days ago when the Soyuz rocket for the unmanned Progress 45 cargo ship successfully blasted off from the Baikonur Cosmodrome on Oct. 30, 2011 and docked two days later at the ISS.

Soyuz TMA-22 rolls on railcar to the launch pad at the Baikonur Cosmodrome. Credit: Roscosmos

Soyuz TMA-22 poised at Baikonur launch pad. Credit: Roscosmos

The international trio of new ISS residents consists of Expedition 29 Flight Engineer Dan Burbank from NASA and Anton Shkaplerov and Anatoly Ivanishin from Russia.

After a 2 day chase, they are due to link up with the ISS when their spacecraft docks to the Poisk mini-research module at 12:33 a.m. Wednesday.

When Burbank, Shkaplerov and Anatoly Ivanishin dock they will join the other trio of Expedition 29 crewmembers already aboard the ISS; Expedition 29 crewmates Commander Mike Fossum (NASA) and Flight Engineers Satoshi Furukawa (Japan) and Sergei Volkov (Russia) – and temporarily restore the ISS to a full complement of 6 crewmembers.

Soyuz TMA-22 crew meet journalists before blastoff. Credit: Roscosmos

But the full ISS staffing will be short-lived, because Fossum, Furukawa and Volkov will hand over all ISS duties to the new crew and undock their Soyuz TMA-02M capsule from the Rassvet research module on Nov. 21 and depart for Earth reentry and landing in Kazakhstan hours later.

The Soyuz TMA-22 poised at Baikonur launch pad will carry Soyuz Commander Anton Shkaplerov, Expedition 30 Commander Dan Burbank of NASA and Russian Flight Engineer Anatoly Ivanishin to the complex. The trio will spend almost five months on the station. Credit: Roscosmos

The new crew of three must reach the ISS before the current trio departs or the ISS would be left unmanned for the first time in over 11 years.

Read Ken’s continuing features about Russian Space Programs including Soyuz, Progress, Phobos-Grunt and Soyuz in South America starting here:
Success ! Launch Video of Crucial Russian Rocket to ISS puts Human Flights back on Track
Russians Race against Time to Save Ambitious Phobos-Grunt Mars Probe from Earthly Demise
Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off
Video Duet – Soyuz Debut Blast off from the Amazon Jungle and Rockin’ Russian Rollout !
Historic 1st Launch of Legendary Soyuz from South America
Russian Soyuz Poised for 1st Blastoff from Europe’s New South American Spaceport