Light Pollution from Skyglow Changes Bird Behavior

In the astronomy community, we typically this of light pollution as an overall negative. Much research points out its negative effect on our sleep and even our observational equipment. It also significantly impacts wildlife; however, according to a new paper from some Belgian, Swiss, and German researchers, not all of that impact is negative. 

Continue reading “Light Pollution from Skyglow Changes Bird Behavior”

JWST is the Perfect Machine to Resolve the Hubble Tension

The cosmic distance ladder sets the scale of the universe. Credit: NASA/JPL-Caltech

You’ve just found the perfect work desk at a garage sale, and you measure it to see if it will fit in your apartment. You brought a tape measure to size it up and find it’s 180 cm. Perfect. But your friend also brought a tape measure, and they find it’s 182 cm, which would be a smidge too long. You don’t know which tape measure is right, so you have a conundrum. Astronomers also have a conundrum, and it’s known as the Hubble tension.

Continue reading “JWST is the Perfect Machine to Resolve the Hubble Tension”

China’s Chang’e-7 Will Deploy a Hopper that Jumps into a Crater in Search of Water Ice

Artist rendition of potential future facilities on the lunar surface. (Credit: CFP)

Researchers from the Chinese Academy of Sciences and the Chinese National Space Administration recently published a study in the journal Space: Science & Technology outlining how the upcoming Chang’e-7 mission, due to launch in 2026, will use a combination of orbital observations and in-situ analyses to help identify the location, amount, and dispersion of water-ice in the permanently-shadowed regions (PSRs) of the Moon, specifically at the lunar south pole.

Continue reading “China’s Chang’e-7 Will Deploy a Hopper that Jumps into a Crater in Search of Water Ice”

Does the Milky Way's Supermassive Black Hole Have a Companion?

Sag A* compared to M87* and the orbit of Mercury. Credit: EHT collaboration

At the heart of our galaxy, there is a monster black hole. Known as Sagittarius A*, it has a mass of 4.2 million Suns, and it’s only about 27,000 light-years from Earth. Sag A* is the closest supermassive black hole, and one of only two that we’ve observed directly. It is so close that we can even see stars closely orbiting it. Some of those stars we’ve been observing for more than 20 years, which means we have a very good handle on their orbits. We’ve used those orbits to determine the mass of Sag A*, but a new study looks at a different question: does our galaxy’s black hole have a companion?

Continue reading “Does the Milky Way's Supermassive Black Hole Have a Companion?”

Variable Stars can Tell us Where and When to Search for Extraterrestrials

Artist’s impression of the Gaia spacecraft detecting artificial signals from a distant star system. In this synchronization scheme, the star system's inhabitants send the signal shortly after witnessing a supernova, which is also seen by telescopes on Earth. (Credit: Danielle Futselaar / Breakthrough Listen)

The European Space Agency’s Gaia Observatory has been operating steadily at the Earth-Sun L2 Lagrange Point for almost a decade. As an astrometry mission, Gaia aims to gather data on the positions, proper motion, and velocity of stars, exoplanets, and objects in the Milky Way and tens of thousands of neighboring galaxies. By the end of its primary mission (scheduled to end in 2025), Gaia will have observed an estimated 1 billion astronomical objects, leading to the creation of the most precise 3D space catalog ever made.

To date, the ESA has conducted three data releases from the Gaia mission, the latest (DR3) released in June 2022. In addition to the breakthroughs these releases have allowed, scientists are finding additional applications for this astrometric data. In a recent study, a team of astronomers suggested that the variable star catalog from the Gaia Data Release 3 could be used to assist in the Search for Extraterrestrial Intelligence (SETI). By synchronizing the search for transmissions with conspicuous events (like a supernova!), scientists could narrow the search for extraterrestrial transmissions.

Continue reading “Variable Stars can Tell us Where and When to Search for Extraterrestrials”

Euclid Reaches L2, Shares its First Test Image

The first test images from the Euclid spacecraft. Credit: ESA/Euclid/Euclid Consortium/NASA

For astronomers, the only thing better than new data is more new data. And we seem to be in a golden age of data gathering. We’ve gushed over the latest images from the James Webb Space Telescope and Hubble continues to make observations, but several new space telescopes are lesser known, such as Gaia, TESS, and Swift. And now a new space telescope enters the game, known as Euclid. Euclid is an infrared telescope launched last month by the European Space Agency (ESA). It took 11 years to design and build the telescope, and it has just taken test images with its two primary detectors.

Continue reading “Euclid Reaches L2, Shares its First Test Image”

Dark Matter Experiment Fails to Turn Up the Mysterious Particle, but Narrows its Hiding Places

So much in science is based on constraints. If scientists don’t understand something, they try to constrain it as much as possible so that more precise experiments can finally detect whatever the theorized phenomenon is. Dark matter is notoriously difficult in this regard, as it has evaded detection for over a century at this point, despite even more precise instruments trying to capture a glimpse of it. One of those instruments is the Super Cryogenic Dark Matter Search (SuperCDMS), run by the SLAC National Laboratory and located in northern Minnesota. To help further the cause, researchers looked at the data from the experiment while considering a few new possibilities, and while they didn’t find any evidence of dark matter, they helped tighten the constraints even more.

Continue reading “Dark Matter Experiment Fails to Turn Up the Mysterious Particle, but Narrows its Hiding Places”

Watch the Mars Sample Return Mission Test the Rocket That’ll Leap off the Surface of Mars

The Mars Sample Return (MSR) has been going through a rough patch lately. We recently reported on reports coming out about Congress restricting its budget and potential cost overruns. However, like any good government program, progress continues toward the goal of bringing samples until there is a clear order to stop or the money drives up. That wasn’t the case back in March and April when NASA successfully tested two engines that will be used in the Mars Ascent Vehicle (MAV).

Continue reading “Watch the Mars Sample Return Mission Test the Rocket That’ll Leap off the Surface of Mars”

Jupiter’s Moons Get the JWST Treatment

Spectroscopic map of Ganymede (left) obtained from JWST’s Near-Infrared Spectrograph (NIRSpec) instrument displaying light absorption in the polar regions distinctive of the molecule hydrogen peroxide. A JWST NIRSpec infrared image of Io (right) displaying volcanic eruptions at Kanehekili Fluctus (center) and Loki Patera (right) with temperatures up to 1200 Kelvin (926.85 degrees Celsius/1700 degrees Fahrenheit). Circles indicate the surfaces of both moons. (Credit: Ganymede: Cornell/Dr. Samantha Trumbo; Io: UC Berkeley/Dr. Imke de Pater)

A pair of studies published in JGR: Planets and Science Advances discuss new findings from NASA’s James Webb Space Telescope (JWST) regarding Jupiter’s first and third Galilean Moons, Io and Ganymede, and more specifically, how the massive Jupiter is influencing activity on these two small worlds. For Io, whose mass is about 21 percent larger than Earth’s Moon, the researchers made the first discovery of sulfur monoxide (SO) gas on the volcanically active moon. For Ganymede, which is the largest moon in the solar system and boasts twice the mass of the Earth’s Moon, the researchers made the first discovery of hydrogen peroxide, which exists in Ganymede’s polar regions.

Continue reading “Jupiter’s Moons Get the JWST Treatment”

Tether a Sunshade to an Asteroid to Slow Down Climate Change

Could a solar-sail-like structure (or structures) tethered to an asteroid provide a sunshade for Earth to block sunlight and mitigate climate change? A recent study looks into it. Courtesy NASA.
Could a solar-sail-like structure (or structures) tethered to an asteroid provide a sunshade for Earth to block sunlight and mitigate climate change? A recent study looks into it. Courtesy NASA.

It probably comes as no surprise to people suffering through drastic weather this year that our planet is heating up. Climate change is the culprit and researchers continue to look for ways to mitigate its effects. A scientist at the University of Hawai’i suggests a novel approach: create a giant solar shade in space to block enough sunlight to counter climate change.

Continue reading “Tether a Sunshade to an Asteroid to Slow Down Climate Change”