LRO to Move in For Closer Look at the Apollo Landing Sites

Artist concept of LRO in lunar orbit. Credit: NASA

[/caption]

NASA’s Lunar Reconnaissance Orbiter (LRO) is changing our view of the Moon by literally bringing it into sharper focus with its three high resolution cameras. But now, things are about to get even sharper. Today, LRO fired its thrusters to begin dipping down from its usual orbit about 50 km above the surface and moving to an orbit that will allow the spacecraft’s cameras me to image the Apollo sites from about 20 km away.

“This will allow me to obtain images of the Apollo sites that are about 4 times sharper than my current best images,” said the LRO spacecraft on Twitter.


This is just a temporary orbit and the spacecraft will take images of and around the Apollo sites between August 14 and 19, 2011. After that, the spacecraft will return to the 50-km-orbit until December.

LRO has two narrow angle cameras (NACs) and one wide angle camera (WAC).

According to Mark Robinson, LROC Principal Investigator, who spoke at the Lunar Forum at Ames Research Center last month, as of the end of July, 2011 the amount of data returned by LRO has been about 400 gigabits of data every day, which includes 371,027 high resolution images. The WAC has taken about 160,000 images, with about 90,000 in color. In total, the spacecraft has imaged the entire Moon about 20 times with the WAC, and has imaged 20 per cent of the moon with NACs, which provides a narrower but higher resolution view.

“We want to map the whole moon at 50 cm/pixel to 200 cm/pixel, and that would be LROC’s legacy for the next 100 years of lunar exploration and science,” Robinson said.

He noted that all three cameras are performing way better than he had hoped.

“We are very excited about the quality of the data,” Robinson said.

So get ready for a little more quality views of the Apollo landing sites!

Update: as commenter MoonOrBust noted, the LRO Twitter feed had an addendum later in the day, adding that there are several technical challenges associated with getting improved resolution images at the lower altitude orbit. For example, the spacecraft will not slow from its orbital speed of about 1.6 km/s (about 3,500 mph) when it gets closer to the Moon’s surface, which might cause some image blurring, particularly for the LROC Narrow Angle Camera images. “However, it will certainly be fun to compare the images from the different orbits!” the spacecraft Tweeted.

New Opportunity for Students to Reach for the Stars and Send an Experiment to the Space Station

A new opportunity is available to students to have their experiments flown to the ISS. Credit: NAS

[/caption]

A new opportunity is available for students and teachers to be part of history and fly the very first Student Spaceflight Experiments Program (SSEP) mission to the International Space Station. This program is open to students from any country that is part of the ISS partnership, in grades 5-12 as well as colleges and universities.

This opportunity offers real research done on orbit, with students designing and proposing the experiments to fly to the space station.

“Science is not something that can only be carried out by an elite community of researchers,” Dr. Jeff Goldstein, the Director for the National Center for Earth and Space Science Education told Universe Today. “It’s really just organized curiosity, and can be undertaken by anyone. So to inspire our next generation of scientists and engineers, we thought we’d give students an opportunity to do real scientific research on America’s newest National Laboratory – the International Space Station.”

SSEP is a program that launched in June 2010 by the National Center for Earth and Space Science Education in partnership with NanoRacks, LLC, a company that is working with NASA under a Space Act Agreement as part of the utilization of the International Space Station as a National Laboratory.

Two previous SSEP missions flew on the final shuttle flights, but this is the first to be part of the ISS science program.

NanoRacks hopes to stimulate space station research by providing a very low-cost 1 kilogram platform and other hardware that puts micro-gravity projects within the reach of universities and small companies, as well as elementary and secondary schools through SSEP. So, this is actually a commercial space program and not a NASA program.

On the previous SSEP missions with the space shuttles, 1,027 student team proposals were submitted with 27 experiments selected to fly, representing the 27 communities.

“We know even 5th graders can rise to this challenge and amaze us all,” Goldstein said, “and they already proved it on the final two flights of the Space Shuttle.”

The countries that can participate are the US, Canada, Japan and the European nations that are partners in the ISS program.

SSEP Mission 1 to ISS is now open for registration, with participating communities selected no later than September 30, 2012, so this is time critical.

Goldstein noted there are a significant number of resources that make this process straight-forward, including an instructionally designed recipe allowing teachers to easily facilitate the introduction of the program in the classroom, conduct experiment design, and do the proposal writing.

There are five categories of participation:

Pre-College (the core focus for SSEP) in the U.S., (grades 5-12), with a participating school district—even an individual school—providing stunning, real, on-orbit RESEARCH opportunities to their upper elementary, middle, and high school students

2-Year Community Colleges in the U.S., (grades 13-14), where the student body is typically from the local community, providing wonderful pathways for community-wide engagement

4-Year Colleges and Universities in the U.S., (grades 13-16), with an emphasis on Minority-Serving Institutions, where the program fosters interdisciplinary collaboration across schools and departments, and an opportunity for formal workforce development for science majors

Communities in the U.S. led by Informal Education or Out-of-School Organizations, (e.g., a museum or science center, a homeschool network, a boy scout troop), because high caliber STEM education programs must be accessible to organizations that promote effective learning beyond the traditional classroom

Communities in ISS Partner Nations: EU nations, Canada, and Japan with participation through NCESSE’s Arthur C. Clarke Institute for Space Education.

Goldstein said the program is a U.S. national Science, Technology, Engineering, and Mathematics (STEM) education initiative that gives up to 3,200 students across a community—middle and high school students (grades 5-12), and/or undergraduates the ability to fly their own experiments in low Earth orbit on the International Space Station.

For more information see the SSEP website

Read about the experience of previous SSEP program schools on the space shuttle

Watch a video of Dr. Jeff Goldstein talking about SSEP.

Got Drought? Just Tow in an Iceberg

The Sydney iceberg, an April Fools' joke.

[/caption]

As an April Fool’s joke in 1978, Australian businessman Dick Smith claimed he was towing an iceberg from Antarctica to Sydney Harbour. He used a barge covered with white plastic and fire extinguisher foam in effort to convince those who gathered at the harbor to see it. Apparently, however, the idea is not such a joke after all. A team of engineers from France have studied the concept, did a simulation and found that icebergs floating around in the ocean could be tethered and towed to places that are experiencing a severe drought and water shortages.

The idea originally was conceived in the 1970’s by an graduate student named Georges Mougin, who even received some funds from a Saudi prince to test the idea, but not much came of it.

According to an article on PhysOrg, the French engineers looked into the idea and concluded that towing an iceberg from, for example, the waters around Newfoundland to the Canary Islands off the northwest coast of Africa, could be done, and would take just under five months when towed by a tugboat outfitted with a kite sail, traveling at about one knot.

The cost would be almost ten million dollars, however.

According to a simulated test, the iceberg would lose only 38 percent of its seven ton mass during the trip, if it was fitted with an insulated skirt.

Apparently Mougin is encouraged by the results and now at age 86 is trying to raise money for an actual iceberg-tow.

Read more details on PhysOrg.

Cassini Surveys the Dunes of Xanadu on Titan

Three of Titan's major surface features-dunes, craters and the enigmatic Xanadu-appear in this radar image from NASA's Cassini spacecraft. Image credit: NASA/JPL-Caltech

[/caption]

The name “Xanadu” just sounds exotic and enticing, and given that this region on Titan is right next to Shangri-la, how can we not be intrigued by the latest radar image of this region taken by the Cassini spacecraft? While Titan itself is shrouded in mystery with its thick, hazy atmosphere, via radar, Cassini can peer through and has found three major surface features: dunes, craters and the enigmatic Xanadu, a bright continent-sized feature centered near the moon’s equator. At upper right is the crater Ksa, first seen by Cassini in 2006. The dark lines running among Xanadu and Ksa are linear dunes, similar to sand dunes on Earth in Egypt and Namibia. In addition to the dunes, look closely at Xanadu to see hills, rivers and valleys which scientists believe are carved in ice rather than solid ground, by liquid methane or ethane.

This image was taken by Cassini’s Titan Radar Mapper on June 21, 2011.

Source: JPL

Replication of Arsenic Life Experiment Not Successful So Far

A replication of the arsenic life experiment being done by biologist Rosie Redfield. Image credit: Rosie Redfield.

[/caption]

One of the most vocal and ardent critics of the so-called ‘arsenic life’ experiment which was published in December 2010 was biologist Rosie Redfield from the University of British Columbia in Vancouver. The science paper by NASA astrobiologist Felisa Wolfe-Simon and her team reported that a type of bacteria in Mono Lake in California can live and grow almost entirely on arsenic, a poison, and incorporates it into its DNA. Redfield called the paper “lots of flim-flam, but very little reliable information.” Her opinion was quickly seconded by many other biologists/bloggers.

Redfield has been working on replicating the experiment done by Wolfe-Simon, and doing in her work in front of the world, so to speak. She is detailing her work in an open lab notebook on her blog. So far, she reports that her results contradict Wolfe-Simon et al.’s observations.

To date, Redfield is finding that the bacteria, called GFAJ-1, is not living and growing in arsenic, but dying. Redfield says her work refutes that cells from the GFAJ-1 could use arsenic for growth in place of phosphorus, and when arsenic was added to the low-phosphorus medium in which the bacteria was living, the bacteria was killed. Additionally, in other test viles, the growth properties Redfield is finding for GFAJ-1 don’t match those reported by Wolfe-Simon and her team, which claimed that the bacteria could not grow on a low concentration of phosphorus, and that the bacteria could grow on arsenic in the absence of phosphorus.

Felisa Wolfe-Simon, right, a NASA astrobiology research fellow in residence at the USGS, and Ronald Oremland, an expert in arsenic microbiology at the USGS, examine sediment in August 2009 from Mono Lake in eastern California. Credit: © 2009 Henry Bortman

Redfield’s two major early criticisms of the original paper were that the authors had not ruled out the possibility that the bacteria were feeding on phosphorus contaminating their growth medium; and that the bacterial DNA was not properly purified, so that the arsenic detected might not actually have been in DNA.

An article in Nature reports that other researchers also working on replicating the experiment with GFAJ-1 laud Redfield’s efforts, but say it is too early to conclude that she has debunked the original work.

Additionally, one problem is that Redfield she did not replicate the experiment exactly, as she had to add one nutrient not used by the authors of the original arsenic life paper in order for the bacteria to grow.

This is not the first time scientists have written open notebooks during the replication of controversial findings, but it might be one of the more notable, given the amount of media attention the arsenic life paper received.

Redfield is also hoping that her work will highlight the benefits of open notebook-type research.

You can read Redfield’s blog about her work at this link.

Sources: Nature, Redfield’s blog.

HARPS Tunes In On “Noisy” Planets

Montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Credit: European Southern Observatory

[/caption]

Able to achieve an astounding precision of 0.97 m/s (3.5 km/h), with an effective precision of the order of 30 cms-1, the High Accuracy Radial velocity Planet Searcher (HARPS) echelle spectrograph has already discovered 16 planetary objects in the southern hemisphere and has now logged four more. And that’s only the beginning…

“A long-period companion, probably a second planet, is also found orbiting HD7449. Planets around HD137388, HD204941, and HD7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD7449b. All these planets were discovered even though their hosting stars have clear signs of activity.” says X. Dumusque (et al). “Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD137388, HD204941 and HD7199, whereas the measurements of HD7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface.”

Using radial velocity is currently the preferred method for detecting new planets. But, despite the quality of the equipment, low mass planets placed at a great distance from the host star become problematic because of the star’s own “noise”. RV is an indirect method which utilizes the presence of star wobble to spot orbiting bodies. Unfortunately, normal star activity such as magnetic cycles, spots and plagues can produce similar signals, but now long term variables like these are being fine tuned into the equation.

“The planets announced in this paper for the first time have been discovered even though their host stars display clear signs of activity. We have found that HD7449 exhibits signs of short term activity, whereas HD7199, HD137388, and HD204941 have solar-like magnetic cycles.” says Dumusque. “When examining the RVs and the fitted planets for HD7199, HD137388, and HD204941, it is clear that magnetic cycles induce RV variations that could be misinterpreted as long-period planetary signature. Therefore, the long-term variations in the activity index have to be studied properly to distinguish between the real signature of a planet and long-term activity noise.”

The paper then goes on to explain our Sun should show RV variations of 10ms?1 over its cycle and that it is typical behavior for solar-like stars. Perhaps all stars which display magnetic cycles also have long-term RV variations? “The high precision HARPS sample, composed of 451 stars, provides a good set of measurements to search for this activity-RV correlation.” says Lovis (et al). “A more complete study is in progress and will be soon published.”

Factual Information Courtesy of Wikipedia. Further Reading: The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation.

SpaceX: Mars Is Our Future

Could an image similar to this be in our near future? If Elon Musk has his way - the answer is yes. Falcon 9 Image Courtesy of SpaceX - Mars Image Courtesy of NASA

[/caption]Elon Musk is not one to rest on prior accomplishments; he likes to continue to push forward – his plans for the future of commercial space flight reflect that philosophy. He has stated his plans to begin crewed flights to Mars. Musk thinks that humans can set foot on the red planet within the next 10 to 20 years. He stated that the rationale behind mankind becoming a multi-planet species should be obvious to all.

“Ultimately, it is vital that we are on a path to becoming a multi-planet species,” said Musk. “If we don’t then our future isn’t very bright, we’ll simply be hanging out on Earth until some calamity claims us.”

SpaceX's Dragon spacecraft is set to head to the International Space Station this December. SpaceX has plans to use the spacecraft in potential Martian missions. Image Credit: SpaceX

Musk made the announcement of his intent during this month’s meeting of the American Institute of Aeronautics and Astronautics (AIAA) that was held in San Diego, California.

SpaceX would presumably utilize the Falcon Heavy rocket, which is slated to conduct its first launch either at the end of 2012 or the beginning of 2013. Whereas the Falcon 9 features nine engines in its first stage, the Falcon Heavy, being a triple-body design similar of the Delta IV Heavy – would utilize 27 Merlin engines. It is estimated that the Falcon Heavy could send 12 to 15 metric tons to orbit.

The proposed Falcon Heavy is scheduled to launch either some time next year or in the early part of 2013. Image Credit: SpaceX

The spacecraft that would fly any mission to the red planet would theoretically be an offshoot of the vehicle that SpaceX sent to orbit last December, the Dragon. In fact the craft/project has already been dubbed the “Red Dragon.”

NASA currently plans to send astronauts to an asteroid by 2025 and to Mars sometime in the 2030s. If SpaceX is successful, this would be far faster than what the space agency has stated it is capable of accomplishing.

SpaceX has had a number of successes lately. It has successfully launched two of its heavy-lift Falcon 9 rockets, the second of which carried the first of the company’s Dragon spacecraft to orbit. Shortly thereafter the company recovered the vehicle as it bobbed safely in the Pacific Ocean after returning safely to Earth. The feat of sending spacecraft to and from orbit had only been accomplished by nations before this.

The NewSpace firm is working to speed up the timeline of the Commercial Orbital Transportation Services (COTS) contract, worth an estimated $1.6 billion, that the company has with NASA. SpaceX has requested and technically received permission to send the next Dragon spacecraft to the International Space Station (ISS) this December. Originally this flight would have been a flyby of the orbiting laboratory to test out several of the spacecraft’s key operating systems. However, one of the ISS partners, Russia, has yet to sign off on this plan however.

Musk wants to see his "Red Dragon" on the surface of Mars within the next 20 years. Image Credit: SpaceX

The California-based company was also tapped to participate in NASA’s Crew Commercial Development contract (phase 2) – more commonly known as CCDev-02. SpaceX was selected along with Boeing, Sierra Nevada Corporation and Blue Origin. Each firm was awarded a different cash sum to accomplish the proposals that they had set forth.

SpaceX is a company whose scope appears to be rapidly expanding. The announcement at the AIAA by Musk appears to highlight this fact. Mars has long been the destination of choice for many within the space community. Funding and logistics woes have delayed the first manned mission from ever taking place. It remains to be explained how the mission will be flown, will it be unilateral, multi-national or some other mixture? Will private industry take the lead? For his part Musk has thrown down the gauntlet – “Red Dragon” could fly as early as 2018.

SpaceX toured the Dragon spacecraft that flew to orbit this past December around the country in order to demonstrate the company's growing capabilities. Photo Credit: Jason Rhian

What Does the Moon Look Like from Space?

Aeronomy
Earth's thin line of atmosphere and a gibbous moon are featured in this image photographed by astronaut Ron Garan. Credit: NASA/Ron Garan. Click for larger version

[/caption]

Ah, the Moon! Earth’s constant companion and the subject of songs, poetry, and many an astrophoto here on Universe Today. But we always gaze upon the Moon under the cover of Earth’s atmosphere. Does it look any different from up above the world so high? Astronauts from the ISS have taken plenty of pictures of the Moon, and here are a couple recent and notable lunar images. The one above is of a crescent Moon taken in March of this year (2011) — notice the bright crescent sliver present even while the entire moon is visible. Here, the Moon looks teeny tiny. Below is another view of a bigger, but still crescent Moon as seen from the ISS.


The Moon as seen by astronaut Ron Garan on the ISS on July 31, 2011. Credit: NASA/ Ron Garan

Expedition 28 astronaut Ron Garan took this image just a few days ago on July 31, 2011 from the International Space Station. This is such a stunning image, it was featured on NASA’s Image of the Day Gallery. Garan noted the view saying, “We had simultaneous sunsets and moonsets.” For anyone in orbit, this extraordinary event is a daily occurrence. Since the station orbits the Earth every 90 minutes, each day the crew experiences such a view about 16 times a day.

See more from Ron Garan on his Twitpic page.

SDO’s Guide to Solar Flares

X-Class, M-Class, C-Class… What does it all that mean, and just what is a solar flare? This video from the Solar Dynamics Observatory tells all about solar flares and how they might affect us here on Earth. Find out why NASA and NOAA are constantly monitoring the Sun for activity that could create long lasting radiation storms which can harm satellites, communications systems, and even ground-based technologies and power grids.

Carnival of Space #209

With space bloggers scattered around the globe, the 209th edi­tion of Car­ni­val of Space provides some­thing a lit­tle dif­fer­ent: John Williams from Starry Critters hosts this week and uses his TerraZoom know-how to create a Google Maps car­ni­val, where you can click on a marker and space news will appear. Check it out at Starry Critters!

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the Carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, sign up to be a host. Send an email to the above address.