Every Way Devised to Deflect an Asteroid

Concept for a possible gravity tractor. Credit: JPL

With asteroid 2005 YU55 passing close by Earth yesterday, this rather unsettlingly near flyby has many people wondering if we would be able to divert an asteroid that was heading for an intersection with Earth in its orbit.

Of course, as natural disasters go, an asteroid strike on Earth would be extremely bad. Even relatively small space rocks could wipe millions of people off the face of the planet, and for the really big asteroids – like the one that caused the Chicxulub event 65 million years ago – it’s unlikely that humanity would survive. And yet, for all their devastation, asteroids offer a glimmer of hope. An asteroid strike is preventable, given we have the time to deal with it.

“Today no known asteroid is on a collision course with the Earth,” said Dr. David Morrison from NASA’s Near Earth Object (NEO) Program, in a report a few years ago from the Spaceguard Survey that looks for close passing objects. “The Spaceguard Survey does not expect to find any large asteroid that directly threatens us. If, however, such a rock is discovered on a collision course, then we anticipate that we would apply appropriate technology to deflect it before it hits. Asteroid impacts are the only natural hazard that we can, in principle, eliminate entirely.”

There are a few different ways to change an asteroid’s orbital path, but what’s the best way to do it?

First, let’s talk a little about what we’re dealing with. A Near Earth Object is an asteroid or comet whose orbit enters the Earth’s neighborhood – anything that orbits within 195 million kilometers (120 million miles) of Earth’s orbital vicinity. Some objects have been traveling with us for millions years, weaving in and out of our orbital path. Eventually, one of these objects is going to be at the wrong place at the wrong time and impact the Earth.

This chart shows how data from NASA's Wide-field Infrared Survey Explorer, or WISE, has led to revisions in the estimated population of near-Earth asteroids. Credit: NASA/JPL-Caltech

Astronomers everywhere are aware of the problem, and there are several surveys underway to discover and catalog all of the potential Earth crossing asteroids, such as the Spaceguard Survey, working to discover all of the near Earth asteroids larger than 1 km in diameter. Rocks above this size have the potential to end civilization as we know it, so it would be good to know if any of them are heading our way.

But objects as small as 140 meters across will cause regional damage, and even the death of millions if one happens to strike a major city. These smaller rocks are a priority too.

As of November 03, 2011, 8,421 Near-Earth objects have been discovered. Some 830 of these NEOs are asteroids with a diameter of approximately 1 kilometer or larger. Also, 1,262 of these NEOs have been classified as Potentially Hazardous Asteroids that have the potential to make close approaches to the Earth, with a size large enough to cause significant regional damage in the event of impact.

Additionally, recent results from NASA’s Wide-field Infrared Survey Explorer, or WISE spacecraft – which with the other surveys has helped find about 90 percent of the largest near-Earth asteroids — astronomers now estimate there are roughly 19,500 mid-size near-Earth asteroids out there, meaning the majority of these mid-size asteroids remain to be discovered. These are objects between 100 and 1,000 meters (330 and 3,300-feet) wide.

Astronomers are working to create a comprehensive list of every dangerous space rock out there. What if there’s an asteroid with our name on it? What action can we take to reach out and destroy it, or at least change its trajectory away from a collision with the Earth?

We’re not talking about an Armageddon or Deep Impact scenario here; there’s no way to stop an asteroid that’s going to impact us in just a few months — we don’t know how and don’t have the technology. But let’s say we’ve got a few decades warning.

How could we stop it?

NASA's Deep Impact probe hits Comet Tempel 1 (NASA)

Former Apollo astronaut Rusty Schweickart has talked with Universe Today numerous times, and emphasizes that the technology needed to divert an asteroid exists today. “That is, we do not have to go into a big technology development program in order to deflect most asteroids that would pose a threat of impact,” he said. “However, that technology has not been put together in a system design, and not been verified, tested or demonstrated that it could actually deflect an asteroid. So, we need to test everything – test the very sequence we would use for a deflection campaign.”

The best way to test it would be to have NASA, or perhaps a consortium of space agencies, carry out an actual mission to test the entire system.

“Not with an asteroid that threatens an impact,” said Schweickart, “but with an asteroid that is just minding its own business, and we’d have the opportunity to show we can change its orbit slightly in a controlled way.”

Schweickart described two types of “deflection campaigns” for a threatening asteroid: a kinetic impact would roughly “push” the asteroid into a different orbit (a bigger version of what happened with the Deep Impact spacecraft) and a gravity tractor or space tug would slowly pull on the asteroid to precisely trim the resultant change course by using nothing more than the gravitational attraction between the two bodies. Together these two methods comprise a complete deflection campaign, using existing technology.

What are some other options?

Blow it up with nukes
Every Hollywood story dealing with asteroids always involves packing nuclear warheads on board a spaceship and then flying out to blow up the asteroid. Kaboom! Problem solved? Not exactly. The science in these movies is misleading at best, and probably just plain wrong.

Plus, as Schweickart stresses, this is probably a really bad idea. He believes that there the problem of creating many smaller and just as deadly pieces of rock by blowing up a large asteroid (and it might actually increase its destructive power.) But in a report put out by the National Research Council in 2010, scientists admit that nuclear explosions are the only current, practical means for dealing with large NEOs (diameters greater than 1 kilometer) or as a backup for smaller ones if other methods were to fail.

There’s one additional legal catch. Article IV of the Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies prohibits countries from using nukes in space. Conventional explosives are permitted, but they just aren’t as effective. But Schweickart worries that NASA may be open to manipulation to put forward the proliferation of space-based nuclear weapons under the guise of international “safety.”

*Update: That said, another mitigation plan also involves nuclear weapons, and is called Nuclear Ablation. This would involve detonating a nuke in close proximity to an asteroid and the radiation vaporizes its surface generating an explosive thrust and a change in velocity in response.

In their 2007 NEO Workshop Report NASA’s Program Analysis and Evaluation determined that such an approach would be 100 times more effective than a kinetic impactor.

Use a Solar Sail

For a more elegant idea rather than blowing it up, physicist Gregory Matloff has studied the concept of using a two-sail solar photon thruster which uses concentrated solar energy. One of the sails, a large parabolic collector sail would constantly face the sun and direct reflected sunlight onto a smaller, moveable second thruster sail that would beam concentrated sunlight against the surface of an asteroid. In theory, the beam would vaporize an area on the surface to create a aerojet of materials that would serve as a propulsion system to alter the trajectory of the NEO.


Tie them Up

Back in 2009 David French, a doctoral candidate in aerospace engineering at North Carolina State University, had the idea of attaching ballast to an asteroid with a tether. By doing this, French explains, “you change the object’s center of mass, effectively changing the object’s orbit and allowing it to pass by the Earth, rather than impacting it.”

Mirror Bees

Another more elegant technique also uses concentrated light to gently move an asteroid. This project, which has been sponsored by the Planetary Society, is called “Mirror Bees.” This uses many small spacecraft — each carrying a mirror — swarming around a dangerous asteroid. The spacecraft could precisely tilt their mirrors to focus sunlight onto a tiny spot on the asteroid, vaporizing the rock and metal, and creating a jet plume of super-heated gases and debris. Alternatively, the satellites could contain powerful lasers pumped by sunlight, and the lasers could be used to vaporize the rock. The asteroid would become the fuel for its own rocket — and slowly, the asteroid would move into a new trajectory.

Artist concept of the Mirror Bees. Credit: The Planetary Society

Lasers

Another interesting technique from the University of Alabama in Huntsville would involve placing a laser system into space, or at a future Moon base. When a potential Earth-crossing asteroid is discovered, the laser would target it and fire for a long period of time. A small amount of material would be knocked off the surface of the asteroid, which would deflect its orbit slightly. Over a long period of time, the asteroid course correction would add up, turning a direct hit into a near miss.

Plastic Wrap

One extremely inventive concept involves using a satellite to wrap an asteroid with ribbons of reflective Mylar sheeting. Covering just half of the asteroid would change its surface from dull to reflective, possibly enough to allow solar pressure to change the asteroid’s trajectory.

Mass Drivers

This idea involves the use of multiple landers to rendezvous and attach to a threatening asteroid, drill into its surface, and eject small amounts of the asteroid material away at high velocity using a mass driver (rail gun or electromagnetic launcher). The effect, when applied over a period of weeks or months, would eventually change the heliocentric velocity of the target asteroid and thereby alter its closest approach to Earth.

Other ideas include attaching a regular rocket motor to the asteroid; painting an asteroid to make it darker or lighter so that it absorbs and re-radiates more or less sunlight, affecting its spin and eventually its orbit; and a shepherding ion beam.

Civil defense (evacuation, sheltering in place, providing emergency infrastructure) is a cost-effective mitigation measure for saving lives from the smallest NEO impact events and would also be necessary part of mitigation for larger events.

The key to deflecting a dangerous asteroid is to find them early so that a plan can be developed. Schweickart said making decisions on how to mitigate the threat once a space rock already on the way is too late, and that all the decisions of what will be done, and how, need to be made now. “The real issue here is getting international cooperation, so we can — in a coordinated way — decide what to do and act before it is too late,” he said. “If we procrastinate and argue about this, we’ll argue our way past the point of where it too late and we’ll take the hit.”

For more information, read The Association of Space Explorers’ International Panel (chaired by Schweickart) report: Asteroid Threats: A Call For Global Response.

National Research Council report: Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies. Final Report.

2006 Near Earth Asteroid Survey and Deflection Study

Fraser Cain contributed immensely to this article.

Does The Pluto System Pose A Threat To New Horizons?

Pluto's newest found moon, P4, orbits between Nix and Hydra, both of which orbit beyond Charon. Could there be still more moons of Pluto? Perhaps, and the New Horizons team plans to look harder to ensure that we don't run into something that could damage or destroy New Horizons. Credit: NASA

[/caption]

With nearly two-thirds of its journey complete, the New Horizons spacecraft is still alive and well. It recently experienced a “hibernation wakeup” which started on November 5th and will last until November 15th… and it will sleep again until a month-long call in January. However, the real “wakeup call” may be when it reaches the complicated Pluto system. Watch out for that rock!

As more and more moons are discovered around Pluto, the higher the probability becomes of one of them – or debris surrounding them – could impact the delicate probe. With P4 discovered just a few short months ago, scientists are beginning to wonder just how many more are there which are too small and faint to be seen.

Says New Horizons Principal Investigator Alan Stern: “Even more worrisome than the possibility of many small moons themselves is the concern that these moons will generate debris rings, or even 3-D debris clouds around Pluto that could pose an impact hazard to New Horizons as it flies through the system at high speed. After all, at our 14-kilometer-per-second flyby speed, even particles less than a milligram can penetrate our micrometeoroid blankets and do a lot of damage to electronics, fuel lines and sensors.”

To enable research into what might be a prospective problem, the New Horizons team brought together about 20 of the world’s experts in ring systems, orbital dynamics and state-of-the-art astronomical observing techniques to search for small satellites and rings at distant Pluto. During a two day workshop, the group hashed and rehashed every possible scenario – including all the hazards that a small moon and debris-strewn system might cause.

The presenters and attendees of the New Horizons Pluto Encounter Hazards Workshop on November 4, 2011. Credit: NASA

“We found a plausible chance that New Horizons might face real danger of a killer impact; and that to mitigate that hazard, we need to undertake two broad classes of work.” said Stern. “First, we need to look harder at the Pluto system for still undiscovered satellites and rings. The best tools for this are going to be the Hubble Space Telescope, some very large ground-based telescopes, telescopes that can make stellar occultation observations of the space between Pluto and Charon where New Horizons is currently targeted, and thermal observations of the system by the ALMA radio telescope array just now being commissioned.”

The next step is planning – planning on a possible safer route through the Pluto system in the event that observations confirm navigational hazards. Studies presented at the Encounter Hazards Workshop show a good “safe haven bailout trajectory” (or SHBOT) could be designed to target a closest-approach aim point about 10,000 kilometers farther than the nominal mission trajectory. In this case, it would be a matter of aiming more towards Charon’s orbit, where the moon itself has cleared a path. However, even 180 degrees away on closest approach may not be enough. There’s always a chance of a debris field – one that doesn’t follow a plane, but has created a torus. In this event, material could be sailing along at speeds of up to 1-2 kilometers per second. Enough to annihilate delicate instruments.

“The question of whether the Pluto system could be hazardous to New Horizons remains open –but one we’ll be studying hard over the next year, with everything from computer models to big ground-based telescopes to the Hubble.” concludes Stern. “I’ll report on results as we obtain them, but it is not lost on us that there is a certain irony that the very object of our long-held scientific interest and affection may, after so many years of work to reach her, turn out to be less hospitable than other planets have been. We’ll see.”

Original Story Source: New Horizons News.

Images, Video from Around the World of Asteroid 2005 YU55’s Close Pass

Animation showing Asteroid 2005 YU55 moving across the sky. Each image was a 2-second exposure, taken with the GRAS Observatory, near Mayhill, New Mexico. Credit: Ernesto Guido, Giovanni Sostero and Nick Howes

[/caption]

A 400-meter-wide asteroid created a lot of “buzz” as it buzzed by Earth, with its closest approach on November 08, 2011 at 23:28 Universal Time (UT). The Near-Earth Asteroid 2005 YU55 passed within 319,000 km (202,000 miles or 0.85 lunar distances, 0.00217 AU) from Earth’s surface. Later, it safely passed our moon at distance of 239,500 km (148,830 miles ). Astronomers from around the world trained their telescopes on this object, hoping to capture images and learn more about this dark space rock.

Above is an animation from the team of Ernesto Guido, Giovanni Sostero and Nick Howes, remotely using the the GRAS Observatory near Mayhill, New Mexico USA with a 0.25-meter telescope, f/3.4 reflector and a CCD camera. The trio said that at the moment of their observing session the asteroid was moving at about 260.07″/min and it was at magnitude ~11. You can see more images and details on their Remanzacco Observatory website. A single image they took is below, along with other observations from various points around the globe, including an infrared image taken with the Keck Observatory.

This first infrared image of asteroid 2005 YU55 was captured by the Keck II telescope. Credit: William Merline, SWRI / W.M. Keck Observatory

The Keck Observatory hosted a live webcast of their observations of the asteroid, hoping to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. They also hoped to be able to look for moons around the asteroid, as about 20% of asteroids have “moons” orbiting them. Battling delays from fog at the summit of Mauna Kea, they team had to wait until conditions cleared, which unfortunately meant the asteroid was farther away when they were able to take a one-second infrared observation. Principal Investigator Bill Merline said it may take days to process this raw data, so look for a more refined image from the team soon. The webcast was a lot of fun, as they showed the events going on insides the observing rooms on both the summit and Waimea, and answered questions from viewers.

This video above is from Jason Ware from Plano, Texas USA who observed Asteroid 2005 YU55 with a 12 inch telescope to create the video.

Near Earth Asteroid 2005 YU55 on 11-08-2011 07:18pm E.S.T., a 10 second exposure. Credit: John Chumack

John Chumack of Galactic Images in Ohio took this image of the asteroid on 11-08-2011 at 07:18pm E.S.T., a 10 second exposure using a 16″ telescope and a QHY8 CCD. John also created a video, which is available on Flickr.

Peter Lake from Australia, has a telescope in New Mexico. He took a series of images at around 03:00 UTC on Nov. 9, using a 20-inch Planewave with a FLI PL11002M. The image field is 4008 X 2675 pixels and about 0.91 arc secs per pixel, so it passed at about 500 arc sec per minute, Lake said.

This video was taken by Steven Conard at the Willow Oak Observatory in Gamber, Maryland USA, with observations on November 9, 11 with the WOO C-14 telescope. This one has a special bonus–a satellite passes through the field as well.

We’ll add more images and video as they become available. Add your images to our Flickr group and we’ll post them.

Asteroid 2005 YU55’s flyby is the closest approach by an object of this size for the next 16 years. In August 2027, AN 10 is going to come within about one lunar distance from Earth. Astronomers estimate this asteroid is anywhere from 1/2 to 2 kilometers in diameter.

Just six months later, 2001 WN5, a 700-meter-wide asteroid will fly between the Earth and the Moon in June 2028, followed by Apophis on April 13, 2029.

Live Webcast as Keck Telescope Attempts Images of Asteroid 2005 YU55

kecktelescopes-browse.thumbnail.jpg
The Keck telescopes, located atop Mauna Kea, Hawaii. Credit: W.M. Keck Observatory

Astronomers from the Keck Telescope in Hawaii will be trying to observe Asteroid 2005 YU55 as it flies away from Earth. A live webcast from Keck starts about the same time this article is being published, starting no later than 9 pm U.S. PST on Nov. 8, or Midnight EST/ 0500 UT on Wednesday, Nov. 9. Indications are the webcast might start a little late because of fog on Mauna Kea.

Their hope is to get infrared images and perhaps a three-dimensional view of the asteroid with one of the world’s largest optical/infrared telescopes. The observing run is being webcast live on UStream from the Keck II Remote Operations room in Kamuela, Hawaii. They also are hoping to be able to look for moons around the asteroid. About 20% of asteroids have “moons” orbiting them.

At the helm of the 10-meter Keck II telescope and using Keck’s pioneering adaptive optics to view YU55 will be asteroid investigators William Merline and Peter Tamblyn of Southwest Research Institute, in Boulder, Colorado, and Chris Neyman of Keck Observatory.

Trouble for the Phobos-Grunt Mission

The Phobos-Grunt mission profile. Credit: Roscosmos

[/caption]

Russia’s unmanned Phobos-Grunt spacecraft may be in serious trouble, as it apparently has encountered problems with either computer software or the propulsion system, or perhaps both. There appears to be some confusion about what may have happened, with various sources reporting different things.

Russian Space Agency head Vladimir Popovkin was quoted by the Ria news agency, with a Google translation, “We’ve had a bad night, we could not detect long spacecraft, now found his position. It was found that the propulsion system failed. There was neither the first nor the second inclusion.”

Roughly, it appears that at first they lost telemetry with the spacecraft, but then were able to locate it and found that the first and second burns did not occur.

The spacecraft launched from the Baikonur Cosmodrome in Kazakhstan by a Zenit-2 booster rocket at 12:16 a.m. Moscow time on Wednesday and separated from the booster about 11 minutes later.

From various translated sources, it appears the probe is now in a parking orbit. What should have happened is that two and a half hours after launch, the first burn should have put the spacecraft into an higher orbit around Earth, and a second burn should have occurred 126 minutes later, which would have sent it the spacecraft to Mars. Neither occurred, and it is yet to be determined if the problem was with the flight computer or flight hardware.

According to Interfax, Russian officials has said if it is a computer problem, they have three days to resolve the software issue before the battery power on the spacecraft runs out. But if the problem is related to flight hardware, the mission will likely be lost.

Another quote from Popovkin via Ria sounded hopeful: “It is possible that the spacecraft wasn’t able to reorient itself from Sun to stars, so the engines weren’t able to receive commands from sensors. No fuel tanks are lost, no fuel is dumped. We still have the whole spacecraft. Salvation may be possible.”

“During the day we will definitely inform all of the future situation,” Popovkin added.

We’ll provide more details as they become available.

Sources: Ria, Interfax, Hayka, NASASpaceflight.com

First Movie of Asteroid 2005 YU55’s Flyby

Here’s a short movie of Asteroid 2005 YU55, created from data collected from the 70-meter Deep Space Network antenna at Goldstone, California. The video was generated from six frames, and each of the six frames required 20 minutes of radar data collection. They are the highest-resolution images ever generated by radar of a near-Earth object.
Continue reading “First Movie of Asteroid 2005 YU55’s Flyby”

Russia’s Bold Sample Return Mission to Mars and Phobos Blasts Off

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos blasts off atop a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos/Spaceflight Now

Russia has successfully launched the Phobos-Grunt sample return mission to Mars aiming to return a soil sample from Phobos, the first time in history such a bold and complicated feat has been attempted.

The ambitious mission lifted off just past midnight at 00:16 Moscow time atop an upgraded version of the Zenit-2 rocket from the Baikonur Cosmodrome in Kazakhstan.

[/caption]

Phobos-Grunt is now in a parking orbit around Earth and further burns are required by the modified Fregat upper stage by 8:20 p.m. tonight to put the probe of course for Earth departure and an interplanetary cruise to the Red Planet. Watch for updates later.

The liftoff of the $163 million robotic spacecraft marks Russia’s first attempt to conduct an interplanetary mission in some 15 years since the launch failure of the Mars 96 probe back in 1996. Phobos-Grunt translates as Phobos-Soil.

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos liftoff off on top of a Zenit-2SB rocket from the Baikonur Cosmodrome, Kazakhstan on November 9, 2011 at 00:16 a.m. Moscow time (Nov. 8, 3:16 p.m. EST) from Launch Pad 45. Credit: Roscosmos

The mission goal is to deploy a lander to Phobos and bring back up to 200 grams of pristine regolith and rocks from the surface of Phobos.

Also along for the ride is China’s first Mars mission named Yinghuo-1 (which means means Firefly-1) which will be jettisoned into Mars orbit as Phobos-Grunt inserts into a different orbit about Mars. Additionally, the Planetary Society’s Phobos LIFE biomodule is also on board.

The 12,000 kg Phobos-Grunt spacecraft should arrive in the vicinity of Mars around October 2012 after an 11 month interplanetary cruise. Following several months of orbital science investigations of Mars and its two moons and searching for a safe landing site, Phobos-Grunt will attempt history’s first ever touchdown on Phobos in February 2013. It will conduct a comprehensive analysis of Phobos surface and gather up to 200 grams of soil and rocks with a pair of robotic arms and a scoop device.

The samples will be transferred by a long tube onto the return vehicle mounted atop the lander. By March 2013 the ascent vehicle will take off for the trip back back to Earth.

Phobos-Grunt is equipped with a 50 kg array of 20 sophisticated science instruments including lasers, spectrometers, cameras and a microscope provided by an international team of scientists and science institutions from across Europe and Asia.

The entire voyage will last just under 3 years with the capsule plummeting through the Earth’s atmosphere in August 2014. These would represent the first macroscopic samples returned from another body in the solar system since Russia’s Luna 24 returned soil from the Moon back in 1976.

Alien Artifacts May Be Here… Just Hard To Find!

This image highlights the special cargo onboard NASA's Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth. An artist's rendering of the Voyager spacecraft is shown at bottom right, with a yellow circle denoting the location of the Golden Record. The cover of the Golden Record, shown on upper right, carries directions explaining how to play the record, a diagram showing the location of our sun and the two lowest states of the hydrogen atom as a fundamental clock reference. The larger image to the left is a magnified picture of the record inside. Credit: NASA

[/caption]

Greeting cards in space… We’ve certainly sent our share of them, haven’t we? So if humankind is foresighted enough to leave messages of our whereabouts – and our personalities – in space, then why haven’t other alien civilizations done the same? That’s a question a pair of postdoctoral researchers at Penn State are asking. By using mathematical equations, they’re showing us we simply haven’t looked in enough places… and would we recognize an alien artifact even if it were staring us in the face?

“The vastness of space, combined with our limited searches to date, implies that any remote unpiloted exploratory probes of extraterrestrial origin would likely remain unnoticed,” report Jacob Haqq-Misra, Rock Ethics Institute, and Ravi Kumar Kopparapu, Earth and Environmental Systems Institute, in a paper accepted by Acta Astronautica and posted online on ArXiv.

So far, we simply haven’t found any evidence of alien artifacts in our solar system – or anywhere else for that matter. According to the Penn State article, the Fermi paradox, originally formulated by Enrico Fermi, asks, if intelligent life is common, why have no technological civilizations been observed. Well, shucks… Maybe they’re shy – and maybe they’ve self-annihilated. There are hundreds of reasons “why” we haven’t found anything, but the most pertinent answer is we simply aren’t looking for the right thing in the right place at the right time. For example, have a look at just a few of the things we humans have sent into vastness of space to act as our ambassadors…

Duke Family Portrait: Apollo 16 Journal - Courtesy of Markus Mehring - Credit: NASA AS16-117-18841
Pioneer 10 and 11's famed Plaque features a design engraved into a gold-anodized aluminum plate, 152 by 229 millimeters (6 by 9 inches), attached to the spacecrafts' antenna support struts to help shield it from erosion by interstellar dust. Image Credit: NASA
Three LEGO figurines representing the Roman god Jupiter, his wife Juno and Galileo Galilei are shown here aboard the Juno spacecraft. Image credit: NASA/JPL-Caltech/KSC NASA's Jupiter-bound Juno spacecraft will carry the 1.5-inch likeness of Galileo Galilei, the Roman god Jupiter and his wife Juno to Jupiter when the spacecraft launches this Friday, Aug. 5. The inclusion of the three mini-statues, or figurines, is part of a joint outreach and educational program developed as part of the partnership between NASA and the LEGO Group to inspire children to explore science, technology, engineering and mathematics. Credit: NASA

And this is only just the tip of the human iceberg. How many of us have sent our name on missions to Mars, Pluto and more? There are footprints, plaques, flags, golf balls and an endless parade of human artifacts scattered far and wide. We might think they’re in plain sight, but would an alien culture see that? Would we comprehend what an alien culture might consider to be a greeting or sign or their presence? As far as we know, there could be unpiloted probes from alien civilizations out there right now, checking us out… But unless it were something the size of a proverbial school bus dropping itself on a house in Essex, our own arrogance would probably keep us from noticing it. And then again… it just might be hidden.

“Extraterrestrial artifacts may exist in the Solar System without our knowledge simply because we have not yet searched sufficiently,” said Haqq-Misra and Kopparapu. “Few if any of the attempts would be capable of detecting a 1 to 10 meter (3 to 33 foot) probe.”

Haqq-Misra and Kopparapu use a probabilistic method to determine the feasibility of aliens leaving us clues to their existence. Their work points to the Solar System as a fixed volume and then calculates the percentages of that volume that would need to be thoroughly searched to detect an alien probe or artifact. These searches would have to involve technology able to detect small, foreign objects and then apply it to a smaller portion of the volume to look for results. It’s a study which hasn’t been undertaken so far. We simply cannot say we’ve looked everywhere…

“The surface of the Earth is one of the few places in the Solar System that has been almost completely examined at a spatial resolution of less than 3 feet,” said Haqq-Misra and Kopparapu.

Sure. There are still a lot of nooks and crannies on Earth that haven’t been thoroughly explored – and our oceans are a good example. However, when it comes to searching elsewhere, it’s been a hit-or-miss proposition. While mapping the surface of the Moon, the Lunar Reconnaissance Orbiter is looking at the surface at a resolution of about 20 inches. It may take a few years, but perhaps something isn’t buried under the regolith. As for Mars, chances are slight – but new things seem to be discovered on Mars each day, don’t they? How about the LaGrange points, or the asteroid belt? Things could be hiding there, too.

“Searches to date of the Solar System are sufficiently incomplete that we cannot rule out the possibility that non terrestrial artifacts are present and may even be observing us,” said Haqq-Misra and Kopparapu. They add that “the completeness of our search for non terrestrial objects will inevitably increase as we continue to explore the Moon, Mars and other nearby regions of space.”

After all, what did we expect? E.T. to interrupt a prime time television program to announce their presence? A take-over of the Internet? Maybe each time a meteor makes it to Earth it’s a little calling card that life-possible organisms exists outside our own little sphere…

And maybe somebody needs to drop a bus on us.

Original Story Source: Penn State News Release.

‘Sweet Spots’ for Formation of Complex Organic Molecules Discovered in Our Galaxy

Credit: NASA

[/caption]

Astrobiologists have discovered regions in our galaxy which might have the greatest potential for producing very complex organic molecules, the starting point for the development of life. We’ve heard before about “follow the water” in the search for life; in this case it may be “follow the methanol”…

The scientists involved, from Rensselaer Polytechnic Institute in Troy, New York, began a search for methanol, a key ingredient in the synthesis of organic molecules. According to Douglas Whittet, lead researcher of the study, “Methanol formation is the major chemical pathway to complex organic molecules in interstellar space.” The idea is to look for areas where there is rich methanol production occurring. In the large clouds of dust and gas that give birth to new stars, there are simpler organic molecules like carbon monoxide. Under the right conditions, carbon monoxide on the surfaces of dust grains can interact with hydrogen, also found in the clouds, to create methanol. Methanol can then become a steppingstone to create the more complex organic molecules, the types needed for life itself. But how much methanol is out there, and where?

It appears to be most abundant around a small number of newly-formed stars, where it makes up to 30 percent of the material around those stars. In other areas though, it is in much smaller amounts, or none at all. In the cold dust and gas clouds that will eventually produce new stars, it was found to exist in the 1 to 2 percent range. Hence, there appear to be “sweet spots” where conditions are suitable for the chain reactions to occur, depending on how fast the needed molecules can reach the dust grains. It can mean the difference between a “dead end” for additional development or an “organic bloom.” As described by Whittet: “If the carbon monoxide molecules build up too quickly on the surfaces of the dust grains, they don’t get the opportunity to react and form more complex molecules. Instead, the molecules get buried in the ices and add up to a lot of dead weight. If the buildup is too slow, the opportunities for reaction are also much lower.”

So some places may be much more likely to have the conditions necessary for the development of life than others. What about our own solar system? How does it compare? By studying the methanol amounts in comets, relics from the beginning of the solar system, the scientists have concluded that the methanol abundance back then was about average. Not a dearth of the stuff, but not a “sweet spot” really, either. Yet here we are… or, as Whittet put it, “This means that our solar system wasn’t particularly lucky and didn’t have the large amounts of methanol that we see around some other stars in the galaxy. But, it was obviously enough for us to be here.”

The paper, titled “Observational constraints on methanol production in interstellar and preplanetary ices,” will be published in the Nov. 20 edition of The Astrophysical Journal and is a collaboration between Rensselaer, NASA Ames Research Center, the SETI Institute and Ohio State University.

Russian Mars Moon Sample Probe Poised to Soar atop Upgraded Rocket – Video

Russia’s historic Phobos-Grunt sample return mission to Mars and Phobos poised on top of Zenit-2SB rocket at Baikonur Cosmodrome, Kazakhstan. Liftoff is slated for November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST] from Launch Pad 45. Credit: Roscosmos. See Zenit Rocket rollout Video and Images below

[/caption]

After an absence of almost two decades, Russia is at last on the cusp of resuming an ambitious agenda of interplanetary science missions on Tuesday Nov. 8 3:16 p.m. EST (Nov. 9, 00:16 a.m. Moscow Time) by taking aim at Mars and scooping up the first ever soil and rocks gathered from the mysterious moon Phobos. Russia’s space program was hampered for many years by funding woes after the breakup of the former Soviet Union and doubts stemming from earlier mission failures. The Russian science ramp up comes just as US space leadership fades significantly due to dire NASA budget cutbacks directed by Washington politicians.

Russia’s daring and highly risky Phobos-Grunt soil sampling robot to the battered Martian moon Phobos now sits poised at the launch pad at the Baikonur Cosmodrome in Kazahkstan atop a specially upgraded booster dubbed the “Zenit-2SB” rocket according to Alexey Kuznetsov, Head of the Roscosmos Press Office in an exclusive interveiw with Universe Today. Roscosmos is the Russian Federal Space Agency. Watch the awesome Mars mission animation in my article here. See Zenit Rocket rollout video and images below.

“The Phobos-Grunt automatic interplanetary station will launch on November 9, 2011 at 00:26 a.m. Moscow time [Nov. 8, 3:36 p.m. EST],” Kuznetsov confirmed to Universe Today.

The Roscosmos video and photos here show the Zenit rocket rollout starting from Building 45 where the final prelaunch processing was conducted late last week mounting the nose cone holding the Phobos-Grunt and companion Yinghuo-1 spacecraft to the upgraded Fregat upper stage.

Russia’s Phobos-Grunt automatic interplanetary station - lander. Credit: Roscosmos

If successful, Phobos Grunt will complete the Earth to Mars round trip voyage in some 34 months and the history making soil samples will plummet through the Earth’s atmosphere in August 2014 to waiting Russian military helicopters.

Following an 11 month interplanetary journey, the spaceship will enter Mars orbit and spend several months searching for a suitable landing site on Phobos. The probe is due to touchdown very gently on Phobos surface in Feb. 2013 using radar and precision thrusters accounting for the moon’s extremely weak gravity. After gathering samples with two robotic arms, the soil transferred to the Earth return capsule will take off in the ascent vehicle for the trip back home.

“The Zenit can launch spacecraft from Baikonur into LEO, MEO, HEO and elliptical near-Earth orbits (including GTO and geostationary orbit) and to escape trajectories as well,” Kuznetsov explained.

Zenit-2SB rocket rollout from Building 45 at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

The Zenit-2SB booster with Phobos-Grunt and the piggybacked Yinghuo-1 Mars orbiter from China were rolled out horizontally by train on a railed transporter on Nov. 6, raised and erected vertically into launch position at Launch Pad 45 at Baikonur.

“The ‘Zenit-2SB’ rocket belongs to the rocket family using nontoxic fuel components – liquid oxygen and kerosene,” Kuznetsov elaborated. “The Zenit was manufactured by the A.M. Makarov Yuzhny Machine-Building Plant in Ukraine.”

“This “Zenit-2” rocket modification has significant improvements,” Kuznetsov told me. “The improvements include a new navigation system, a new generation on-board computer, and better performance by mass reduction and increase in thrust of the second stage engine.”

Zenit-2SB rocket rollout on train car to Baikonur launch pad with Phobos-Grunt sampling return mission to Mars and Phobos. Credit: Roscosmos

Likewise the upper stage was upgraded for the historic science flight.

“The Zenit’s Fregat upper stage has also been modified. The “Phobos Grunt” automatic interplanetary station cruise propulsion system was built onto the base of the “Fregat-SB” upper stage. Its main task is to insert the automatic interplanetary station onto the Mars flight path and accomplish the escape trajectory.”

“The “Phobos Grunt” automatic interplanetary station mission was constructed by the Russian Academy of Sciences Space Research Institute in Moscow and the spacecraft was manufactured by NPO Lavochkin in Moscow,” Kuznetsov told me.

The 12,000 kg Phobos-Grunt automatic interplanetary station is equipped with a powerful 50 kg payload of some 20 science instruments provided by a wide ranging team of international scientists and science institutions from Europe and Asia.

The audacious goal is to bring back up to 200 grams of pristine regolith and rocks that help unlock the mysteries of the origin and evolution of Phobos, Mars and the Solar System

Zenit-2SB rocket rollout on train to launch pad at Baikonur with Russia’s Phobos-Grunt automatic interplanetary station. Credit: Roscosmos

Zenit-2SB rocket erected vertically to launch position at Baikonur launch pad with Russia’s Phobos-Grunt Mars spacecraft. Credit: Roscosmos

Russia’s Phobos-Grunt sample return mission to Mars and Phobos poised atop Zenit rocket at Pad 45 at Baikonur Cosmodrome. Kazakhstan. Liftoff set for November 9, 2011 at 00:26 a.m. Moscow time - Nov. 8, 3:36 p.m. EST. Credit: Roscosmos.

NASA’s Curiosity Mars Science Laboratory (MSL) Rover has also arrived at her Florida launch pad awaiting Nov. 25 liftoff.

Join me in wishing all the best to Roscosmos and NASA for this duo of fabulous Mars missions in 2011 that will help unravel our place in the Universe – like never before!

Read Ken’s continuing features about Phobos-Grunt upcoming Nov 9 launch here:
Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff