The Moon's Southern Ice is Relatively Young

Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona
Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona

Around the Moon’s southern polar region lies the South Pole-Aitken Basin, the single-largest impact basin on the lunar surface. Within this basin, there are numerous permanently shadowed regions (PSRs) that are thought to have trapped water ice over time. These deposits are crucial to future missions like the Artemis Program that will lead to the creation of permanent infrastructure. This water ice will supply crews with a steady source of water for drinking and irrigation and the means for chemically producing oxygen gas and rocket fuel.

For scientists, these PSRs are believed to have emerged when the Moon began migrating away from Earth roughly 2.5 billion years ago. Over time, these regions acted as “cold sinks” and trapped water ice that existed on the lunar surface at the time. However, according to a recent study led by the Planetary Science Institute (PSI), the Moon’s permanently shadowed areas arose less than 2.2 billion years ago and trapped ice even more recently than that. These findings could significantly impact future crewed missions as they indicate that the water ice found in lunar craters could be of more recent origin.

Continue reading “The Moon's Southern Ice is Relatively Young”

Mini-Subs Could One Day Ply the Seas Under Europa’s Ice

This is a model of the miniature underwater vehicle being developed at MARUM with partners from industry. It will have a diameter of around ten cm and a length of about 50 cm. The tiny submarines will be placed inside a melt probe then released in the subglacial lakes under Antarctica. Image Credit: MARUM – Center for Marine Environmental Sciences, University of Bremen.

The most promising places to look for life in the Solar System are in the ocean moons Europa and Enceladus. But all that warm, salty, potentially life-supporting water is under thick sheets of ice: up to 30 km thick on Europa and up to 40 km thick for Enceladus.

The main obstacles to exploring all that water are the thick ice barriers. Assuming a spacecraft can be designed and built to melt its way through all that ice, what then?

Submarines can do the actual exploring, and they needn’t be large.

Continue reading “Mini-Subs Could One Day Ply the Seas Under Europa’s Ice”

Following Up on Report, NASA Takes On a Bigger Role in UFO Research

The Milky Way spreads out in the sky over the Vera C. Rubin Observatory, which experts say could play a role in the search for unidentified anomalous phenomena in the solar system. (Credit: Bruno C. Quint via Rubin Observatory)

In response to a new report from an independent panel, NASA says it has appointed a director in charge of research into UFOs — now known as unidentified anomalous phenomena, or UAPs — and will work with other agencies to widen the net for collecting UAP data.

“This is the first time that NASA has taken concrete action to seriously look into UAP,” NASA Administrator Bill Nelson said today during a news briefing at NASA’s headquarters in Washington.

NASA initially kept the name of its UAP research director under wraps, but later in the day, the agency identified him as Mark McInerney, who has previously served as NASA’s liaison to the Department of Defense on the UAP issue.

Nelson downplayed the idea that aliens were behind any of the anomalous phenomena recorded to date, but he pledged to keep an open mind.

Continue reading “Following Up on Report, NASA Takes On a Bigger Role in UFO Research”

If Neutron Stars Have Mountains, They Should Generate Gravitational Waves

Artist's depiction of a highly magnetize neutron star known as a magnetar. Credit: NASA's Goddard Space Flight Center/S. Wiessinger

A neutron star is 2 solar masses compressed into a ball only 12 kilometers wide. Its surface gravity is so immense it compresses atoms and molecules into raw nuclei and squeezes electrons into protons transforming them into neutrons. Given such immense pressures and densities, you might assume neutron stars have an almost perfectly smooth surface. But you’d be wrong because we know that neutron stars can have mountains.

Continue reading “If Neutron Stars Have Mountains, They Should Generate Gravitational Waves”

How Can We Bring Down the Costs of Large Space Telescopes?

Our space telescopes are becoming more and more powerful. But they're also enormously expensive. Can we bring the cost down? Image Credit: STScI/NASA/ESA/CSA

We’re all basking in the success of the James Webb Space Telescope. It’s fulfilling its promise as our most powerful telescope, making all kinds of discoveries that we’ve been anticipating and hoping for. But the JWST’s story is one of broken budgets, repeated requests for more time and money, and near-cancellations.

Can we make space telescopes less expensive?

Continue reading “How Can We Bring Down the Costs of Large Space Telescopes?”

The Seasons on Saturn are Changing. It's Time to Say Goodbye to Its North Pole for a Few Years

Saturn, as seen by the James Webb Space Telescope's MIRI instrument, showing various portions of the planet's atmosphere. superimposed on an full image taken by the Hubble Space Telescope. Credit: NASA/ESA/Univ. Leicester/L.N. Fletcher/O. King

Just like Earth, Saturn goes through seasons because of its axial tilt. But a year on Saturn lasts 30 Earth years, so each of its seasons lasts 7.5 years. Right now, it is late summer on Saturn’s northern hemisphere, so again, just like Earth is currently heading for northern autumn equinox in September, Saturn is heading for northern autumn equinox a little later, in 2025.

Before Saturn’s north pole enters its extended polar winter – rendering it inaccessible for observations — astronomers are taking advantage of being able to study this area with the James Webb Space Telescope, which became operational just over a year ago.

Continue reading “The Seasons on Saturn are Changing. It's Time to Say Goodbye to Its North Pole for a Few Years”

Some Lunar Regolith is Better for Living Off the Land on the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Between now and the mid-2030s, multiple space agencies hope to send crewed missions to the Moon. of These plans all involve establishing bases around the Moon’s southern polar region, including the Artemis Base Camp and the International Lunar Research Station (ILRS). These facilities will enable a “sustained program of lunar exploration and development,” according to the NASA Artemis Program mission statement. In all cases, plans for building facilities on the surface call for a process known as In-Situ Resource Utilization (ISRU), where local resources are used as building materials.

This presents a bit of a problem since not all lunar soil (regolith) is well-suited for construction. Much like engineering and construction projects here on Earth, builders need to know what type of soil they are building on and if it can be used to make concrete. In a recent study, planetary scientist Kevin M. Cannon proposed a lunar soil classification scheme for space resource utilization. This could have significant implications for future missions to the Moon, where it would help inform the construction of bases, habitats, and other facilities based on soil type and location.

Continue reading “Some Lunar Regolith is Better for Living Off the Land on the Moon”

Planning is Underway for NASA’s Next Big Flagship Space Telescope

Artist rendition of a starshade being used on a future space telescope. This example shows the proposed Habitable Exoplanet Observatory (HabEx), which the 2020 Astrophysics Decadal Survey decided to combine elements of this with the Large Ultraviolet Optical Infrared Surveyor (LUVOIR) for a new flagship telescope, which is now known as the Habitable Worlds Observatory (HWO). (Credit: NASA)

NASA’s James Webb Space Telescope (JWST) has only been operational for just over a year, but this isn’t stopping the world’s biggest space agency from discussing the next big space telescope that could serve as JWST’s successor sometime in the future. Enter the Habitable Worlds Observatory (HWO), which was first proposed as NASA’s next flagship Astrophysics mission during the National Academy of Sciences’ Decadal Survey on Astronomy and Astrophysics 2020 (Astro2020). While its potential technological capabilities include studying exoplanets, stars, galaxies, and a myriad of other celestial objects for life beyond Earth, there’s a long way to go before HWO will be wowing both scientists and the public with breathtaking images and new datasets.

Continue reading “Planning is Underway for NASA’s Next Big Flagship Space Telescope”

Quasars Have Always Had Dark Matter Halos

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

When you look at most galaxies in the Universe, you’re looking at the homes of supermassive black holes. It now appears that quasars, which are active galaxies spitting out huge amounts of radiation from the region around their black holes, also have massive dark matter halos. It turns out they’ve always had them. And, their black hole activity has a direct connection with those halos.

Continue reading “Quasars Have Always Had Dark Matter Halos”

Could We Find Aliens Terraforming Other Worlds?

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

The first early humans to use fire had no inkling of what it would lead to.

Fire was one of our first technologies, and humans have been making changes to their environments since the advent of controlled fire hundreds of thousands of years ago. Fast forward to current times, and our modern technological and global civilization is changing the Earth’s entire biosphere. From carbon emissions that acidify the oceans and weaken the shells of marine life to microplastics that find their way into organisms’ bloodstreams, our technology is intersecting, or combining, with the biosphere.

This has spawned a useful word: biotechnosphere.

Continue reading “Could We Find Aliens Terraforming Other Worlds?”