What’s up with Iapetus?

The dark and light side of Iapetus. Credit: NASA/JPL/Space Science Institute

[/caption]

 

Although Saturn’s moon Iapetus was first discovered in 1671 by Giovanni Cassini, its behavior was extremely odd. Cassini was able to regularly find the moon when it was to the west of Saturn, but when he waited for it to swing around to Saturn’s east side, it seemed to vanish. It wasn’t until 1705 that Cassini finally observed Iapetus on the eastern side, but it took a better telescope because the side Iapetus presented when to the east was a full two magnitudes darker. Cassini surmised that this was due to a light hemisphere, presented when Iapetus was to the west, and a dark one, visible when it was to the east due to tidal locking.

With the advances in telescopes, the reason for this dark divide has been the subject of much research. The first explanations came in the 1970’s and a recent paper summarizes the work done so far on this fascinating satellite as well as expanding it to the larger context of some of Saturn’s other moons.

The foundation for the current model of Iapetus’ uneven display was first proposed by Steven Soter, one of the co-writers for Carl Sagans Cosmos series. During a colloquium of the International Astronomical Union, Soter proposed that micrometeorite bombardment of another of Saturn’s moons, Pheobe, drifted inwards and were picked up by Iapetus. Since Iapetus keeps one side facing Saturn at all times, this would similarly give it a leading edge that would preferentially pick up the dust particles. One of the great successes of this theory is that the center of the dark region, known as the Cassini Regio, is directly situated along the path of motion. Additionally, in 2009, astronomers discovered a new ring around Saturn, following Phoebe’s retrograde orbit, although slightly interior to the moon, adding to the suspicion that the dust particles should drift inwards, due to the Poynting-Robertson effect.

In 2010, a team of astronomers reviewing the images from the Cassini mission, noted that the coloration had properties that didn’t quite fit with Soter’s theory. If deposition from dust was the end of the story, it was expected that the transition between the dark region and the light would be very gradual as the angle at which they would strike the surface would become elongated, spreading out the incoming dust. However, the Cassini mission revealed the transitions were unexpectedly abrupt. Additionally, Iapetus’ poles were bright as well and if dust accumulation was as simple as Soter had suggested, they should be somewhat coated as well. Furthermore, spectral imaging of the Cassini Regio revealed that its spectrum was notably different than that of Phoebe. Another potential problem was that the dark surface extended past the leading side by more than ten degrees.

Revised explanations were readily forthcoming. The Cassini team suggested that the abrupt transition was due to a runaway heating effect. As the dark dust accumulated, it would absorb more light, converting it to heat and helped to sublimate more of the bright ice. In turn, this would reduce the overall brightness, again increasing the heating, and so on. Since this effect amplified the coloration, it could explain the more abrupt transition in much the same way as adjusting the contrast on an image will sharpen gradual transitions between colors. This explanation also predicted that the sublimated ice could travel around the far side of the moon, freezing out and enhancing the brightness on the other sides as well as the poles.

To explain the spectral differences, astronomers proposed that Phoebe may not be the only contributor. Within Saturn’s satellite system, there are over three dozen irregular satellites with dark surfaces which could also potentially contribute, altering the chemical makeup. But while this sounded like a tantalizingly straight-forward solution, confirmation would require further investigation. The new study, led by Daniel Tamayo at Cornell University, analyzed the efficiency with which various other moons could produce dust as well as the likelihood with which Iapetus could scoop it up. Interestingly, their results showed that Ymir, a mere 18 km in diameter, “should be roughly as important a contributor of dust to Iapetus as Phoebe”. Although none of the other moons, independently looked to be as strong of sources for dust, the sum of dust coming the remaining irregular, dark moons was found to be at least as important as either Ymir or Phoebe. As such, this explanation for the spectral deviation is well grounded.

The last difficulty, that of spreading dust past the leading face of the moon, is also explained in the new paper. The team proposes that eccentricities in the orbit of the dust allow it to strike the moon at odd angles, off from the leading hemisphere. Such eccentricities could be readily produced by solar radiation, even if the orbit of the originating body was not eccentric. The team carefully analyzed such effects and produced models capable of matching the dust distribution past the leading edge.

The combination of these revisions seem to secure Soter’s basic premise. A further test would be to see if other large satellites like Iapetus also showed signs of dust deposition, even if not so starkly divided since most other moons lack the synchronous orbit. Indeed, the moon Hyperion was found to have darker regions pooling in its craters when Cassini few by in 2007. These dark regions also revealed similar spectra to that of Cassini Regio. Saturn’s largest moon, Titan is also tidally locked and would be expected to sweep up particles on its leading edge, but due to its thick atmosphere, the dust would likely be spread moon-wide. Although difficult to confirm, some studies have suggested that such dust may help contribute to the haze Titan’s atmosphere exhibits.

Astronomy Without A Telescope – Oh-My-God Particles

Centaurus A - the closest galaxy with an active galactic nucleus - a mere 10-16 million light years away. Now I wonder where all those ultra high energy cosmic rays are coming from. Hmmm...

[/caption]

Cosmic rays are really sub-atomic particles, being mainly protons (hydrogen nuclei) and occasionally helium or heavier atomic nuclei and very occasionally electrons. Cosmic ray particles are very energetic as a result of them having a substantial velocity and hence a substantial momentum.

The Oh-My-God particle detected over Utah in 1991 was probably a proton traveling at 0.999 (and add another 20 x 9s after that) of the speed of light and it allegedly carried the same kinetic energy as a baseball traveling at 90 kilometers an hour.

Its kinetic energy was estimated at 3 x 1020 electron volts (eV) and it would have had the collision energy of 7.5 x 1014 eV when it hit an atmospheric particle – since it can’t give up all its kinetic energy in the collision. Fast moving debris carries some of it away and there’s some heat loss too. In any case, this is still about 50 times the collision energy we expect the Large Hadron Collider (LHC) will be able to generate at full power. So, this gives you a sound basis to scoff at doomsayers who are still convinced that the LHC will destroy the Earth.

Now, most cosmic ray particles are low energy, up to 1010 eV – and arise locally from solar flares. Another more energetic class, up to 1015 eV, are thought originate from elsewhere in the galaxy. It’s difficult to determine their exact source as the magnetic fields of the galaxy and the solar system alter their trajectories so that they end up having a uniform distribution in the sky – as though they come from everywhere.

But in reality, these galactic cosmic rays probably come from supernovae – quite possibly in a delayed release process as particles bounce back and forth in the persisting magnetic field of a supernova remnant, before being catapulted out into the wider galaxy.

And then there are extragalactic cosmic rays, which are of the Oh-My-God variety, with energy levels exceeding 1015 eV, even rarely exceeding 1020 eV – which are more formally titled ultra-high-energy cosmic rays. These particles travel very close to the speed of light and must have had a heck of kick to attain such speeds.

Left image: The energy spectrum of cosmic rays approaching Earth. Cosmic rays with low energies come in large numbers from solar flares (yellow range). Less common, but higher energy cosmic rays originating from elsewhere in the galaxy are in the blue range. The least common but most energetic extragalactic cosmic rays are in the purple range. Right image: The output of the active galactic nucleus of Centaurus A dominates the sky in radio light - this is its apparent size relative to the full Moon. It is likely that nearly all extragalactic cosmic rays that reach Earth originate from Centaurus A.

However, a perhaps over-exaggerated aura of mystery has traditionally surrounded the origin of extragalactic cosmic rays – as exemplified in the Oh-My-God title.

In reality, there are limits to just how far away an ultra-high-energy particle can originate from – since, if they don’t collide with anything else, they will eventually come up against the Greisen–Zatsepin–Kuzmin (GZK) limit. This represents the likelihood of a fast moving particle eventually colliding with a cosmic microwave background photon, losing momentum energy and velocity in the process. It works out that extragalactic cosmic rays retaining energies of over 1019 eV cannot have originated from a source further than 163 million light years from Earth – a distance known as the GZK horizon.

Recent observations by the Pierre Auger Observatory have found a strong correlation between extragalactic cosmic rays patterns and the distribution of nearby galaxies with active galactic nuclei. Biermann and Souza have now come up with an evidence-based model for the origin of galactic and extragalactic cosmic rays – which has a number of testable predictions.

They propose that extragalactic cosmic rays are spun up in supermassive black hole accretion disks, which are the basis of active galactic nuclei. Furthermore, they estimate that nearly all extragalactic cosmic rays that reach Earth come from Centaurus A. So, no huge mystery – indeed a rich area for further research. Particles from an active supermassive black hole accretion disk in another galaxy are being delivered to our doorstep.

Further reading: Biermann and Souza On a common origin of galactic and extragalactic cosmic rays.

Dust in the Wind

WISE image of the "Elephant Trunk" nebula. NASA/JPL-Caltech/WISE Team.

[/caption]

The stellar wind, that is! This beautiful image, taken by NASA’s Wide-Field Infrared Explorer (WISE) shows a vast ring of interstellar dust and gas being forced outwards by the wind and radiation from a massive star.

The star, HR8281, is located in the center of the image, the topmost star in a small triangular formation of blue stars to the upper left of the tip of a bright elongated structure – the end of the “elephant trunk” that gives the nebula its name. The star may not look like much, but HR8281’s powerful stellar wind is what’s sculpting the huge cloud of dust into the beautiful shapes seen in this infrared image.

Located 2,450 light-years from Earth, the Elephant’s Trunk Nebula spans 100 light-years. The “trunk” itself is about 30 light-years long. (That’s about, oh… 180 trillion miles!)

Structures like this are common in nebulae. They are formed when the stellar wind – the outpouring of ultraviolet radiation and charged particles that are constantly streaming off stars – blows away the gas and dust near a star, leaving only the densest areas. It’s basically erosion on a massive interstellar scale.

The tip of the "trunk" and the triangle of stars, the topmost of which is HR8281.

It’s not just a destructive process, though. Within those dense areas new stars can form… in fact, in the bright tip of the trunk above a small dark spot can be seen. That’s an area that’s been cleared by the creation of a new star. When a baby star “ignites” and its nuclear fusion factory turns on, its stellar wind clears away the dust and gas in the cloud it was formed from. Nebulae aren’t just pretty clouds in space… they’re stellar nurseries!

The red-colored stars in this image are other newborn stars, still wrapped in their dusty “cocoons”.

The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light from 12 and 22 microns, respectively, which is mostly emitted by dust.

Read more about this image on the WISE site here.

Image Credit: NASA/JPL-Caltech/WISE Team

Proof! Bio Station Alpha is Just an Image Artifact

The streak on Google Mars misinterpreted as a secret Mars base.

[/caption]

It’s time for another episode of “Conspiracy Theory of the Week.” This one involves a supposed secret space station on Mars. The You Tube video showing “Bio Station Alpha” (below) went viral and was even reported on some mainstream media outlets. The station is supposedly a 700 ft x 150 ft structure on Mars and by some accounts is colored white with blue and red stripes. It was found on Google Mars by an “armchair astronaut” and breathless conspiracy bloggers have touted this as the most important discovery on Mars yet, and “proof!” that NASA is hiding their activities.

In reality, this is not a space station, a Mars base or any type of structure – created or natural — on the surface of the Red Planet. What shows up in this location on Google Mars is just a smattering of about 11 bad pixels from data dropout – a linear streak artifact likely caused by a cosmic ray hitting the Mars Express spacecraft while it was taking the image – and then that smudge has been badly distorted through image processing when it became part of Google Mars.

“This looks like a cosmic ray hit,” said Tanya Harrison, planetary scientist on the science operations team for the Mars Reconnaissance Orbiter Context Camera (CTX) and Mars Color Imager (MARCI) at Malin Space Science Systems. “We see these from time to time in the MARCI data from MRO.”

Here’s the image that is seen on Google Mars after processing, which includes very noticeable compression artifacts:

And now here’s the original image taken by the Mars Express High Resolution Stereo Camera image (H5620_0000_ND), taken on May 18, 2008 (and here’s the link to the original image):

Original Mars Express HRSC image of the location in question on Mars. Credit: ESA

This image really makes it clear this is an image artifact from a cosmic ray hit.

Here’s the same location taken by the MRO Context Camera (CTX) on January 25, 2010 (a crop of the same location as seen above from the original large CTX image, available here):

MRO's Context Camera (CTX) image MRO CTX B17_016407_2528_XN_72N029W of the same location. Credit: MSSS

In this image, each pixel represents a distance of about 6.25 meters, a higher resolution than what is available from the Mars Express spacecraft, which takes images at 10 meters per pixel. Obviously, there is no structure or anything unusual at that location, except for the northern polar sand dunes.

Harrison explained that the CTX acquires grayscale (black & white) images at 6 meters per pixel scale over a swath 30 kilometers wide and provides context images for the MRO HiRISE and CRISM cameras, which can take even higher resolution images. It is used to monitor changes occurring on the planet, and help the science team select critical science targets. The team at Malin Space Science Systems pores over the images looking for anything unusual. In this case, at this location, they found nothing.

“Every day, the images we acquired with CTX and MARCI the previous day are inspected by multiple sets of eyes,” Harrison told Universe Today. “We look at every single image for multiple reasons: checking the health of the instrument, monitoring weather conditions for future targeting of the cameras, and looking for anything geologically interesting.”

Harrison added that nearly all the operations folks on the team have Master’s degrees or Ph.D.s in geology or a related field.

“If we spot anything out of the ordinary, we look at previous images of the area, not just from CTX and MARCI, but from the Mars Global Survery’s Mars Orbiter Camera, the THEMIS VIS and IR on the Mars Odyssey spacecraft, the HRSC on Mars Express, and Viking,” Harrison said. “This lets us look at the features at different illumination angles, times of day, resolutions, etc. We know better than to speculate on something below the resolution of our cameras, so if we see something in CTX that’s worth following up on at a higher resolution, we ask HiRISE to shoot it. The same thing was true for MOC, following up on things observed in the low-resolution wide angle images with high-resolution narrow angle images.”

Clearly, this region has been imaged and examined previously, with absolutely nothing found by the top experts in the field. The region is so uninteresting that no one has requested for HiRISE — which can take images of 1-2 meters per pixel — to take any images of this area.

Harrison said CTX takes images of Mars that are up to 30 km wide and over 300 km long at a very high resolution. “This is a pretty big footprint with a relatively high resolution compared to previous cameras!” she said. “The size of that footprint has allowed us to cover over 60% of Mars at 6 meters per pixel in the 5 years MRO has been orbiting Mars. In addition to mapping, we use CTX to acquire stereo coverage of key areas, as well as to monitor hundreds of locations on Mars for changes such as new impact craters and dust activity.”

If there were something unusual on Mars, the people at NASA, ESA, MSSS and anyone monitoring Mars would have imaged this site repeatedly with the best cameras available. They would love to find something unusual, groundbreaking and front-page worthy, and if they did would be shouting it from the rooftops, not hiding it.

You can hear Harrison talk about how the images taken by the various Mars orbiters require meticulous planning, on the June 1, 2011 episode of 365 Days of Astronomy.

MSSS is comprised of several small groups which all contribute to designing, building, and operating cameras on orbiters and rovers at other planets.

If you want to see the image artifact on Google Mars, here are the coordinates: 71 49’19.73?N 29 33’06.53?W

And, if you must, here’s the video by David Martinez:

Dragon*Con 2011

The folks at Dragon*Con have decided to decline having me as a guest this year. I already have my plane tickets, hotel booked, so I’m still going to go – I just signed up with a regular membership. It’s too bad, but then, this gives me the freedom to just enjoy the convention as a fan, and not have to participate in panels, help promote the convention through Universe Today, etc. I think we’re still going to do an episode of Astronomy Cast live, just because that’s so much fun. I’m bringing the whole family: wife, kids, even the mother-in-law. Anyway, you’ll see me lurking around the Astronomy Cast booth, or watching panels. It should be a fun vacation. 🙂 See you there!

Nearby Galaxy Has Two Monster Black Holes

Viewed in visible light, Markarian 739 resembles a smiling face. Inside are two supermassive black holes, separated by about 11,000 light-years. The galaxy is 425 million light-years away from Earth. Credit: Sloan Digital Sky Survey

[/caption]

Why does this galaxy appear to be smiling? The answer might be because it has been holding a secret that astrophysicists have only now just uncovered: there are two — count ‘em – two gigantic black holes inside this nearby galaxy, named Markarian 739 (or NGC 3758), and both are very active. While massive black holes are common, only about one percent of them are considered as active and powerful – called active galactic nuclei (AGN). Binary AGN are rarer still: Markarian 739 is only the second identified within half a billion light-years from Earth.

Markarian 739 is actually a pair of merging galaxies. For decades, astronomers have known that the eastern nucleus of Markarian 739 contains a black hole that is actively accreting matter and generating an exceptional amount of energy. Now, data from the Swift satellite along with the Chandra X-ray Observatory Swift has revealed an AGN in the western half as well. This makes the galaxy one of the nearest and clearest cases of a binary AGN.

The galaxy is 425 million light-years away from Earth.

How did the second AGN remain hidden for so long? “Markarian 739 West shows no evidence of being an AGN in visible, ultraviolet and radio observations,” said Sylvain Veilleux, a professor of astronomy at University of Maryland in College Park , and a coauthor of a new paper published in Astrophysical Journal Letters. “This highlights the critical importance of high-resolution observations at high X-ray energies in locating binary AGN.”

Since 2004, the Burst Alert Telescope (BAT) aboard Swift has been mapping high-energy X-ray sources all around the sky. The survey is sensitive to AGN up to 650 million light-years away and has uncovered dozens of previously unrecognized systems.

Michael Koss, the lead author of this study, from NASA’s Goddard Space Flight Center and UMCP, did follow-up studies of the BAT mapping and he and his colleagues published a paper in 2010 that revealed that about a quarter of the Swift BAT AGN were either interacting or in close pairs, with perhaps 60 percent of them poised to merge in another billion years.

“If two galaxies collide and each possesses a supermassive black hole, there should be times when both black holes switch on as AGN,” said coauthor Richard Mushotzky, professor of astronomy at UMCP. “We weren’t seeing many double AGN, so we turned to Chandra for help.”

Swift’s BAT instrument is scanning one-tenth of the sky at any given moment, its X-ray survey growing more sensitive every year as its exposure increases. Where Swift’s BAT provided a wide-angle view, the X-ray telescope aboard the Chandra X-ray Observatory acted like a zoom lens and resolved details a hundred times smaller.

The distance separating the two black holes is about 11,000 light-years , or about a third of the distance separating the solar system from the center of our own galaxy. The dual AGN of Markarian 739 is the second-closest known, both in terms of distance from one another and distance from Earth. However, another galaxy known as NGC 6240 holds both records.

Source: Swift Telescope webpage

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

A Chang’e-2 Space…

Chang'e 2 satellite artist realization

[/caption]

On June 9, Chang’e-2, China’s second Moon orbiter, left our nearest astronomical neighborhood and headed out into the solar system. It had successfully completed its missions by April 1 and, thanks to its longevity, had enough fuel in reserve to continue exploring. According to China’s State Administration of Science,Technology and Industry for National Defence (SASTIND), making the trip into outer space from the Moon’s orbit is the major step from five remaining tasks assigned to the diminutive satellite.

“It’s the first time in the world for a satellite to be set off from the Moon in remote outer space,” said Zhou Jianliang, deputy chief engineer of the Chang’e-2 measure and control system of the Beijing Aerospace Control Center (BACC).

China’s technological developments are leaping ahead. While controlling a mission to the Moon 400,000 km away from the Earth is challenging enough, attempting to command a spacecraft from 1.5 million km presents a huge milestone in measure and control, telecommunications, data transaction and orbit design.

Before flying away, Chang’e-2 finished two additional tasks as of May 23. Its first was to take snapshots of the lunar northern and southern pole and the second was to descend into perilune orbit, about 15 km away from the surface. This time to take high-resolution images of the Sinus Iridum – the proposed landing ground for future Moon missions. The completion of satellite’s tasks has Chinese scientists smiling and hoping things continue well towards the end of next year.

“We are developing outer space measure and control stations in outer space and they will be capable to carry out tasks by the end of the second half next year,” said an SASTIND scientist, who declined to be named. “At that time, the satellite can be used to test the two stations’ functions.”

But the road ahead for Chang’e-2 isn’t going to be an easy one, simply because the satellite wasn’t designed to do what it is now doing. Extended distances mean unexpected problems with communication and control, but the little “Moon Goddess” just may be up to the task.

Original Story Source: China News.

Giant “Surfing” Waves Roll Through Sun’s Atmosphere

Surfer waves -- initiated in the sun, as they are in the water, by a process called a Kelvin-Helmholtz instability -- have been found in the sun's atmosphere. Credit: NASA/SDO/Astrophysical Journal Letters

[/caption]

Surf’s up on the Sun! Our favorite gnarly spacecraft, the Solar Dynamics Observatory (SDO) has caught conclusive evidence of classic “surfer waves” in the Sun’s atmosphere. But these waves trump ‘Hawaii Five-O’ surfing big time, as they are about the same size as the continental U.S. Spotting these waves will help our understanding of how energy moves through the solar atmosphere, known as the corona and maybe even help solar physicists be able to predict events like Coronal Mass Ejections.

Just like a surfing wave on Earth, the solar counterpart is formed by the same fluid mechanics — in this case it is a phenomenon known as a Kelvin-Helmholtz instability. Since scientists know how these kinds of waves disperse energy in water, they can use this information to better understand the corona. This in turn, may help solve an enduring mystery of why the corona is thousands of times hotter than originally expected.

“One of the biggest questions about the solar corona is the heating mechanism,” says solar physicist Leon Ofman of NASA’s Goddard Space Flight Center, Greenbelt, Md. and Catholic University, Washington. “The corona is a thousand times hotter than the sun’s visible surface, but what heats it up is not well-understood. People have suggested that waves like this might cause turbulence which cause heating, but now we have direct evidence of Kelvin-Helmholtz waves.”

Even though these waves occur frequently in nature here on Earth, no one had seen them on the Sun. But that was before SDO.

Ofman and colleagues spotted these waves in images taken on April 8, 2010 in some of the first images caught on camera by SDO, which launched in Feburary last year and began capturing data on March 24, 2010. Ofman & team have just published a paper in Astrophysical Journal Letters.

Kelvin-Helmholtz instabilities occur when two fluids of different densities or speeds flow by each other. In the case of ocean waves, that’s the dense water and the lighter air. As they flow past each other, slight ripples can be quickly amplified into the giant waves loved by surfers. In the case of the solar atmosphere, which is made of a very hot and electrically charged gas called plasma, the two flows come from an expanse of plasma erupting off the sun’s surface as it passes by plasma that is not erupting. The difference in flow speeds and densities across this boundary sparks the instability that builds into the waves.

On the sun, the two fluids are both plasmas — expanses of super hot, charged gases — which interact. One is erupting from the surface and shooting past a second plasma that is not erupting. The resulting turbulence is a Kelvin-Helmholtz wave form.

The erupting plasma is likely from a Coronal Mass Ejection, such as was seen earlier this week, where the Sun violently propels massive amounts of high-speed plasma particles into space. So, knowing more about the how the corona is heated and what the conditions are just before the KH waves form might give scientists the ability to predict a the next CME, which is a long-standing goal of solar scientists.

But figuring out the exact mechanism for heating the corona will likely keep solar physicists busy for quite some time. However, SDO’s ability to capture images of the entire sun every 12 seconds with such precise detail will certainly provide the data needed.

Source: NASA

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Are YOU the Next Astronomy Photographer of the Year?

'Blazing Bristlecone' by Tom Lowe of the USA, winner of the 2010 years Astronomy Photographer of the Year competition.

[/caption]

Astrophotography is one thing we can’t get enough of here on Universe Today and some of the best amateur astronomy images can be found at the Astronomy Photographer of the Year competition. Interested in entering? There’s just over a month to go until the Royal Observatory in Greenwich’s annual contest closes. If you have taken some astrophotos this year, why not enter? You’ll need to submit any entries by 13 July, 2011 for a chance of winning what has become a prestigious award for amateur astronomers.

The prizes include a top prize of £1,500 and pride of place in the exhibition of photos which opens at the ROG in September. I was fortunate to be on hand for the award ceremony in 2010, and it was a wonderful event. Each entrant can submit up to five images to the competition and some truly breathtaking photos can already be seen on the official Flickr page for the competition.

There are four main categories you can enter: Earth & Space, Our Solar System, Deep Space and Young Astronomy Photographer of The Year. And this year there are also three special awards – one for newcomers, another for shots that creatively capture people and space, and a third for images that have been taken by robotic/remote telescopes and that have been processed by you.

Photographers can enter online by visiting www.nmm.ac.uk/astrophoto, where full competition rules and some top tips on photographing everything from star trails to deep space objects are also available.

The panel of judges includes Sir Patrick Moore and the ROG’s Public Astronomer Dr. Marek Kukula. The winners will be announced at an awards ceremony on the 8 September, and an exhibition of the winning images will open to the public at the Royal Observatory the following day.

Good luck, and we hope to be posting YOUR winning image here on Universe Today!

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Aquarius Satellite Launches to Observe Earth’s Oceans

A picture-perfect launch on a Delta II rocket from Vandeberg Air Force Base in California sent the newest satellite into orbit. The Aquarius/SAC-D spacecraft lifted off June 10, 2011 at 7:20 a.m. PDT (1420 UTC) to gather global measurements of ocean surface salinity, leading to a better understanding of ocean circulation, climate and Earth’s water cycle. NASA’s Aquarius instrument is part of the SAC-D spacecraft built by CONAE, Argentina’s space agency.

Continue reading “Aquarius Satellite Launches to Observe Earth’s Oceans”